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Abstract: This study aimed to develop active films based on carboxymethyl chitosan (CMCS)/locust
bean gum (LBG) films containing Melissa officinalis L. essential oil (MOEO) nanoemulsions. The
results showed that the active films incorporated with MOEO nanoemulsion resulted in an increase
in the elongation of break, water resistance and improved the film hydrophilicity. Elongation
of break increased from 18.49% to 27.97% with the addition of 4% MOEO nanoemulsion. Water
resistance was decreased from 56.32% to 25.43%, and water contact angle was increased from 75.13 to
83.86 with the addition of 4% MOEO nanoemulsion. However, the water vapor barrier properties
and tensile strength decreased with the addition of MOEO nanoemulsions. The scanning electron
microscopic images and Fourier transform infrared spectroscopy results showed that the MOEO was
very compatible with the film materials and dispersed evenly in the films. At the same time, the
addition of MOEO nanoemulsion significantly enhanced antioxidant and antibacterial activities of
C/L-MOEO films. The antioxidant and antimicrobial activities of C/L-MOEO films were increased
from 7.16% to 33.81% and 3.52% to 54.50%, respectively. In general, C/L-MOEO film has great
application prospects.

Keywords: essential oil; active film; nanoemulsions; antibacterial activity

1. Introduction

The accumulation of polymeric and petroleum-based packaging materials causes
serious environmental pollution and poses a threat to human health [1]. In addition, the
question of food spoilage caused by microorganisms cannot be resolved. The development
of bio-based antibacterial active packaging highlights a new trend in the food industry [2].
The bio-based antibacterial active packaging is prepared by incorporating antibacterial
substances such as natural bacteriostats or chemical preservatives into bio-based matrix.
The addition of antibacterial substances can maintain the quality of food, prolong shelf-
life, and inhibit deterioration of the film, simultaneously [3]. For example, high amylose
starch (HAS)-konjac glucomannan (KGM) mixed with cinnamaldehyde, a new bio-based
antibacterial active packaging, improved the hygroscopicity and perishability of film and
endowed it with the antibacterial ability of HAS-KGM film, simultaneously [3].

Locust bean gum (LBG), a vegetable gum extracted from the seeds of the carob tree,
has the potential to be a futuristic biopolymer because of its versatile applications in
water purification, additives (E410), gelling, excipients for pharmaceuticals, stabilizers,
emulsifying agents and food packaging [4,5]. The LBG–chitosan (CS) based film has been
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used in food packaging due to its excellent formability [6]. CS is a natural linear polycationic
polysaccharide that can be developed for potentially functional film applications due to its
antimicrobial, biodegradable and exceptional film-forming characteristics [7]. Despite these
beneficial features, the practical applications of CS are largely hindered due to its poor
mechanical properties and poor solubility in water due to the presence of a hydrophobic
acetyl group [8]. Whereas CS has poor solubility in water, carboxymethyl chitosan (CMCS)
has good water solubility and retains the advantages of CS [9], making it a promising
candidate to replace CS. Therefore, CMCS and LBG have potential as film matrixes with
broad applications in the packaging industry.

Melissa officinalis L. is a perennial herbaceous plant belonging to the Lamiaceae fam-
ily [10]. The leaves of this plant contain monoterpenes with anti-apoptotic, antioxidant
and anti-amyloidogenic effects and are usually applied in the form of powdered herbal
substances, herbal teas, or essential oil [11]. The main ingredients in Melissa officinalis L.
essential oil (MOEO) are phenolic components and terpenes with antioxidant and antibac-
terial activity, making it one of the most attractive essential oils. The addition of MOEO into
bio-based film provides a new idea for the application of MOEO. However, MOEO is water
insoluble and highly volatile, and should be prepared as an essential oil emulsion and then
dispersed into film-forming solutions to increase the retention of the essential oil. One of
the important impacts on the properties of active films is the droplet size of the essential oil
emulsion, which affects the stability of oil-in-water emulsions. High-intensity ultrasonic
homogenization can reduce the droplet size of coarse emulsions by homogenizing the
diaphasic systems [12].

The object of this research was to prepare C/L based active films incorporated with
MOEO nanoemulsions. The effects of MOEO nanoemulsions on the microstructure, me-
chanical properties, hydrophobicity, water vapor barrier (WVP), transmittance, oxygen
transmission rate (OTR), and antioxidant and antibacterial properties of C/L-MOEO films
were investigated.

2. Materials and Methods
2.1. Materials

CMCS was supplied by Shanghai Macklin Biochemical Co., LTD (Shanghai, China),
with degree of deacetylation >90%, isoelectric point: 3–4. LBG (molecular weight: about
300,000 Da) and Tween-80 were purchased from Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China). All other chemical agents were of analytical grade and all solutions
were formulated with deionized water.

2.2. Fabrication of MOEO Emulsions

MOEO was extracted using a Clevenger type apparatus. The leaves were washed
to remove the dirt and were subjected to hydro-distillation for 6 h. The essential oil
was then collected and stored in a dark glass vial at 4 ◦C. The preparation of MOEO
nanoemulsions referenced the method from Ghosh et al. [13]. Tween-80 was used as an
emulsifier to stabilize the W/O emulsion. MOEO and Tween-80 (10% MOEO, v/v) were
added to the deionized water, and the mixed coarse emulsion was treated with an ultrasonic
homogenizer at 20 kHz, 750 W (Xiecheng Ultrasonic Equipment Co., Ltd., Jining, China)
for 15 min in pulsed mode (30 s ON and 30 s OFF) with a 13 mm diameter sonicator probe
to obtain the nanoemulsion [14].

2.3. Preparation of Active Films

The preparation of C/L active film referenced the method from Keawpeng et al. [15].
As shown in Figure 1, 1 g of CMCS and 1 g of LBG were incorporated in 200 mL deionized
water with 0.4 g of glycerol (20% gly/CMCS/LBG, w/w) added as a plasticizer and vigor-
ously stirred at 60 ◦C for 1 h until the polymers thoroughly dissolved. When the mixture
emulsion was cooled to 35 ◦C, MOEO nanoemulsions were incorporated, and the final
concentrations of MOEO were 1, 2 and 4 µg/mL, respectively. The final mixture emulsion
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was agitated at 35 ◦C for 2 h. At the end, air bubbles were removed by vacuum. A 200 mL
film solution was poured into a horizontal glass plate (25 cm × 25 cm) and dried (22 ◦C, 50%
relative humidity). The dried films were stripped from the glass plates and conditioned at
25 ◦C and 50% R. H. for at least 72 h. The films were named as C/L, C/L-1%M, C/L-2%M
and C/L-4%M, respectively, according to the concentration of MOEO.

Figure 1. The preparation of carboxymethyl chitosan/locust bean gum/Melissa officinalis L. essential
oil active film.

2.4. Characterization of Emulsion
2.4.1. Dynamic Light Scattering (DLS)

The droplet size of the emulsions was determined with a laser diffraction particle
size analyzer (Beckman Coulter, Inc., Brea, CA, USA). The Brownian motion of nanoscale
droplets resulted in a scattering light intensity change hat be detected by DLS technique [16].

2.4.2. Transmission Electron Microscopy (TEM)

The diluted MOEO nanoemulsions were deposited over a copper grid with a carbon
film, and then dried. Emulsion droplet morphology was observed by TEM (model JEOL
JSM-100 CX, Shimadzu Co., Tokyo, Japan) [16].

2.5. Physical and Mechanical Properties of Active Films
2.5.1. Thickness

Twelve points were randomly measured on the films by a helical micrometer (Mitutoyo,
Shanghai, China) with an accuracy of 0.001 mm, and the average was treated as the film
thickness [17].

2.5.2. Moisture Content and Water Solubility

The moisture content of the films was determined by the gravimetric method after
being dried at 105 ◦C for 24 h [17].

The water solubility of the films was measured by the method of Mei et al. [18] with
some modifications. A square section of film (20 × 20 mm) was weighed to obtain the initial
dry weight (M1). The films were dipped in 100 mL of deionized water at room temperature
for 30 min. Undissolved films were taken out and dried in an oven at 105 ◦C until constant



Membranes 2022, 12, 568 4 of 14

weight, which was recorded as M2. Water solubility was calculated with the following
Equation (1).

Water solubility =
M1 − M2

M1
× 100% (1)

2.5.3. Mechanical Properties

The mechanical properties of the films were measured by the method from Wang
et al. [19]. A high-precision double-blade cutter was used to cut films into rectangular
strips (2 × 15 cm). The tensile strength (TS) and elongation at break (EAB) of the films were
determined with a TA-XT2i texture analyzer (Stable Micro Systems, Surrey, UK). The initial
grip separation was 50 mm, and the probe speed was 1 mm/s.

2.5.4. Water Vapor Permeability (WVP)

The WVP of active films was estimated with a WVP tester (Labstone, W-B-31E, China).
Circular films were used to seal test dish cups injected with identical amounts of deionized
water and tested in a desiccator (38 ◦C and 10% R.H.) [15].

2.5.5. Oxygen Barrier Properties

The oxygen transmission rate (OTR) of active films was estimated with a gas perme-
ability tester (Labthink, G2/132, China) [15]. The films were placed between the top and
bottom cups in a test chamber containing oxygen. The tests were run at 23 ◦C.

2.6. Optical Properties
2.6.1. Color

The color of films was estimated with a Chroma meter (Konica Minolta, CR-400,
Tokyo, Japan) to measure L*, a*, b*. ∆E and chroma were calculated with the following
Equations (2) and (3), respectively [19]. The value was the average of three random points
on each film.

∆E =
√

∆L∗2 + ∆a∗2 + ∆b∗2 (2)

C =
√

a∗2 + b∗2 (3)

2.6.2. Opacity

The light barrier properties of the films were investigated with a UV-visible spec-
trophotometer (HITACHI, U-3900, Japan) using the method of Agarwal et al. [20]. Opacity
was determined by measuring each film's transmittance spectra at 600 nm with air as
a blank.

2.7. Contact Angle Measurements

The contact angles of the active films were determined with a contact angle instrument
(SDC-100, SINDIN, China) [21]. The sample films were cut into strips of 50 mm × 10 mm.
A 3 µL amount of deionized water was dropped onto the films through an automatically
controlled microinjector. The obtained value was the average of measurements at three
random points on each film.

2.8. Scanning Electron Microscopy (SEM)

The films were fractured in liquid nitrogen. A gold layer was sputter-coated on films.
The surface and cross profile micrographs of the active films were obtained in a Hitachi
S-5000 N scanning electron microscope at 5.00 kV operating voltage [22].

2.9. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra of the active films were measured with an ATR/FT-IR spectrometer
(Thermo Fisher, Nicolet iS5, USA) within 650–4000 cm−1 at a resolution of 4 cm−1 and
64 scans [22].
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2.10. Characterization of Antioxidant and Antibacterial Properties
2.10.1. DPPH Radical Scavenging Assay

Antioxidant activities of the active films were assessed by DPPH radical scavenging
rate test [22]. DPPH was dissolved in 4 mg/mL methanol, and 250 mg of the films were
incorporated into the 10 mL methanolic solution of DPPH and incubated for 30 min at
30 ◦C. The absorbance was measured at 517 nm. The control was a methanolic solution of
DPPH without film samples.

2.10.2. Antibacterial Properties

The antibacterial properties of films against Shewanella putrefaciens were investigated
by the method of plate counting [23].

2.11. Statistical Analysis

All measurements were performed in triplicate. Data were expressed as the average
±SD. All statistical analyses were performed using Prism 8.

3. Results
3.1. Characterization of MOEO Nanoemulsion

The mechanical, physical and optical properties of the films were affected by the
droplet size of the nanoemulsion [7]. The droplet size distribution was tested by DLS
(Figure 2a). The average droplet sizes for C/L-1%M, C/L-2%M and C/L-4%M were
224 nm, 147 nm and 139 nm, respectively. The stability of the emulsions was attributed to
the ultrasonic homogenization, because the cavitation bubbles in the liquid were caused
by ultrasound waves [24]. Then, the energy of breaking oil droplets was obtained from
the collapsed bubbles on the surface of essential oil droplets [24]. The nano-droplets were
stabilized by the surfactant molecules (Tween 80 in the present research), and the steric
hindrance reduced the degree of collision between droplets [25].

Figure 2. (a) Droplet size distribution and (b) transmission electron microscopy of Melissa officinalis L.
essential oil nanoemulsions.

Figure 2b shows the TEM images of the emulsions. The average sizes of the droplets
were approximately 200 nm, 100 nm and 80 nm for C/L-1%M, C/L-2%M and C/L-4%M,
respectively, which were smaller than the results obtained with DLS. DLS measured the
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hydrodynamic radius of a nanodrop surrounded by solvent molecules, resulting in a
relatively larger size [15].

3.2. Physical Properties of Films
3.2.1. The Thickness of Films

Compared to C/L film, the incorporation of MOEO nanoemulsion caused a consider-
able increase in thickness (Table 1). Some researchers also reported that the incorporation
of plasticizers and lipid materials could increase the thickness of films. Emulsification with
an appropriate surfactant/oil ratio and application of sufficient acoustic energy increased
the stability of the film-forming solution when drying; thus, the loss of MOEO decreased,
and the thickness of films increased [26]. At the same time, micro-droplets formed from the
hydrophobic MOEO during homogenization of the film-forming solution also increased
the thickness of film [27]. Moreover, the increasing concentration of MOEO nanoemulsion
increased the total solid content, resulting in the increasing thickness of film.

Table 1. The physical and mechanical properties of carboxymethyl chitosan/locust bean gum films
incorporated with Melissa officinalis L. essential oil nanoemulsion.

Film
Samples Thickness (cm)

Tensile
Strength

(MPa)

Elongation at
Break (%)

Moisture
Content (%)

Water
Solubility

(%)

Water Vapor
Permeability
(×10−12 g *

cm/(cm2 · s · Pa))

Oxygen
Transmission

Rates (cm3/(m2 ·
24 h · 0.1 MPa))

Water
Contact
Angle

(θ)

C/L 0.0895 ± 0.0057 a 13.44 ± 0.76 a 18.49 ± 0.79 a 19.59 ± 0.93 a 56.32 ± 1.03 a 7.47 ± 0.15 a 12.43 ± 0.33 a 75.13 ± 0.84 a

C/L-1%M 0.0933 ± 0.0043 a 5.68 ± 0.43 b 25.30 ± 0.52 b 19.17 ± 0.42 a 34.26 ± 0.82 b 8.14 ± 0.08 b 8.47 ± 0.15 b 78.25 ± 0.24 a

C/L-2%M 0.0995 ± 0.0090 ab 4.59 ± 0.53 b 25.91 ± 0.58 b 18.79 ± 0.42 a 26.67 ± 0.43 c 8.31 ± 0.20 c 9.34 ± 0.31 c 81.41 ± 0.44 a

C/L-4%M 0.1059 ± 0.0128 b 7.32 ± 0.33 c 27.97 ± 0.23 c 18.34 ± 0.09 a 25.43 ± 0.31 c 8.67 ± 0.16 c 9.42 ± 0.12 c 83.86 ± 0.10 a

C/L (coated with C/L active coating solution without MOEO nano-emulsions); C/L-1%M (coated with C/L active
coating solution containing 1% MOEO nano-emulsions); C/L-2%M (coated with C/L active coating solution
containing 2% MOEO nano-emulsions); and C/L-4%M (coated with C/L active coating solution containing 4%
MOEO nano-emulsions). Different letters in the same column indicate significant differences (P < 0.05).

3.2.2. Mechanical Properties

TS is the maximum force per unit area that the film withstood before being fractured,
while EAB is the measured ratio of the extension of the active film to the initial length
before being fractured. The presence of MOEO nanoemulsion within the film matrix re-
duced TS and increased EAB (Table 1). The decrease in TS primarily due to the intra- and
inter-molecular interactions was reduced by the penetration of MOEO into the biopoly-
mer network. The presence of MOEO nanoemulsion replaced the strong intermolecular
polymeric interactions with weak interactions of the polymer–oil matrix in the film. This
phenomenon was related to the heterogeneous coalescence and dispersion of MOEO in the
matrix of C/L caused by large size droplets. The increase in EAB indicated that the active
films were more stretchable and flexible due to the incorporation of MOEO nanoemulsion
with a strong plasticizing effect that caused the polymer chains to move and promote the
flexibility of films [28]. The increase in EAB was positively related to the concentration
of the MOEO nanoemulsion. This discovery was consistent with Otoniet al. [29], who
reported that the decrease in droplet size could improve the plasticizing effect, causing
films have a higher EAB. In addition, the thicker films required more strength to be broken
and had higher elongation [30]. The films with higher thickness were observed to be more
resistant to fracture because the denser matrix of polymer was strengthened by high-level
molecular interactions.

3.2.3. WVP and Water Contact Angle

The WVP of the active films is important in food packaging because the shelf life
can be affected by the transfer of water vapor into the packaged food [31]. The WVP of
active films was 7.47 × 10−12 g cm/cm2 s Pa in C/L and 8.67 × 10−12 g cm/cm2 s Pa
in C/L-4%M (Table 1). The increased WVP was mainly because the MOEO emulsion
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generated micropores and cavities in the films' structure, resulting in the diffusion of water
vapor molecules [27]. The above results could also be observed in the SEM images. Bonilla
et al. [32] also showed that the cohesion was reduced because of the discontinuity of the
polymer network due to MOEO nanoemulsion. Similar trends were found in CMCS–
pullulan active films containing galangal essential oil and in xanthan gum/locust bean
gum films containing tea polyphenols [33].

The water contact angle evaluated the wettability on the surface of active films, and
the results are shown in Table 1. All films had a water contact angle of less than 90◦,
indicating that they were hydrophilic. The addition of MOEO nanoemulsion expressively
enhanced the water contact angle of the films, but they were still hydrophilic. The increase
in water contact angle of the C/L films was mainly due to the hydrophobicity of MOEO.
Wu et al. [34] added oregano essential oil to cellulose nanofibril films, increasing the
water contact angle of the film from 55.5 to 73.7 owning to the hydrophobic groups in the
essential oil. In addition, Chen et al. [35] decreased the hydrophilicity of films by adding
cinnamaldehyde to starch/polyvinyl alcohol films.

3.2.4. Moisture Content and Solubility

The C/L had the highest moisture content (19.59%, Table 1), and the incorporation of
MOEO nanoemulsion caused the moisture content of the active films to decrease (Table 1).
The MOEO nanoemulsion had hydrophobic dispersity and could increase the hydropho-
bicity of films. Similar results were observed by Peng et al. [36] and Ojagh et al. [37],
who added hydrophobic compounds to chitosan active films. However, there were no
significant differences between the films and those with MOEO emulsions (p > 0.05). In
addition, when MOEO dried at 105 ◦C, it evaporated with water vapor and the water
content might have been slightly overestimated. The water resistance or insolubility for
active films is also important, particularly in humid environments [4].

Lower water solubility of films materials can extend the shelf life of food by maintain-
ing the water resistance of films [38]. Film water solubility was negatively correlated with
the concentration of MOEO nanoemulsions (p < 0.05), which might be due to the decrease
in hydrophilicity of the films after the hydrophobic MOEO emulsion was incorporated.
Some studies also showed that the addition of hydrophobic materials to films reduced their
water solubility [39]. Moreover, the interaction of hydroxyl groups with water molecules
was reduced because the addition of essential oil reduced the solubility of the films [40].

3.2.5. Oxygen Barrier Properties

Oxygen is an essential environmental factor that can lead to the spoilage of food during
storage. The oxygen barrier capacity increased significantly with the addition of MOEO
nanoemulsions (Table 1). This might be because of the emulsification effect of ultrasonic
treatment, which improved the homogeneity of MOEO in the films and avoided phase
separation within the system. In addition, the compatibility of the film matrix with MOEO
nanoemulsions caused a dense structure, making it more difficult for non-polar oxygen
molecules to cross the film. Furthermore, the antioxidant activity of MOEO nanoemulsions
provided sufficient free radical scavenging activity and positively influenced the oxygen
barrier properties of the films [41]. However, the oxygen barrier capacity of the films was
reduced because the micropores increased, which was caused by the increased volatilization
of MOEO.

3.3. Color Properties

The color of active films affects the appearance and consumer acceptance of packaged
products [42]. In Table 2, the concentration of MOEO nanoemulsion did not show a
significant effect on greenness (a*). The yellowish color was an intrinsic property of
CMCS [43]. The yellow color of MOEO emulsion also led to a significant increase in the
yellowness (b*) of the active films. The lightness (L*) decreased with the addition of MOEO
nanoemulsion probably because the phenolic components in MOEO caused refraction
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of light and scatter, resulting in darker films [44]. Increased concentrations of MOEO
nanoemulsion resulted in increases in lightness (L*) and total chromatic films. Similar
results were reported by Kadam et al. [45] and Souza et al. [46], who found that chitosan
films with added polyphenolic extracts of Nigella sativa seedcake and extract of mango leaf
increased lightness (L*), and total chromatic films were all increased. The results indicated
that the addition of MOEO nanoemulsions could make the films yellow and darker, and
the color of active films was the same as the coloring components in the MOEO.

Table 2. The optical properties of carboxymethyl chitosan/locust bean gum films incorporated with
Melissa officinalis L. essential oil nanoemulsion.

Film Samples L* a* b* ∆E Chroma Opacity

C/L 90.06 ± 0.81 a −3.81 ± 0.11 a 13.44 ± 0.35 a 9.14 ± 0.89 a 13.97 ± 0.34 a 0.34 ± 0.02 a

C/L-1%M 87.81 ± 0.70 b −4.02 ± 0.08 a 16.26 ± 0.55 b 12.74 ± 0.89 b 16.75 ± 0.52 b 0.48 ± 0.01 b

C/L-2%M 88.42 ± 0.15 b −3.87 ± 0.06 a 16.40 ± 0.33 b 12.49 ± 0.37 b 16.85 ± 0.32 b 0.31 ± 0.01 ac

C/L-4%M 89.56 ± 0.63 ab −3.96 ± 0.14 a 16.47 ± 0.98 b 11.92 ± 1.17 b 16.94 ± 0.94 b 0.30 ± 0.01 c

C/L (coated with C/L active coating solution without MOEO nano-emulsions); C/L-1%M (coated with C/L active
coating solution containing 1% MOEO nano-emulsions); C/L-2%M (coated with C/L active coating solution
containing 2% MOEO nano-emulsions); and C/L-4%M (coated with C/L active coating solution containing 4%
MOEO nano-emulsions). Different letters in the same column indicate significant differences (P < 0.05).

The opacity of the C/L films increased with the addition of MOEO nanoemulsions
(Table 2), which might be due to the light scattering at the interface of MOEO droplets
embedded in the film matrix [47]. Roy and Rhim [48] reported that the addition of clove
essential oil reduced the light transmittance of gelatin/agar-based functional films. In
addition, the color of MOEO itself might be responsible for the decreased transparency. The
low transparency of the active films improved the barrier properties of the food damaged
layer (light, oxygen, heat), benefiting the long-term storage of the food [49]. Active films
with lower opacity were conducive to use in light-sensitive products, and the addition of
essential oils to active films could better protect food against light [50]. These active films
blocked the ultraviolet light and prevented the oxidation of food, which might benefit the
packaging of light-sensitive foods.

3.4. FTIR Results

FTIR spectroscopy is an effective method to reveal the structural changes that occur
through the interaction of C/L and MOEO. The band peaks in the 3600–3000 cm−1 range
represented free OH stretching bonds and OH bonds in carboxylic acid. The stretching
vibration of OH was expressed by inter-molecular or intra-molecular hydrogen bonds. The
3000–2800 cm−1 peaks were associated with bending and stretching vibrations of NCH- and
CH2- [51]. The peaks at 2898 and 2851 cm−1 were related to the methylene and methylene
C-H stretching vibrations of the biopolymer chains [48]. The active films containing MOEO
nanoemulsions showed looser bands in these regions, indicating that MOEO was bound
to the hydrocolloids of the film matrix (Figure 3) [30]. The band at 1600–1597 cm−1 was
associated with COOH carboxyl groups and that at 1399–1394 cm−1 was associated with
the CH3 stretching vibrations. The band at 1023–1018 cm−1 was caused by glycosidic bond
stretching vibrations. In the second region, the bands at 1020 cm−1 and 921 cm−1 changed
significantly with the increased addition of MOEO nanoemulsions because of the different
types of vibration of C-O-C groups [52].
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Figure 3. Fourier transform infrared patterns of carboxymethyl chitosan/locust bean gum and
carboxymethyl chitosan/locust bean gum/Melissa officinalis L. essential oil films. (C/L: coated with
C/L active coating solution without MOEO nano-emulsions; C/L-1%M: coated with C/L active
coating solution containing 1% MOEO nano-emulsions; C/L-2%M: coated with C/L active coating
solution containing 2% MOEO nano-emulsions; and C/L-4%M: coated with C/L active coating
solution containing 4% MOEO nano-emulsions).

3.5. SEM

The SEM images showed the surface and cross-section of C/L film, and no holes or
cracks were observed (Figure 4). The cross-section of the observed C/L-M active films
had a few small oil droplets and pores in the films. The MOEO emulsions were uniformly
dispersed in the active films as round oil droplets, and the absence of layering or pore
structure in the films indicated that MOEO had been successfully loaded onto the films.
The number of pores in the cross-section of the films gradually increased, indicating that
the films were loose. In addition, the MOEO droplets were observed to increase on the
cross-section and surface, and tended to be of uniform distribution. Some studies also
showed similar results with the addition of cinnamaldehyde (CIN) into starch/polyvinyl
alcohol (ST/PVA) films [22]. The uniform distribution of MOEO nanoemulsions indicated
that the films were stable, and no separation of oil droplets occurred during the film
forming process [23]. MOEO evaporated during the film formation and produced pores.
Nevertheless, the films with the MOEO nanoemulsions displayed rougher surfaces with
wrinkles, small cracks and some small holes. The cracks and holes on the film surface might
be caused by the volatilization of essential oil on the film surface, and the coalescence,
flocculation and emulsification of MOEO while drying the film, leading to the formation
of some oil droplets on the film surface [53]. Xu et al. [54] and Cazón et al. [55] both
revealed similar cracks and holes after incorporation of cinnamon essential oil emulsion and
melaleuca alternifolia essential oil into chitosan films, respectively. The results showed that
the composition of the original film-forming solutions affected the changes in film structure,
namely the existence of MOEO emulsions. It was speculated that the incorporation of
MOEO emulsions changed the microstructure of the active films, which could be associated
with the reduction in TS and higher WVP.
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Figure 4. Scanning electron microscope patterns of carboxymethyl chitosan/locust bean gum and
carboxymethyl chitosan/locust bean gum/Melissa officinalis L. essential oil films. (C/L: coated with
C/L active coating solution without MOEO nano-emulsions; C/L-1%M: coated with C/L active
coating solution containing 1% MOEO nano-emulsions; C/L-2%M: coated with C/L active coating
solution containing 2% MOEO nano-emulsions; and C/L-4%M: coated with C/L active coating
solution containing 4% MOEO nano-emulsions).

3.6. Antioxidant and Antimicrobial Activity

The DPPH radical scavenging activity of the films was significantly enhanced with
the addition of MOEO nanoemulsion (Figure 5). The DPPH radical scavenging activity of
C/L-4%M was 34.81%. C/L-4%M had the highest scavenging activity, which was nearly
5 times more than that of C/L. This phenomenon was attributed mainly to the higher
antioxidant of MOEO. MOEO had numerous phenolic components and terpenes [56]. The
antioxidant properties of MOEO probably were due to the presence of these substances
because of their superior antioxidant activity [57].

C/L-M films also displayed excellent antibacterial activities against S. putrefaciens, and
the antibacterial activities gradually increased with the increasing addition of MOEO na-
noemulsions. The presence of numerous phenolic components such as tannins, flavonoids,
and phenolic acids was responsible for the good antioxidant, antibacterial and free radical
scavenging abilities of MOEO [57]. C/L films had certain antibacterial effects as CMCS had
antimicrobial properties [8]. In general, it could be concluded that MOEO nanoemulsion
imparted antibacterial and antioxidant activities to the C/L films, showing the potential of
the films for applications in the food preservation field.
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Figure 5. Antioxidant and antimicrobial activity of carboxymethyl chitosan/locust bean gum and
carboxymethyl chitosan/locust bean gum/Melissa officinalis L. essential oil films. (C/L: coated with
C/L active coating solution without MOEO nano-emulsions; C/L-1%M: coated with C/L active
coating solution containing 1% MOEO nano-emulsions; C/L-2%M: coated with C/L active coating
solution containing 2% MOEO nano-emulsions; and C/L-4%M: coated with C/L active coating
solution containing 4% MOEO nano-emulsions). Different letters indicate significant differences
(p < 0.05).

4. Conclusions

This research aimed to prepare C/L based active films incorporated with MOEO
nanoemulsions. The results showed that the C/L–MOEO active films resulted in an increase
in elongation at break, water resistance and oxygen barrier properties and improved film
hydrophilicity. The ultrasonic homogenization decreased the droplet sizes of MOEO
and enhanced the stability of MOEO nanoemulsions. However, the water vapor barrier
properties and tensile strength of the active films decreased due to the hydrophobicity of
MOEO. The SEM images and FTIR results showed that the MOEO was highly compatible
with the film materials and dispersed evenly in films. At the same time, the addition of
MOEO nanoemulsions significantly enhanced the antioxidant and antibacterial activities
of C/L films. In general, this research provided a theoretical basis for the preparation of
MOEO nanoemulsions and their application to active packaging films.
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