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Abstract 

A finite element model of a single cell was created and used to compute the 

biophysical stimuli generated within a cell under mechanical loading. Major cellular 

components were incorporated in the model: the membrane, cytoplasm, nucleus, 

microtubules, actin filaments, intermediate filaments, nuclear lamina and chromatin. 

The model used multiple sets of tensegrity structures. Viscoelastic properties were 

assigned to the continuum components. To corroborate the model, a simulation of 

atomic force microscopy indentation was performed and results showed a 

force/indentation simulation with the range of experimental results. A parametric 

analysis of both increasing membrane stiffness (thereby modelling membrane 

peroxidation with age) and decreasing density of cytoskeletal elements (thereby 

modelling reduced actin density with age) was performed. Comparing normal and 

aged cells under indentation predicts that aged cells have a lower membrane area 

subjected to high strain as compared with young cells, but the difference, surprisingly, 

is very small and may not be measurable experimentally. Ageing is predicted to have 

more significant effect on strain deep in the nucleus. These results show that 

computation of biophysical stimuli within cells are achievable with single-cell 

computational models; correspondence between computed and measured 

force/displacement behaviours provides a high-level validation of the model. 

Regarding the effect of ageing, the models suggest only small, although possibly 

physiologically significant, differences in internal biophysical stimuli between normal 

and aged cells. 

Keywords: cytoskeleton; nucleoskeleton; tensegrity; ageing; cell mechanics 
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1 Introduction 

The mechanisms by which extracellular mechanical stimulation affects the differentiation of cells 

and ultimately cell fate is not yet well understood, despite its importance for tissue engineering and 

regenerative medicine (Ingber 2008; Wang et al. 2009). In particular, the role of ageing on the 

mechanoregulation of cell behaviour is a subject that has not yet been given very much 

consideration. Computational modelling can be used to explore potential mechanisms of cell 

response to mechanical stimuli. There have been several different approaches to modelling the 

complexity of cells:  

(1) The continuum approach described a single cell as a continuous cytoplasm covered within a 

cortical membrane (Evans and Yeung 1989; Karcher et al. 2003). Although, this approach has 

successfully demonstrated several cellular behaviours, it cannot describe the biophysical 

stimuli within cells because the cytoskeleton (CSK) network is not included in the cell models.  

(2) The tensegrity approach where the CSK is modelled as an interconnected network of cables 

and struts (Ingber 1997; Stamenovic and Coughlin 1999), with tensional cables representing 

actin filaments (AFs) and compressive struts representing microtubules. The stability of the 

structure is achieved by a balance of tension transmitted by cables and compression in the 

struts, which is induced by applying a pre-stress in the cables (Ingber 1993). This approach 

has been used to model many experimentally-observed aspects of cellular structural 

behaviour (Wang et al. 2001), such as prestress-induced stiffening and strain hardening 

(Coughlin and Stamenovic 1998; Wendling et al. 1999).  

(3) A hybrid approach that combines the continuum modelling with the tensegrity approach (De 

Santis et al. 2011; McGarry and Prendergast 2004; McGarry et al. 2005). These cell models 

consist of cellular components modelled as continua, including cytoplasm, nucleus, 

membrane, and a CSK, which was modelled as a tensegrity structure. More recently, nuclear 

tensegrity, with struts representing nuclear lamina and prestressed cables denoting 

chromatin, has been suggested (Ingber 2008) and researchers have demonstrated the 

importance of prestress in the nucleoskeleton (NSK) during cellular differentiation and 

development (Mazumder and Shivashankar 2010). With direct mechanical linkages between 

CSK and NSK confirmed [Wang et al. 2001; Dahl et al. 2010), the suggestion of an integrated 

CSK-NSK network, with both CSK and NSK modelled as tensegrities has been proposed 

(Dalby 2005; Ingber 2008).  
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It has been reported that the osteogenic and chondrogenic potential of mesenchymal stem cells 

(MSCs) reduces with the age of donor (Mueller and Glowacki 2001; Zheng et al. 2007). There are also 

reports showing that MSCs from aged donors display typical biomarkers of ageing. For example, 

McKayed et al. (2010) found that there is a decrease of , 35% in the expression of actin and integrin-

a and an increase of 50% lipid peroxidation in MSCs of aged rats. Typically, in an aged cell membrane, 

the accumulation of lipid oxidation products in the cell membrane and growth of the domains with 

polysaturated fatty acids and cholesterol with age leads to an increase in averaged stiffness and 

viscosity of the lipid bilayer (Morris et al. 2004; Staroddubtseva 2011). Recently, Hale et al. (2011) 

have demonstrated that the amount of lipid peroxidation products found in cell membrane is 

approximately proportional to the membrane elasticity. 

In this study, a finite element model of a cell was created using continuum modelling of the 

cell membrane, nucleus and cytoplasm, with multiple tensegrity structures included to represent both 

the CSK and the NSK. We aim to show that such a modelling approach can give force/ displacement 

predictions within the bounds of experimen- tal atomic force microscopy (AFM) indentation data. 

Although this would not fully validate the model, it would give confidence that it can be used to test 

the following hypotheses regarding the effect of changes in both membrane stiffness and 

cytoskeletal density (i.e. the structural changes observed due to ageing) on biophysical stimuli 

within the cell. 

2 Methods 

2.1 Geometry 

The shape of the cell model was determined from experimental observations (Frisch and Thoumine 

2002). The size of the cell model, including the proportion of nucleus, was based on confocal images 

of mesenchymal stem cells in our laboratory (Maguire et al. 2007). The CSK-NSK structure was 

modelled as follows: microtubules modelled as struts, AFs modelled as cables and intermediate 

filaments (IFs) were combined in the CSK as part of a pre-stressed tensegrity structure. Each 

tensegrity structure consists of six compression-bearing struts (two in each orthogonal direction) 

and twenty-four tensional cables representing the aggregate behaviour of microtubules and AF 
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bundles, respectively. Twelve common nodes were created at each end of the struts where four 

cables are connected, representing receptor sites where actin bundles cluster at adhesion 

complexes in adherent cells. To fit into a spread cell, the tensegrity structures that are derived from 

rounded configuration used by McGarry and Prendergast (2004) were incorporated. To mimic the 

complexity of the CSK three tensegrity structures were used (Figure 1 (a)). Three tensegrities were 

also used for the NSK, with struts representing nuclear lamina and chromatin modelled as cables 

(Figure 1 (b)). The nodes, where NSK contacts the nuclear surface, represent nuclear receptors 

spanning across the nuclear envelope that can receive mechanical signals from the CSK. Each nuclear 

receptor is connected to the corresponding cell receptor pointing in the same direction (Figure 2). 

These direct connections in the model represent the IFs. The cell model was developed using the 

finite element code ABAQUS/Standard version 6.8-1 (SIMULIA, RI, USA). Cytoplasm and nucleus 

were meshed with 4-node tetrahedral elements. Cell membrane and nuclear envelope were meshed 

with 3-node shell elements. A ‘‘no-slip’’ interaction condition was assumed at all nucleus–cytoplasm 

and cytoplasm–membrane interfaces (by employing the ‘‘tie’’ constraint in ABAQUS). Beam 

elements were used for struts and tension-only connecter elements were assigned to all the cables. 

A prestress that is equivalent to 2% of prestrain was assigned to all the cables that constitute 

tensegrity structures by giving a reference length to each of the connectors. A frictionless hard 

contact was used between the indenter surface and the cell membrane. Augmented Lagrange 

method was selected to model the contact by monitoring the gaps between pairs of nodes between 

the two surfaces. 

2.2 Material modelling 

Material properties for each of the cellular components are not known precisely for mesenchymal 

stem cells and can only be estimated from various sources. Viscoelastic properties were assigned to 

the cytoplasm, nucleus and membrane to incorporate time-dependant response to biophysical 

stimulation. A standard linear solid model, that consists of a spring k1 paralleled with a series of 

another spring k2 and a dashpot µ, was used to characterise the viscoelastic behaviour. The shear 

modulus ( )G t , and the bulk modulus ( )K t , at time t , are given as 

( ) ( )(1 (1 )) / (1 ) .
t

P PG t G g e g Eqn
−

τ= ∞ − − −               1 

( ) ( )(1 (1 )) / (1 ) . 2
t

P PK t K k e k Eqn
−

τ= ∞ − − −                



 

6 

 

where the parameters 
Pg ,

Pk   and the relaxation time, τ  are viscoelastic material constants, and 

( )G ∞  and ( )K ∞  are the long-term shear and bulk moduli, respectively. Table 1 and Table 2 

present the specific material properties for each cellular component used in this study. 

Age-related changes regarding lipid peroxidation and expression of actin and integrin were 

interpreted and modelled by the following methods.  

(1)  In aged cells, both elastic modulus and apparent viscosity of the cell membrane were 

doubled relative to young cells to capture the effect of lipid peroxidation.  

(2) The reduced amount of actin bundles and integrin receptors in aged cells was modelled by 

structural differences in CSK-NSK formation in our cell models. Specifically, two sets of CSK-

NSK tensegrity combinations were used for the aged cells whereas three sets were used for 

the young cells. 

2.3 Loading 

Atomic force microscopy (AFM) is frequently used to investigate mechanical properties of biological 

cells (Radmacher et al. 1994). For example, Pillarisetti et al. (2011) measured non linear strain 

hardening in mouse embryonic cells using AFM indentation. In this study, a rigid conical indenter 

with a contact angle of 141 degrees was used to indent the cell model. A 3nN indenting force was 

applied to the indenter during each simulation in a force-control manner and the displacement at 

the indenter tip was computed with each increment. Two indenting rates, 1nN/s and 10nN/s, were 

investigated in this study. Simulations were carried out at two indenting positions on the cell 

membrane: at one of the receptor sites where the CSK contacts with cell membrane, and at the apex 

of the cell where is most distant from a receptor site. The stiffness of the cell model was calculated 

using a Hertz formula that relates the indenting force and indentation depth, which is expressed as 

 

2

2

2
. 3

tan (1 )

E
F Eqnδ

π α ν
=              

−
 

 

where E  is the stiffness of the cell, F is the reaction force at the indenter tip, α is a half of opening 

angle of the indenter tip, ν is Poisson’s ratio and δ  is indentation depth. 
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3 Results 

Using Equation (3), the elastic moduli of the cell models were calculated and averaged at 4.08 kPa at 

the apex and 5.87 kPa at the receptor site, indicating that indentation location has a great influence 

on the predicted cell stiffness. In comparison, age-related changes proposed in this study are not 

predicted to impact greatly on the stiffness of cells. A mere 5% increase in predicted stiffness is seen 

with the addition of age-related changes from 4.85 kPa for young cells to 5.09 kPa for aged cells. 

These predicted cell stiffness values were within the range of experimentally measured cell stiffness 

measured using AFM indentation (see Table 3). 

A strain-hardening force–displacement behaviour was predicted for all AFM indentation 

simulations with the degrees of strain-hardening differing depending on indenta- tion site. The 

indenting position 2 at a receptor site versus at the apex distant from the receptor site – dominates 

the cells response to indenting force. An approximately 30% stiffer response is predicted when 

indenting at the receptor site, as compared with the case when indentation occurs at the apex of the 

cell. Although slight, age-related changes do affect the behaviour of cells under AFM indentation, 

indicating that cell stiffness changes with ageing (solid green curve vs. dashed brown curve; solid 

lime curve vs. dashed orange curve in Figure 3). An increase in the membrane stiffness stiffens cell’s 

response to indenting force at both indentation locations, whereas a decrease in the complexity of 

CSK– NSK network increases the predicted cell stiffness at both indenting locations. The difference in 

cell stiffness caused by ageing is most apparent when indentation takes place at the apex of the cell 

(Figure 3). In the case of indenting at a receptor site where the CSK is in contact with cell membrane, 

a direct load transfer from indenter and CSK diminishes the impact of CSK complexity and membrane 

stiffness. In all cases, the indentation depth ranges from 13.7% to 23.4% of the original cell height, 

indicating that simulations are reliable and would return realistic results in a real experimental 

environment (Moeendarbary et al. 2013) 

There is a striking difference in the pattern of stress inside a cell depending on indentation at 

the apex as compared with receptor site, compare Figure 4(a) with Figure 4(c) and compare Figure 

4(b) with Figure 4(d). However, the difference due to ageing is not so visually obvious, compare 

Figure 4(a) with Figure 4(b) and compare Figure 4(c) with Figure 4(d). Apart from a stress 

concentration at the indenting location, the stress in the nucleus is higher than any other location in 

the cytoplasm: this is due to the IFs that transmit indenting force from cell membrane directly to the 

nucleus. 
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To quantify the strain difference in cell membrane when subjected to an indenting force, 

Von Mises strain was compared across all scenarios (Figures 4 and 5). Despite the difference made 

by age of the cell and indentation location, the total strained surface area decreases as strain range 

increases (Figure 5). Although almost no difference can be seen at mid-range, the differences are 

quite evident at low strain ranges. At high strain range, possibly at the interface between the cell 

and indenter, small differences in strained area can also be found. 

A comparative study was carried out on the hydrostatic and deviatoric strain in the cell nucleus 

when undergoing indentation simulation at the cell apex (Figure 6). Although the young and aged 

cells exhibit no difference in terms of hydrostatic strain, deviatoric strain does show a slight  

difference, especially at low strain ranges. This suggests that the nuclei of the cells may be strained 

differently depending on the degree of ageing, with particular emphasis on the change in shape 

rather than volume. 

4 Discussion 

We tested the hypothesis that there is a change in the biophysical stimuli inside a cell as a 

consequence of the changes in membrane stiffness and cytoskeletal element density that occur with 

age. This hypothesis has been corroborated because the analysis predicted that strains, both in cell 

membrane and nucleus, differ with age-related changes known to occur in cellular components; 

however, the changes are not as high as might be anticipated, except for the differences of the area 

under low strains (Figure 5). 

This study exemplifies the potential utility of a hybrid continuum-tensegrity representation 

of a cell. A particular strength of this approach is the ability to separate the potential load transfer 

mechanisms within a cell due to externally applied stimuli. Nevertheless, even this relatively 

complex tensegrity representation of the CSK –NSK does not capture the true complexity and 

dynamic behaviour observed in real cells and should therefore be considered as a tool to understand 

the aggregate behaviour of cytoskeletal mechanics at instants of time rather than an accurate 

representation of CSK – NSK structure and mechanics under all circumstances. Furthermore, because 

of the nature of a passive model, this approach does not capture any active behaviour that a cell 

would exhibit under mechanical loading. 

Cellular finite element modelling provides insight into the cell biomechanics, which could not 
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be achieved experimentally. The idea of using multiple units of tensegrity structures presented in 

this paper enabled us to investigate the influence of ageing on cells’ behaviour by capturing aged-

related structural changes in CSK. It also provides us a closer-to-reality view on cell modelling, as 

compared with single tensegrity approach (Ingber 1993). By integrating the CSK and NSK networks in 

a cell model, the presentation of direct mechanical linkages from cell membrane to nucleus through 

AFs and IFs (Wang and Stamenovic 2000, 2002), then reaching deep into the nucleus via Linker of 

NSK and CSK (LINC)-complex that were discovered recently (Wang et al. 2009; Dahl et al. 2010) 

allows us to explore the possibilities of how external mechanical signal affects nuclear biophysical 

stimuli. The difference found in CSK complexity with regard to donor age alters the force-transfer 

pattern within the cells and ultimately differentiate the biophysical stimuli received by the nuclei 

(see Figure 6). 

AFM is frequently used to investigate the mechanical properties of biological cells 

(Radmacher et al. 1994). For example, Ng et al. (2007) measured nonlinear strain hardening in 

bovine chondrocytes using AFM indentation. During AFM indentation simulation, common 

mechanical nonlinear responses are present in all force displacement curves. These strain-hardening 

behaviours are consistent with previous experimental data in the literature (Figure 3). There are 

several sources contributing to this typical strain- hardening behaviour. First of all, it is most obvious 

that this nonlinearity is because of the viscoelastic nature of the cytoplasm, nucleus and membrane. 

Second, tensegrity structures contribute to this nonlinear behaviour; it has been demonstrated by 

Stamenovic et al. (1996) that six-strut tensegrity structures of such a type used in this study have 

strain-hardening and nonlinear characteristics. This contribution can be further confirmed by a 

computational study done by McGarry and Prendergast (2004), in which a strain-hardening effect 

was achieved, even without viscoelastic properties used in any cellular component. Also, during the 

indentation process, the area of contact surface between the indenter and the cell membrane 

increases as the indenter travels deeper into the cell. An increasing resistance to the indenter 

induced by this enlarging contact area decelerates the indenter and nonlinearity is achieved as a 

result. 

Our results suggest that indentation location greatly affects the measured cell stiffness using 

AFM (Figures 3 and 4). Although this is in agreement with the experimental investigations in the 

literature (Ohashi et al. 2002), a much stiffened behaviour is predicted in the case of indenting at a 

receptor site, as compared with experimental observations. In theory, this is due to the fact that the 

indenting force is directly transferred to the CSK, which is a much stiffer structure. In practice, such a 
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difference will not be evident due to slippage between the indenter tip and cell membrane, with an 

exception that coatings are applied to the indenter tip to specifically target receptors on the 

membrane by chemical binding. 

Most interestingly, we found age-related changes that we assigned to the cell model spell 

influences on the predicted cell stiffness. Specifically, the aged cell is slightly stiffer than the young 

cell at both indenting locations. This is largely due to the stiffer material properties used for cell 

membrane that is caused by products of higher level of lipid peroxidation in aged cells. In this study, 

we doubled the membrane stiffness for the aged cells by assuming a proportional relationship 

between the amount of lipid peroxidation product and membrane stiffness (Hale et al. 2011). 

However, as much as 450% increase in the elasticity of membrane is suggested when doubling the 

amount of lipid peroxidation products according to Ajmani et al. (2000). This would further increase 

the difference in predicted cell stiffness at both indentation locations (Figure 3). Differences caused 

by ageing can also be seen deep in the nucleus. Despite the almost identical hydrostatic strains 

found in the nuclei of both young and aged cells, the deviatoric strain in the nucleus differs between 

young and aged cells, which is due to the difference in the density of cytoskeletal filament and the 

number of focal adhesion sites which transmit extracellular mechanical stimuli into the cell. This 

could be important, as it has been demonstrated that these direct linkages transmit mechanical 

signals many times faster than biochemical responses (Wang et al. 2009). 

The predicted results on cell membrane strain during AFM indentation simulations suggest 

that young cells tend to have a greater membrane area under high strain (Figure 5). If this is true, it 

would lead to opening of more mechanosensitive stretch-activated ion channels (Charras and 

Horton 2002a, 2002b). It has been shown that openings of mechanosensitive channel could give rise 

to whole cell cytosolic calcium responses, thereby reinforcing the putative role of mechanosensitive 

channels as the first step in the transduction of external physiological mechanical stimuli into whole 

cell responses (Charras et al. 2004). The differences in the number of receptor sites and the 

complexity of the CSK – NSK network that mechanically connect the extracellular matrix to the 

nucleus, between the young and the aged cells, could result in a difference in stimulation patterning 

in the nucleus, as shown in Figure 6. Nuclear strain has been suggested to influence higher-order 

chromatin organisation, thereby restricting or promoting the accessibility of transcription factors or 

other regulatory factors to specific gene sequences, which could similarly influence gene 

transcription (Stein et al. 2007). 
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5 Conclusion 

A 3D finite element model of a single cell with a complex CSK –NSK network was developed. AFM 

indentation tests were simulated on the cell model with age-related changes applied. Our results 

show that indenting location dominates cells behaviour under indentation loading environment. In 

comparison, the effect of age-related changes on the predicted cell stiffness is minor. However, 

differences are found in both membrane strain and nuclear strain, despite the small change in 

predicted cell stiffness due to ageing, indicating that there is a change in the biophysical stimuli 

inside a cell as a consequence of ageing. In this study, only two configurations of CSK – NSK 

structures were included. The authors recommend future researchers to comprehensively look into 

CSK – NSK complexity in order to capture the mechanical and structural changes occurring with 

ageing. 
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Table 1. Viscoelastic properties of cellular components 

  k1 (Pa) k2 (Pa) µ (kPa.s) Piosson's ratio 

Cytoplasm*
#
 50 100 5 0.37 

Nucleus*
#
 200 400 10 0.37 

Membrane
¶§

 720 280 25 0.3 

*Shin and Athanasiou, 2001; 
#
Guilak et al. 2000; 

¶
Waugh & Agre 1988; 

§
Kamm et al. 2000. 

 

Table 2. Elastic and geometric properties of cellular components 

  

Elastic 

modulus (Pa) 

Poisson's 

ratio 

Diameter 

(nm) 

Microtubules* 1.2×10
9
 0.3 12 

AF bundles
#
 0.34×10

6
 0.3 250 

Ifs
¶
 7.6×10

6
 0.3 10 

Lamina
§
 1.4×10

6
 0.3 10 

Chromatin
ʕ
 244×10

6
 0.3 1.2 

*Gittes et al. 1993, 
#
Deguchi et al. 2005, 

¶
Bertaud et al. 2010, 

§
Dahl et al. 2004, 

ʕ
Smith et al. 1996. 

 

Table 3. Experimentally measured cell stiffness using AFM from previous studies 

 Cell type Measured stiffness (kPa) 

mESC* 1.49±0.09 

Fibroblast
#
 6.00±2.30 

Myoblast
¶
 11.50±1.30 

Osteoblast
§
 5.20±0.60 (S phase) 

2.30±3.30 (G1 phase) 

*Pillarisetti et al. 2011; 
#
Azeloglu et al. 2008;

 ¶
Collinsworth et al. 2002; 

§
Kelly et al. 2011. 
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Figure 1 (A) The formation of cytoskeletal network. It is formed by 3 sets of 6-strut flattened 

tensegrity structures, with the identical second and third set rotated along y-axis by 40 and 80 

degrees clockwise, respectively, with struts (red lines) representing microtubules and cables (blue 

dotted lines) representing actin bundles. 

 

 

Figure 1 (B) The formation of nucleoskeletal network. The same method shown in Figure 1 (A) 

applies to 3 sets round-configuration tensegrity structures, with nuclear lamina and chromatin 

modelled by struts and cables, respectively.   



 

 

18 

 

 

Figure 2. NSK (Figure 1 (A)) was then placed at the centre of the CSK (Figure 1 (B)) and the two 

structures are connected by direct linkages representing IFs (shown in green lines). 
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Figure 3. Force-displacement curves from indentation at two different indenting locations (apex and 

a receptor site) at two different loading rates (1nN/s and 10nN/s) for young and aged cells. The data 

for indenting at apex at a loading rate of 10nN/s are not shown for the sake of clarity. The 

experimental data are taken from a study measuring the stiffness of mouse embryonic stem cells 

using AFM indentation carried out by Pillarisetti et al. (2011). 
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Figure 4. Contour plots of Von Mises stress during indentation simulation with different indenting 

locations, at apex (A, B) and a receptor site (C, D) of young cells (A, C) and aged cells (B, D). Cut-views 

are shown for visual comparison of Von Mises stress inside the cells. 
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Figure 5. Area of membrane apposed to a given strain range. Aged cells have smaller membrane 

area under high strain and correspondingly have greater membrane area under low strain, than 

young cells subjected to indentation. 
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Figure 6 (A). Volume of nucleus exposed to a given strain range (hydrostatic strain). The slim green 

indicates zero strain location. Little difference can be seen between the aged and young cells. 

 

Figure 6 (B). Volume of nucleus apposed to a given strain range (deviatoric strain). The slim green 

indicates zero strain location. Differences are seen between aged and young cells at mid-low strain 

ranges, particularly in the negative region. 


