Supporting Information

Effect of micellar and reverse micellar interface on solute location: 2,6-pyridinedicarboxylate in CTAB micelles and CTAB and AOT reverse micelles

Ernestas Gaidamauskas, David P. Cleaver, Pabitra B. Chatterjee, and Debbie C. Crans*

Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872

*e-mail: crans@lamar.colostate.edu

Supporting Information Available

Figure S1. The 400 MHz ¹H NMR spectra of H₃dipic⁺ cation in CF₃COOD and D₂O mixture. Weight percent of CF₃COOD is shown next to each spectrum. Spectra were referenced against internal DSS. Hammett acidity functions (H_0) for non-deutarated CF₃COOH and H₂O mixtures with identical weight percentages shown in the figure are equal to 0.0 (12%), -0.5 (46%), -1.0 (74%), -1.5 (81%), -2 (86%), and -2.8 (96%).⁵⁵ The actual H_0 values may be different due to isotopic effects.

Figure S2. pH-variable UV spectra of 0.1 mM of H_2 dipic in 30 mM NaCl (a), and 4 mM of CTAB (b).

Figure S3. Molar absorbtivity of pyridine dicarboxylic acids in monocationic, neutral, monoanionic and dicationic form. Data taken from Ref.29.

Figure S4. The 300 MHz ¹H NMR spectrum of 20 mM CTAB in H₂O with proton assignment.

Figure S5. ¹H chemical shift of dipic protons is shown as a function of aqueous stock solution pH for CTAB micellar solutions (H_a and H_b) and aqueous solution (H^{aq}_a and H^{aq}_b). Data points for micellar solutions were taken from spectra shown in Figure 1 and aqueous dipic chemical shifts adjusted for the common reference standard taken from Ref. 8.

Figure S6. ¹H chemical shift of dipic protons is shown as a function of aqueous stock solution pH for CTAB reverse micellar solutions (H_a and H_b) and aqueous solution (H^{aq}_a and H^{aq}_b). Data points for reverse micellar solutions were taken from spectra shown in Figure 11 and aqueous dipic chemical shifts adjusted for the common reference standard taken from Ref. 8.

Figure S7. ¹H NMR chemical shifts of dipic²⁻ as a function of CTAB concentration. The data were obtained from spectra shown in Figure 5.

Table S1. ¹H NMR chemical shifts of dipic²⁻ and H₂dipic in various media.

Table S2. Sizes of the micellar and reverse micellar systems.

References

- (61) Spitzer, U. A.; Toone, T. W.; Stewart, R., Can. J. Chem. 1976, 54, 440-447.
- (62) Dorshow, R.; Briggs, J.; Bunton, C.A.; Nicoll, D.F., J. Phys. Chem. 1982, 86, 2388-2395.
- (63) Malliaris, A.; Lemoigne, J.; Sturm, J.; Zana, R., J. Phys. Chem. 1985, 89, 2709-2713.

(64) Maitra, A., J. Phys. Chem. 1984, 88, 5122-5125.

Figure S1. The 400 MHz ¹H NMR spectra of H₃dipic⁺ cation in CF₃COOD and D₂O mixture. Weight percent of CF₃COOD is shown next to each spectrum. Spectra were referenced against internal DSS. Hammett acidity functions (H_0) for non-deutarated CF₃COOH and H₂O mixtures with identical weight percentages shown in the figure are equal to 0.0 (12%), -0.5 (46%), -1.0 (74%), -1.5 (81%), -2 (86%), and -2.8 (96%).⁶¹ The actual H_0 values may be different due to isotopic effects.

Figure S2. pH-variable UV spectra of 0.1 mM of H_2 dipic in 30 mM NaCl (a), and 4 mM of CTAB (b).

Figure S3. Molar absorbtivity of pyridine dicarboxylic acids in monocationic, neutral, monoanionic and dicationic form. Data were obtained from a table in the Ref. 29 and used to construct this figure.

Figure S4. The 300 MHz ¹H NMR spectrum of 20 mM CTAB in H₂O with proton assignment.

Figure S5. ¹H chemical shift of dipic protons is shown as a function of aqueous stock solution pH for CTAB micellar solutions (H_a and H_b) and aqueous solution (H^{aq}_a and H^{aq}_b). Data points for micellar solutions were taken from spectra shown in Figure 3 and aqueous dipic chemical shifts were taken from Ref 8. The 0.10 ppm were subtracted from chemical shifts in aqueous solution to adjust to the common reference.

Figure S6. ¹H chemical shift of dipic protons is shown as a function of aqueous stock solution pH for CTAB reverse micellar solutions (H_a and H_b) and aqueous solution (H^{aq}_a and H^{aq}_b). Data points for reverse micellar solutions were taken from spectra shown in Figure 7 and aqueous dipic chemical were taken from Ref. 8. The 0.10 ppm were subtracted from chemical shifts in aqueous solution to adjust to the common reference.

Figure S7. ¹H NMR chemical shifts of dipic²⁻ as a function of CTAB concentration. The data were obtained from spectra shown in Figure 4a.

Figure S8. ¹H NMR chemical shifts of Hdipic⁻ as a function of CTAB concentration. The data were obtained from spectra shown in Figure 4b.

System	$\delta(H_a),$	$\delta(H_b),$
	ppm	ppm
Micellar and reverse micellar		
Na ₂ dipic in H ₂ O/0.1 mM CTAB (pH 6.6)	7.92 ^{<i>a</i>}	7.92^{a}
Na ₂ dipic in H ₂ O/20 mM CTAB (pH 6.8)	7.98^{a}	7.66 ^{<i>a</i>}
Na ₂ dipic in H ₂ O (pH 6.7)/0.1 M CTAB/0.5 M 1-pentanol, w_0 =6	8.10 ^b	7.87^{b}
Na ₂ dipic in H ₂ O (pH 6.7)/0.1 M CTAB/0.5 M 1-pentanol, w_0 =20	8.07^{b}	7.88^{b}
Aqueous		
Na ₂ dipic in H ₂ O (pH 6.4)	8.005 ^c	8.027 ^c
[N(CH ₃) ₄] ₂ dipic in H ₂ O (pH 7)	8.00 ^c	8.00 ^c
H ₂ dipic in H ₂ O (pH 1.3)	8.27 ^c	8.38 ^c
Organic solvent		
Na ₂ dipic in CD ₃ OD	8.10 ^b	7.93 ^{<i>b</i>}
[N(CH ₃) ₄] ₂ dipic in CD ₃ OD	7.91 ^{<i>b</i>}	7.82^{b}
H ₂ dipic in CD ₃ OD	8.23 ^{<i>b</i>}	8.38 ^b

Table S1. ¹H NMR chemical shifts of dipic²⁻ and H₂dipic in various media

^{*a*}referenced against coaxial capillary with C₆D₆ and TMS, 35°C; ^{*b*}referenced against internal TMS, 24°C; ^{*c*}referenced against internal DSS, 24°C.

Table S2. Sizes of the micellar and reverse micellar systems.

System	Diameter	Aggregation	
	(nm)	number	
CTAB micelles	5.8^{a}	~100 ^{<i>a,b</i>}	
CTAB reverse micelles w ₀ =6	5.0^{c}	-	
AOT reverse micelles w ₀ =6	5.6 ^{<i>d</i>}	50^d	

^{*a*}Ref. 62, ^{*b*}ref. 63 at 35°C, ^{*c*}ref. 38, ^{*d*}ref. 64.