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Effect of microplastics in water and aquatic systems
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Abstract

Surging dismissal of plastics into water resources results in the splintered debris generating microscopic particles called
microplastics. The reduced size of microplastic makes it easier for intake by aquatic organisms resulting in amassing of noxious
wastes, thereby disturbing their physiological functions. Microplastics are abundantly available and exhibit high propensity for
interrelating with the ecosystem thereby disrupting the biogenic flora and fauna. About 71% of the earth surface is occupied by
oceans, which holds 97% of the earth’s water. The remaining 3% is present as water in ponds, streams, glaciers, ice caps, and as
water vapor in the atmosphere. Microplastics can accumulate harmful pollutants from the surroundings thereby acting as
transport vectors; and simultaneously can leach out chemicals (additives). Plastics in marine undergo splintering and shriveling
to form micro/nanoparticles owing to the mechanical and photochemical processes accelerated by waves and sunlight, respec-
tively. Microplastics differ in color and density, considering the type of polymers, and are generally classified according to their
origins, i.e., primary and secondary. About 54.5% of microplastics floating in the ocean are polyethylene, and 16.5% are
polypropylene, and the rest includes polyvinyl chloride, polystyrene, polyester, and polyamides. Polyethylene and polypropylene
due to its lower density in comparison with marine water floats and affect the oceanic surfaces while materials having higher
density sink affecting seafloor. The effects of plastic debris in the water and aquatic systems from various literature and on how
COVID-19 has become a reason for microplastic pollution are reviewed in this paper.
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Introduction

Increased productivity and slow biotic decomposition of plastic
led to its cumulation in the environment leading to adverse
effects in aquatics. The plastics entering into the marine envi-
ronment may remain for hundreds and thousands of years, dur-
ing which they get fragmented due to the mechanical and pho-
tochemical processes resulting in the formation of microplastics
(< 5 mm) or nanoplastics (< 1 μm) (Espinosa et al. 2016).
Plastics are organic polymers emanating from petroleum that

includes polyethylene, polypropylene, polyvinylchloride, and
polyester, out of which PE and PP are standard, holding first
and second positions respectively in the global market, follow-
ed by PET (Leng et al. 2018) accounting for around 18% in
global production, making it the third most manufactured plas-
tic. Albeit not as prevalent as polyethylene and polypropylene,
PET due to its safe nature, light weight, affordability, and low
manufacturing cost is primarily used as packaging material.
With its 1.37–1.45 g cm−3 density, PET sinks rapidly and is
particularly accessible for benthic species (Weber et al. 2018).
While PET show resistance to weathering, fragmentation
mechanisms are not immune to it and abiotic weathering is
likely to occur by photooxidation and hydrolysis in marine
environments. The pH variance in ocean may possibly alter
the chemical balance of microplastics by raising or lowering
the rate of chemical leach from their surface, so PET, which
is commonly understood to be safe, may become dangerous in
the near future (Piccardo et al. 2020).

The leverage of tailoring of properties of polymers has led to
their wide utilization in various household, and industrial appli-
cations (Inamdar et al. 2018; Gore and Kandasubramanian
2018a; Jayalakshmi et al. 2018, 2020; Kumar et al. 2020;
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Cherukattu Gopinathapanicker et al. 2020). The production and
apportioning of plastic debris in marine endure to upswing over
time, thus escalating its accretion on oceanic surface and seabed
(Sahetya et al. 2015; Sharma et al. 2016; Gupta et al. 2016;Gupta
and Kandasubramanian 2017; Rastogi and Kandasubramanian
2020a; Kavitha and Kandasubramanian 2020). The average size
of plastic in atmosphere appears to dwindle resulting a surge in
profusion and allocation of microplastic flotsam and jetsam ob-
served during recent decades. The presence of plastics in the
aquatic environment dispenses with a crucial condition that ad-
versely affects the socio-economic facets of tourism industry,
shipping, trawling, and fish farming (Thushari and
Senevirathna 2020). Floatable and incessant characteristics of
microplastics make them prevalent in the aquatic environment
as a marine contaminant, acting as a carrier for the transfer of
pollutants (Rodrigues et al. 2019) to organisms present in water.
The small size of microplastics results in their uptake by a wide
range of aquatic species disturbing their physiological functions,
which then go through the food web creating adverse health
issues in humans (shown in Fig. 1). They are uptaken andmostly
excreted rapidly by numerous marine species, and so conclusive
proof on biomagnification is not obtained (Cozar et al. 2014).
However, effects of MP uptakes result in reduced food intake,
developmental disorders, and behavioral changes.

Almost 700 aquatic species in the world were adversely
affected by the introduction of microplastics, including sea
turtles, penguins, and other crustaceans (Marn et al. 2020).
However, the predicament due to microplastic depreciates as
most sufferers go unexplored over the vast oceans (Pabortsava
and Lampitt 2020). Ingression of plastics into the ecosystem is
mainly due to the erroneous human actions or unrestrained
wastes from water or sewage treatment plants and textile in-
dustr ies (Ayalew et a l . 2012; Nitesh Singh and
Balasubramanian 2014; Gonte et al. 2014; Sharma and
Balasubramanian 2015; Rastogi and Kandasubramanian

2020b; Rastogi et al. 2020). The terrestrial plastic accretion
ultimately flows into the water systems due to inadequate
landfill interment systems (Anbumani and Kakkar 2018).

Continuous massive production and dispersal of plas-
tics into the marine ecosystem further aggravate the con-
tamination of previously polluted medium (Thushari and
Senevirathna 2020). Microplastics provide habitat for
growing microorganisms, due to their size and varying
effects (Yang et al. 2020). Microplastics can readily ac-
crue and release hazardous organic pollutants like DDT,
polybrominated diphenyl ethers, and other additives that
incorporate during manufacture present in water, thereby
elevating their concentration (Gonte and Balasubramanian
2012; Gore et al. 2017, 2018a,b, 2019a,b,c, 2020; Thakur
and Kandasubramanian 2019; Rajhans et al. 2019;
Campanale et al. 2020). As the particle size reduces, it
reverberates in the elevation of potential harms of
microplastics, but its adverse effects in marine organisms
are not well defined (Law and Thompson 2014).

Additive-free microplastics are not chemically hazardous
to aquatic organisms, but they create problems in physical
conditions such as bowel obstructions (Udayakumar et al.
2021). Depending on the demand of products, certain addi-
tives are added to the virgin microplastics resulting in addi-
tional property of adsorption of pollutants present in water and
thereby impersonate as vectors. Researches reveal the harmful
threats plastic poses to human health at any point of the plastic
lifecycle, from the extraction of fossil fuels to consumer use to
disposal and furthermore (Gore et al. 2016; Gore and
Kandasubramanian 2018b; Gharde and Kandasubramanian
2019; Issac and Kandasubramanian 2020). A summarised pic-
ture of recent impacts on human health is shown in Fig. 2.
Since microplastics can adversely impact various organisms,
so the risk of humans to get affected by microplastics cannot
be overlooked. As humans are the ultimate consumers of sea

Fig 1 Microplastic pathway in
organisms
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foods (Saha et al. 2021) which are highly affected by
microplastics, there is a high chance of microplastic transfer
to humans (Smith et al. 2018). Presence of microplastics in tap
water (Tong et al. 2020), sea salt (Selvam et al. 2020), and
bottled water (Mason et al. 2018) are proven studies on how
many ways they can reach the human body. Recent studies of
microplastics in human stool (Zhang et al. 2021) and placenta
(Ragusa et al. 2021) are examples of its presence in humans. If
plastics can harm humans so badly, then what happens when
we consume such minute particles which are even more dan-
gerous still needs to be studied.

This paper discusses one of the increasing concerns of
the present world, i.e., Microplastics. Plastic debris with
varying sizes consisting of macro, meso, micro, and nano
that are plenty in numbers get transported all over the
oceans with waves and winds and found floating on the
surface. The floating microplastics mistook as food get
ingested, resulting in massive impacts on the health of
aquatic organisms. Critical issues faced in plastic pollu-
tion depend on the nature of the debris and the pathways
they follow to reach the marine ecosystem. Waste dis-
missal from treatment plants, overrun of sewerages during
heavy rains, biosolid runoff from agricultural fields were
the methods by which aquatic systems get contaminated
by microplastics. Due to the challenges in identification
and sorting, studies on microplastics are limited. This re-
view describes the source, distribution, plastics in
microplastics, effects of microplastics in marine water
and fresh water systems, impact of COVID-19 in
microplastic pollution, and the extent to which they affect
the aquatic organisms thereby aiming to raise conscious-
ness about the adverse effects of microplastics.

Microplastics—a boon or bane

Potentially harmful and obnoxious contamination caused by
plastics has been troubling people for centuries. Nevertheless,
a lot of research is being conducted over the past few decades
on less visible plastic debris of size less than 5 mm, i.e.,
microplastics(Weis 2020). Microplastics are synthetic solid
particles or polymer matrixes, of regular or irregular formwith
size range 1 μm–5 mm, of primary or secondary origin, insol-
uble in water (Frias and Nash 2019).Microplastics can be seen
in the form of fiber, film, foam, sphere, and pellet (Cowger
et al. 2020). Thompson et al. in 2004 described the accretion
of microsized particles ranging in size 20 μm in aquatic sys-
tems as microplastics.

The origin of microplastics comes from two main sources:
one is primary, developed to be smaller in size like nurdles or
powders, and the other is secondary, resulting from the frag-
mentation of larger particles (Thompson 2015). The dwin-
dling size of microplastics makes them bioavailable through-
out the food chain. Particles of different sizes assuredly have
varying effects, i.e., finer particles have intrinsically different
implications from large particles, as the particles amass in the
tissue themselves and cause physical processes to disrupt
(Campanale et al. 2020). Floatable and incessant properties
of microplastics make them widely dispersed in the aquatic
environment as a marine contaminant via ocean
currents(Lusher 2015), acting as a carrier for the transfer of
pollutants to organisms present in water. Microplastics are
prevalent in aquatic environments covering poles to the equa-
tor, from the surface to the deepness of sea(Thompson 2015).

Several researchers studied impact of MPs on various ma-
rine organisms such as mussels (Paul-Pont et al. 2016;

Fig 2 Pollution impacts on
human
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Gandara e Silva et al. 2016; Wang et al. 2020b), oysters
(Green 2016; Gardon et al. 2018), copepods (Jeong et al.
2017; Choi et al. 2020), and so on and continued unabated
(Seltenrich 2015). The deleterious effects of microplastics are
even passed on to high tropic levels (Avio et al. 2017) indi-
rectly through consumption of microplastic injected
organisms.

During wastewater treatments, the reduced size of
microplastics results in their infiltration and direct release into
the water resources. Microplastics, in general, are considered
resilient to biotic degradation. Certain materials are subject to
biotic degradation through fungi and bacteria and are imbibed
or passively adsorbed by consumers at successive tropical
levels after degradation, resulting in blockage of the gastroin-
testinal system (A. Glaser 2019). Microplastic is identified in
species at all phases of marine food chain (Setälä et al. 2018).
The sum of MPs consumed differs around organisms and
location, and also can vary substantially even in the same
region. Aquatic organisms are well known to swallow
microplastics along with their food, showing clear signs of
several animals that consume microplastics due to the size
similarity with their food (Desforges et al. 2015;
Walkinshaw et al. 2020). Study results imply that nearly all
aquatic organisms ingest microplastics, showing a consider-
able variation in the volume of ingestion among various spe-
cies. Foreseeably, there are three forms of deleterious effects
connected to absorption of microplastics: (1) physiological
effects attributed to ingestion (Davidson and Dudas 2016;
Pedersen et al. 2020). The greater the number of MPs intake,
the more likely it is to have a risk on the consumed species,
such as reduced development and variance in feed habits
(Horton et al. 2018). (2) Deadly reactions from the discharge
of hazardous substances—additives such as plasticizer, anti-
oxidant, flame retardant, pigments, etc. incorporated during
the manufacture of plastic may be leached into body tissues,
resulting in induced changes or bioaccumulation. The toxicity
can also differ according to the ratio of additives needed for
each plastic (Botterell et al. 2019). (3) Noxious reaction to
pollutants absorbed involuntarily by microplastics—large sur-
face area due to weathering, longer exposure periods and hy-
drophobic nature promote the sorption of pollutants to
microplastic surface at a higher concentration thus making it
as a carrier for contaminants to enter into the aquatic species.
Polycyclic aromatic hydrocarbons, PCB, DDT, organo halo-
genated pesticides, hexachlorocyclohexanes, and chlorinated
benzenes are some of the common contaminants present on
microplastics (O’Donovan et al. 2018). POPs like PBDE,
PCB, and some other chemicals have found to imitate natural
hormones, causing disorder in reproduction. The dynamics of
the absorption of persistent organic pollutants into plastic ma-
terial depend, of course, on the properties of both the particu-
lar polymer and the specific contaminant (da Costa et al.
2017). Humans get subjected to microplastics through

cosmetics, eating habits, dust particles, and usage of plastic
products. The proportion of microplastic in the marine eco-
system keeps increasing with the steady boosts in plastic pro-
duction and thereby showing detrimental effects (Willis et al.
2017).

Sundry types of microplastics

Microplastic particulates vary with dimension, color, compo-
sition, density, and are categorized into different types (shown
in Fig. 3). Plastic particulates with size range greater than 25
mm, between 5 to 25 mm, 1 to 5 mm, and 1 nm to 1 μm were
defined as macro, meso, micro, and nano, respectively (Lee
et al. 2015; Gigault et al. 2018). Concerning their source and
usage, microplastics are categorized as primary and second-
ary. Primary microplastics are generated microscopically and
are present in products for personal care like toothpaste, scrub-
bers, and other cosmetics (Duis and Coors 2016; Auta et al.
2017). This kind of microplastic skincare product (Napper
et al. 2015) supersedes many naturally used cosmetics con-
taining oatmeal, walnuts, or almonds. Tiny plastic particles,
usually about 0.25 mm size, are extensively used in beauty
products and industrial abrasive shot-blasting agents. Particles
of microplastic dimensions such as granules and powders are
explicitly used in a wide range of applications (Sharma and
Chatterjee 2017; Ng et al. 2018). TheMPs show varying sizes,
i.e., different sized granules in the same product. Gregory
studied the size variations of microplastics, and in 1996, he
reported that in a similar cosmetic, PE and PP granules of size
less than 5 mm and PS spheres of size less than 2 mm were
present (Gregory 1996). Discharge of primary microplastics
from households factories and sewerage occurs directly into
the environment. Microplastics beads from skincare products
would be transported via the sewage system with wastewater
(Kalčíková et al. 2017) and are not effectively eliminated
through sewerages and thus accumulate in the ecosystem.
Synthetic clothes containing microplastics as fibers release
an average of about 700,000 fibers from 6 kg of clothes in a
single wash (Napper and Thompson 2016). Pellets used in
industrial applications as a feedstock for plastic products are
also a source of microplastic entering into the environment (LI
et al. 2016). In medical fields, microplastics used in dental and
pharmaceutical carriers get into the environment through
wastewaters. The reduced size and lower perceptibility of pri-
mary microplastics make it challenging to be removed from
the aqueous systems (Auta et al. 2017). Apart from the un-
swerving discharge of primary microplastics, the debris of
larger plastics under the influence of UV and heat can slowly
become fragile and then fragmented to smaller particles with
the help of mechanical forces likes winds and ocean currents
(Thompson 2015).
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The majority of microplastics formed in the aquatic envi-
ronments are due to the breaking up of larger plastics that
results in secondary microplastics (Waller et al. 2017).
Fragmentation of larger plastics depends on the temperature
and amount of UV radiations (LI et al. 2016). Besides the
fragmentation occurring in the atmosphere, several materials
get splintered while in use leading to the formation of
microsized particles into the atmosphere as in the case of fi-
bers released from cloths during wash (De Falco et al. 2019).
Secondary microplastics are created because of incremental
deterioration or disintegration by ultraviolet light, wave abra-
sion, or microbial degradation of large plastics that are already
in the atmosphere. Environmental microplastics deteriorate to
generate nanoplastics 100 nm, which have virtually unknown
plights and toxic properties in comparison with other plastic
debris (Koelmans 2015).

Intense weathering and other mechanical actions results in
splintering of plastics, thereby escalating secondary
microplastics in the aquatic systems than the primary
microplastics. Based on shape, microplastics subdivided into
filaments, microbeads, nurdles, foams, and fragments.
Biopolymers (Haider et al. 2019) present in addition to the
synthetic microplastics are of less concern due to their less
hydrophobicity, and biodegradability forming carbon dioxide
and water.

Microplastics: provenance and distribution

Ingress of microplastics into the aquatic systems occurs
through disparate sources and pursue multiple pathways
(Browne 2015; Browne et al. 2008). The sources relate to
the manufacturing of plastic products (Fadare et al. 2020),

water (Sighicelli et al. 2018; Luo et al. 2019) and sewage
treatment plants (Ziajahromi et al. 2016), industrial or agricul-
tural wastes (Deng et al. 2020;Wang et al. 2020a), weathering
of plastics (Eo et al. 2018), fisheries, or aquaculture (Zhang
et al. 2017; Xue et al. 2020; Zhang et al. 2020b) that may enter
into the marine system affecting the aquatics (Harmon 2018;
de Sá et al. 2018; Xu et al. 2020). Table 1 shows the
microplastic abundance, types, and source of various locations

Plastic wastes from households, industries, etc. act as a
source that may enter into the marine system directly or by
other water bodies, thereby raising its amount and affecting
the life of aquatics (Nizzetto et al. 2016) (shown in Fig. 4).

In agriculture, microcapsule fertilizers primarily favored to
avoid nitrate leaching to groundwater are a primary source of
MP contamination in the marine ecosystem that flows out to
oceans through paddy field channels, denoting a high volume
of MP flow during irrigation than the non-irrigation season.
Scratches and discoloration displaced on the top surface of
microcapsules during the paddy runoff process imply the
emission of secondary microplastics(Katsumi et al. 2020).

A study conducted by the government of UK in 2020 con-
cluded that microplastics shed from vehicle tyres are now
among the other major contributors of microplastic pollutions
in the sea. Tyre is a blend of elastomer, carbon black, fiber, as
well as other organic and inorganic materials that enhance its
stability (Evangeliou et al. 2020). The major portion of tyre
particles directly reach the sea though air or other waterways
(Chen et al. 2020).

Fishing, fish hatcheries, and offshore drilling (Barboza
et al. 2018) are all plastic sources that enter the aquatic sys-
tems directly and pose a threat to biota as secondary
microplastics following a long-term deterioration.
Inadequacy in the management of waste imparted the

Fig 3 Microplastic forms
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microplastic pollution in freshwater ecosystems (Free et al.
2014). The limited size and low densities of microplastics
make them dispersed by winds and waves and are thus ubiq-
uitous (Shahul Hamid et al. 2018). Plastic debrises drifted
along with wastewaters are not successfully eliminated by
treatment plants, and so gets cumulated in the atmosphere
(Li et al. 2018; Akarsu et al. 2020; Naji et al. 2021). Source
of microplastic ingestion can also occur in an indirect manner
in which the organisms that accidentally feed on microplastics
are fed directly by the higher organisms in the food web.

Apart from physiochemical processes, the nature and entry
point of the source also persuade the microplastic allocation in
the water resources. Source recognition is a salient feature to

achieve an accurate appraisal of quantity of microplastics that
enter into the marine surface and also to introduce viable han-
dling measures. The probable impacts of microplastics can be
accessed from its allocation all through the aquatic system.
The impact of pollutants is less in place of fewer microplastics
and high in a place where the microplastics get cumulated. So
to lessen the impending risks, it is indispensable to understand
the allocation of microplastics.

The distribution and transportation of microplastics guided
intricately by a multitude of factors, such as weathering and
fragmenting, biofouling, tides, and strong currents.
Microplastics allocate between the floor of the ocean, column
of water, seabed, coastline, and in ecology with different

Table 1 Study on abundance, types, and source of microplastics from various locations

Location Samples collected MP abundance MP type Source Reference

Dongting Lake
(China)

15 each (surface
water and
sediment)

Surface water:
0.62–4.31 items/m2

Sediment : 21–52 items/100 g
dw

50–91% fibres,
5.67–33.33% beads,
2.63–20.00%
fragments

Man-made and
surrounding
rivers

Hu et al. 2020

Kuwait coastal
areas

44 (beach
sediments)

37 (number) PP
PE
PS

Storm sewer and
Seaport

Saeed et al. 2020

Northern
Tyrrhenian sea

(Italy)

58 sediments 1.70 ± 0.93 particles kg−1 73.8% filaments, 17.2%
fragments, 9.0%
films

Marine and
domestic based

Mistri et al. 2020

Salina Island
(Italy)

60 sediments
and 5 species

Sediments: 49.0 ± 1.4
items/kg (landslides), 153.5
± 41.7 items/kg (cliff),
106.0 ± 104.7 items/kg
(banks)

Holothurian species: 1.3 ± 0.9
items/animal (landslides),
3.8 ± 0.7 items/animal
(cliff), 2.47 ± 0.3
items/animal (banks)

Sediments : PVC, PET,
PE, PS, PA, PP

Holothurian species:
PET, PA

Landslides,cliffs
and banks

Renzi et al. 2020

Ganges river
(India)

120 water samples 71.6% (pre-monsoon),
61.6% (post-monsoon)

91% fiber, 9%
fragments

Domestic Napper et al. 2021

Fig 4 Microplastic distribution
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biological, physical, and chemical mechanisms occurring on
microplastics at each compartment (Katija et al. 2017; Choy
et al. 2019). Due to a lack of information of compartments, the
implications and possibilities for diminution are unclear.

Role of plastics in the fate of microplastics

Microplastics consist of a complex array of polymers with
repeated monomers that constitute the polymer’s backbone.
The fundamental distinction between polymer is this back-
bone structure that specifies the physicochemical properties
of a plastic (Rochman et al. 2019). Plastics are classified into
two thermoplastic and thermosetting plastic. Thermoplastic
can melt on heating and solidifies on cooling. PE, PP, PS,
PET, ABS, PC, PA, etc. all belongs to thermoplastics.
Thermosets are those which remain in permanent solid state
after being cured once and they include polyurethane, urea
formaldehyde, vinyl ester, etc. MP, thus, not only consists of
a single polymer, but originates from a diverse group of sub-
stances that are chemically specific (Rochman et al. 2019).

Bioavailability is the percentage of overall amount of par-
ticles available for absorption by an organism found in the
environment (Vallero 2016). The bioavailability of
microplastics can be influenced by a variety of factors of
which the abundance and properties of plastic is an important
one. With further decay and fragmentation of plastic particles,
the availability of microplastic that becomes biologically
available to species will rise with time (Botterell et al. 2019).
However, microplastics are prone to alter density and buoy-
ancy regularly due to biofouling and ingestion, thereby being
bioavailable to species at various levels throughout the water
column. Higher density plastics are biologically available to
benthic species whereas lower density plastics are mainly bio-
available to pelagic species. The microplastic composition is
therefore an essential characteristic (de Sá et al. 2018).

Plastic composition refers to type of polymer, which in turn
defines the density of debris. Plastics with low density, such as
PP and PE, create debris that are less denser than water and is
thus likely to stay floating, whereas PET, PS, and cellulose
acetate contain plastics which are denser than water and hence
appear to settle (Driedger et al. 2015) with respect to their rise
and sink velocity.

The velocity of rise and sink ( r) (Mountford and Morales
Maqueda 2019) is calculated (Eq. 1) by

wr ¼
ρ
ω
−ρPj j

ρ
ω
−ρP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
ω
−ρPj jgL

ρP

s

ð1Þ

ρP is the plastic density, ρω is the density of oceanwater, g
is the acceleration due to gravity, and L is the frictional length
(10−6 m).

For positively buoyant plastics, often hovering on the water
surface will only be temporary until they are continuously
fouled and end up in the benthic zone. Diminution in surface
fouling on sinking plastics due to grazing can temporarily
refloat them, resulting in cyclic floating and sinking until they
eventually settle in the depth of oceans (Alimi et al. 2021).
Plastics with positive buoyancy are distributed within the top
100 to 150 m of the ocean surface, whereas neutral buoyant
plastics are found above 3500 m from the depths (Mountford
and Morales Maqueda 2019). High-density polymers, bio
fouled materials, polymers with fillers, composites, all have
a tendency to settle. Biofouling occurring due to the aggrega-
tion of microorganisms or algae will raise microplastic density
and contribute to settling into pelagic or benthic regions.
Plastics are protected from UV light when accumulated at
the bottom of ocean, thus greatly delaying the deterioration
process (Corcoran 2015). Different polyethylene grades range
in density, strength, crystallinity, and weatherability, with par-
ticular uses for each grade, such as LLDPE and LDPE for
plastic bags and HDPE for jugs. The properties of the poly-
mers that constitute them, however, decide their existence,
fate, degradation, and their tendency to sorb/release persistent
organic pollutants (Andrady 2017).

Semi crystalline polymers (Guo and Wang 2019) are dis-
tinguished by their higher strength and resistance to fatigue,
whereas amorphous polymer exhibits low strength and poor
resistance to fatigue (Sysel 2016). Plastics such as PE, PP, and
PET have a semi-crystalline structure that typically makes the
material tough, but at high degrees of crystallinity it can be
made brittle thus contributing to the ease of cracking and
fracturing during weathering. Higher crystallinity ratios con-
tribute to higher density of microplastics resulting in negative
buoyancy, therefore crystallinity is an important factor that
determines position in column of water and type of aquatic
species it deals with (Andrady 2017). Characteristic proper-
ties, including crystallinity and density ofMP, are not intrinsic
features, and can be readily modified by the weathering or
aging processes (Guo and Wang 2019).

As a result of oxidation, discoloration occurs in PE, PP, PS,
PET, PC, and PVC turning it from yellow to yellow orange
which is usually attributed to the accumulation of degradation
products or the stabilizers used during production (Gautam
et al. 2020; Sharma et al. 2021). In PVC, photodegradation
entails loss of HCl forming yellow-colored conjugate
unsaturation. MP photodegradation is significantly delayed
in oceans, due to low concentration of oxygen and tempera-
ture. In fact, MP in the ocean surface is more efficient in
surface fouling than that present on land, which can keep them
safe from ultraviolet rays thereby resulting in slower discolor-
ation (Guo and Wang 2019). Figure 5 shows changes in char-
acteristic properties of microplastic as a result of degradation.

The negative impacts on microplastic-exposed species can
be grouped into 2 types—physical and chemical effects.
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Physical refers to microplastic shape, size, and concentration,
whereas chemical relates to its associated harmful chemicals
(Campanale et al. 2020). The sorption rates for hydrophobic
contaminants by microplastics varies with its shape and type
of polymer (Tourinho et al. 2019). Microplastics are often
present as part of a combination or a complex collection of
chemicals thereby showing that it can accumulate organic
chemicals and trace metals from its surroundings. Additives
or raw materials obtained from plastics and chemicals from
the surrounding medium are the main chemicals contained in
MP (Campanale et al. 2020). Owing to their elevated surface
area to charge ratio, MPs adsorb persistent organic pollutant
and other inorganic contaminants. Intake of MPs by marine
animals results in higher toxicity due to the aggregation of
organic hydrophobic compounds (Sunday 2020). Polymer’s
physical and chemical property such as diffusivity, surface
area, crystalline, and hydrophobic nature determines the quan-
tity and type of chemicals to be accumulated by the plastic
(Rochman et al. 2019). Polyethylene and polypropylene rub-
bery polymers are supposed to diffuse more chemicals than
the PET, PVC glass polymers. PE often displays a higher
affinity for toxins than other plastics (Robeson et al. 2015).
In exception, PS glass polymer (Hüffer and Hofmann 2016)
shows a higher sorption rate due to the existence of benzene
ring that enables the addition of chemicals onto the polymer
thus showing the relation between sorption and chemistry of
plastic (Alimi et al. 2018).

MP when consumed by aquat ic spec ies , ge ts
bioaccumulated, thereby displaying particle or chemical

toxicity andmixture effects contributing to disturbance in their
metabolism, feed patterns, development, and reproduction
with differing degrees of toxicological risks for each species
(Sunday 2020). For example, polystyrene concentration re-
sulted in diminished chlorophyll concentration in algae
(Hazeem et al. 2020), whereas Daphnia magna displayed im-
pairment in reproductive cycles (Aljaibachi and Callaghan
2018).

Effects of microplastics in various organisms

Cumulating concentration of pollutants at trophic levels re-
sults in the effectual transmission of noxious substances in
the food chain. The retention of plastic debris might occur
inside the organisms resulting in chemical leakages if any
additives (shown in Table 2) present, thus creating cumulation
leading to detrimental effects (Setälä et al. 2014).
Microplastics found in marine systems worldwide influence
the feeding, growth, spawning, and existence of organisms in
the aquatics. However, the extent to which the microplastics
affect by transferring of chemicals present in and on the sur-
face of MP to the higher complex food chains is not known
(Granek et al. 2020). Only limited information (Furtado et al.
2016) is available on trophic transfer so whether the pollutants
are ejected or get bioaccumulated in higher trophic levels are
still need to be studied. Diminution in the feeding of aquatic
organisms is the collective effect found during microplastic
injections; other challenges include effects on growth and

Fig. 5 Degradation of
microplastic. Reprinted with
permission from ref. (Guo and
Wang 2019). Copyright 2019,
ELSEVIER
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proliferation. The chronic effects of MPs can be pass on to
successive level throughout the food chain, negatively affect-
ing the organisms. The effects of microplastics vary with the
organism species and microplastic type and concentrations.

Sussarellu et al. (2016), in their studies, showed the adverse
impact of polystyrene microplastics on reproduction and feed-
ing of oysters due to amendation in their food intake and
energy distribution. On exposure to microsized polystyrene,
oyster showed a reduction in number of eggs produced,
ovocyte quality, and sperm motility. Fertilization in oysters
occurs externally in the sea where the eggs and sperms are
released, but due to the intake of micro polystyrene, fertiliza-
tion is affected by reduced sperm speed and its fewer amount
(Sussarellu et al. 2016). In its feces, a 6-μmmicro polystyrene
ingested by oyster was found, with no cumulation in the gut
suggesting a large polystyrene ejection. The yield and growth
of offsprings of microplastic exposed oysters dropped by 41%
and 18%, respectively. The study stipulated information on
the hostile effects of microsized PS on development and re-
production of oysters with considerable impacts on progeny.
Apportioning of energy from reproduction to growth with the
abatement in fertilization success is the result of exposure
studies of polystyrene (Galloway and Lewis 2016).

In 2019, Bessa et al. studied the contagion in the aquatic
ecosystem of Antarctic by assessing the presence of
microplastics in gentoo penguins. In Antarctic regions, water
contained microplastics, but the idea about its ingestion and
entry through the food chain has not been studied in depth.
Seabirds identified as biological markers of changes occurring
in the environment also contemplated as indicators of envi-
ronmental plastic pollution. The limited motion of gentoo
penguins outside their vicinity makes them a standard indica-
tor for the tracking of plastic particles in Antarctic marine
systems. The occurrence, identification, and characterization
of microplastics analyzed from the scats of gentoo penguins.
Penguin scats from two different islands were collected, which

contained 58% of microfibers, 26% fragments, and 16% of
films. The entry of microplastics into the gastrointestinal tract
of penguins are either directly due tomisconception of plastics
as food or feeding on contaminated prey or through polluted
waters. The plastics debris gets cumulated in the guts of pen-
guins preventing it from the consumption of food and also
results in the absorption of toxic substances from water, thus
affecting their growth and development (Bessa et al. 2019).

Cole et al. (2015) showed how ingestion of MPs affected
the feed habit, fertility, and functioning of zooplanktons like
copepods (shown in Fig. 6). The studies conducted on
Calanus helgolandicus copepod mostly found in the
Atlantic, a vital species acting as prey for larvae of many
fishes due to their supersize, substantial amount of lipids and
opulence. Ingestion of microplastics by copepod shows sig-
nificant impacts on feeding, hatching, and their health.
Copepod exposed to polystyrene microbeads of 20 μm result-
ed in a 40% reduction in the carbon biomass with a deficiency
in their energy, showing the rapid consumption of lipids,
thereby affecting their growth. The energy deficiencies also
result in the death of copepods. Microplastic long-term expo-
sure leads to small-sized eggs with reduced hatchings(Cole
et al. 2015).

Zocchi and Sommaruga (2019) studied how the toxicity of
glyphosate, a herbicide, varies with the incorporation of
microplastics. The tests were conducted on Daphnia Magna
as it is both microplastic and glyphosate sensitive. Daphnia
Magna crustaceans are food for many aquatic organisms and
feed themselves with small particles present in the water.
Three glyphosate formulat ions l ike glyphosate-
monoisopropylamine salt, glyphosate acid, roundup gran,
and two different microplastics consisting of beads and fibers
were used. Without the incorporation of microplastics, the
fatality rate was high for glyphosate-monoisopropylamine salt
23.3%, but when microplastics were incorporated, a modifi-
cation in the toxicity observed with the highest mortality rate

Table 2 Additives present in
microplastics Additives Properties Effects Reference

UV
Stabilizers/absor-
bers

Prevents
photodegradation

Mutagenic, toxic, bioaccumulated and
show estrogenic activity

Hammer et al.
2012

Antioxidants Delay oxidation,
prevents aging

Estrogenic effects Hermabessiere
et al. 2017

Plasticizers Renders the material
pliable

Renal, reproductive, cardio, and
neuro-toxicity

Rowdhwal and
Chen 2018

Flame retardants Diminish
flammability

Endocrine disruptors Fred-Ahmadu
et al. 2020

Pigments Colour Duplication of food resulting gut
blockage

Hammer et al.
2012

Surfactants Modification of
surface properties

Destroy mucus layer, damage gills Rani et al. 2015
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for glyphosate acid. With polyethylene beads, glyphosate acid
showed the toxicity of 53.3%, and with polyamide fibers, it
showed 30%. So modification on noxious effects of contam-
inants is observed on combining with microplastics besides
the pessimistic effects of microplastics alone. Daphnia Magna
shows high fatality when ingested with microplastics(Zocchi
and Sommaruga 2019).

Mussels, when subjected to microplastics, results in their
grip loss due to a reduction in thread production that helps
them to stick. Mussels adhere together, forming reefs for their
shelter and breeding, thereby playing an imperative role in
aquatic systems (Green et al. 2019). Berglund et al. studied
the microplastic effects on mussels in 2019. An elevation in
the number of microplastics observed with an increase in the
mussel size. Large-sized mussel absorbs large amounts of wa-
ter while storing higher quantities of fibers. The size-related
filter function is less evident for plastic debris. The sum of
fibers was higher than the number of plastics, and that may
be due to the lower concentration or size of plastics. Elevation
in the concentration of microplastics leads to fecal impaction
or malnutrition in mussels. Furthermore, the ability to attract
pollutants is high for plastics that would results in the emission
of noxious substances into the mussels (Berglund et al. 2019).

The presence of microplastics and fibres were found in the
demersal shark species of united kingdom for the first time
(Parton et al. 2020). The major intake route of MP by sharks
can be through its foods, which are mostly crustaceans and
molluscs, or through direct feeding (Germanov et al. 2019).
Owing to the small particle size detected by the researchers,
there is a chance of immediate excretion but however the
presence of chemicals bound to the fibres can have repercus-
sions on their reproductive cycle and immune systems (Parton
et al. 2020).

A work by Besseling et al. on 2017 reported on how the
microplastic consumption increases susceptibility of marine
worms to chemicals (PCB). Arenicola marina when exposed
to polyethylene for 28 days showed reduced feeding and
growth, high mortality rate, and bioaccumulation (Besseling
et al. 2017). Table 3 shows microplastic effects on different
species along with the polymer type, microplastic size, num-
ber of specimens used, and its experimental conditions.

The presence of microplastics detected at all stages in the
food web affecting the gastrointestinal tracts and tissues,
which varies with the genre and emplacement. Organisms
present in the marine ecosystemmistook microplastics as their
food due to their similar size. Studies imply that all marine
organisms intake microplastics, but the amount of their inges-
tion may vary with the type of species. It is important to
monitor the excessive use of plastic additives and to enact
laws and standards to control plastic litter sources due to the
resulting danger of MPs to marine biota. Figure 7 depicts
adequate primary methods adapted to reduce pollution.

Current studies on microplastic pollution

Microplastics have been found in the air we breathe (Enyoh
et al. 2019), in the food we consume (Eerkes-Medrano et al.
2019; Zhang et al. 2020c, b), or in the soil where our crops
grow (Corradini et al. 2019). They were discovered on peak of
Everest (Napper et al. 2020) and at the depths of the deep
ocean (Zhang et al. 2020a; Courtene-Jones et al. 2020). In
humans, existence of microplastics in human stool (Schwabl
et al. 2019) and for the first time MP fragments in human
placenta (Ragusa et al. 2021) were confirmed.

Fig. 6 Effects of copepod in the
controlled and microplastic
medium. Reprinted with
permission from Ref (Cole et al.
2015). Copyright; 2015. ACS
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Even the most isolated and pristine areas of the earth
have been invaded by plastic particles. A recent study
(Ross et al. 2021) found that the Arctic is rampantly con-
taminated by MP fibers that would possibly come from
the laundering of clothes. Because of the increase in tex-
tile manufacturing and the lack of microfiber deteriora-
tion, aggregation of microfibers will become more
extreme(Liu et al. 2021). In 96 out of 97 samples collect-
ed from around the arctic ocean, the most detailed analy-
sis to date has detected microplastics. Fibers accounted
for more than 92% of the MP and 73% of that were found

to be polyester having the same size and color as those
found in garments (Ross et al. 2021). The reduced micro-
fiber density (Brahney et al. 2020) can make them more
transportable over a long range by water and wind (Liu
et al. 2021) and their high surface to volume ratio can
bind more noxious contaminants, potentially making them
more dangerous to the aquatic species that other forms of
microplastics (Liu et al. 2019). A large proportion of mi-
crofiber can slip out of treatment plants owing to their
limited size and get discharged into marine habitats
(Napper and Thompson 2016).

Table 3 Study of microplastic impacts on various aquatic species

Name Polymer Microplastic
size

Number of test
species

Experiment conditions Impact Reference

Nematode
(Caenorhabditis
elegans)

PS 1 μm 40 72 h, 0.45 NaOH, 2% HClO Intestinal injury,
oxidative stress

Yu et al. 2020

Zebra fish
(Dania rerio)

PA
PE
PP
PVC

70 μm 48 23 ± 1 °C
12 h photoperiod

Intestinal damage Lei et al. 2018

Ascidian ciona
intestinalis

PS 1 μm 30 18 ± 1 °C
8 days

Growth, food uptake Messinetti
et al. 2019

Sardinella gibbose
(Fish)

PET
PA

1 μm 25 Oscillation incubator at 65 °C
at 80 rpm, 24 h, 1.2 g/mL NaCl

Feed habit, body
weight

Hossain et al.
2019

Emys orbicularis
(pond turtle)

PE 500–1000 mg
kg−1

36 1 month, 22 ± 2 °C, photoperiod-14
light and 10 dark

Liver and kidney Banaee et al.
2020

Crepidula onyx
(Mollusca)

PS 2 μm 1000 larvae 22 ± 0.5 °C, 12:12 light/dark cycle Growth Lo and Chan
2018
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Glass reinforced plastics primarily used in boat
manufacturing due to their non-corrosive properties are a
new emerging pollutant whose breakdown results in the re-
lease of microplastic and fiberglass. Powdered GRP, when
exposed to blue mussel, revealed the presence of MP in the
mantle cavity and inflammation in the gills, while in daphnia
magna it culminated in the formation of clumps of smaller
polymer materials in their appendages, resulting in an increase
in its average weight, allowing it to sink, impacting its swim-
ming pattern (Ciocan et al. 2020).

Countless numbers of marine organisms are at risk of
swallowing or getting entangled in an enormous amount of
plastic waste dumped in the water, and what attracts species to
interact with plastic in the oceans is still a confounding aspect.
One of the speculating factor might be the way plastic resem-
bles food such as plastic bags are mistaken for jelly fish. A
study on sea turtles reveals that aquatic species are not only
drawn to plastic waste by how it appears, but also by how it
smells. Plastic debris get covered with algae and other micro-
organism after several days in the oceans that they start to
scent like food. Sea turtles react to airborne olfactory receptors
originating from bio-fouled plastics in the similar manner they
react to food odors (Pfaller et al. 2020), so the places where
plastic wastes are concentrated can act as olfactory traps
(Savoca 2018) that can drive the attention of other species
and can be harmful.

Eurythenes plasticus, a new amphipod crustaceans occur-
ring in marine habitats, was named after the plastic waste
found in its hindgut by researchers. The particle found was
about 649.648 μm long and was 83.74% similar to PET, a
common polymer used in bottles, food packaging, and textile
fabrics was found in the guts of the species. The shrimp-like
creature, about two inches long, was found 20,000 ft under-
water in the Pacific Ocean (WESTON et al. 2020) reveals that
even creatures from undiscovered habitat are already polluted
with plastics as they are feeding on MPs throughout their
lifespan, which may have acute and permanent health conse-
quences. Although the ecotoxicological effects ofmicroplastic
toxicity on deep-sea amphipods have yet to be studied, it is
quite possible that the other undiscovered species living in the
depths of pacific ocean are equally vulnerable to the ingestion
of microplastic fibres (Peng et al. 2020). The settling ofMP on
its own to the bottom of the oceans may take several years, as
in the case of spherical MP, it may take around 15 years and
for fibers it may take about 6 and 8 months (Chubarenko et al.
2016). The development of ecocorona by macromolecule or
other microorganism on the MP surface can change its size,
hydrophobic nature, and chemical behavior and can act as a
potential method for MPs to enter seabed (Galloway et al.
2017). The biofouled particles seem to be absorbed faster
but slowly excreted when reaching the seabed, resulting in
their accumulation on the tissue of species that cause malnu-
trition or impaired growth (Michels et al. 2018).

The Norway Nephrops norvegicus lobsters are deep sea
scavengers (Andrades et al. 2019) that inhabits in European
climatic conditions and are a strong bioindicator (Cau et al.
2019) of MP pollution. Analysis performed by Italian scien-
tists in 2020 (Cau et al. 2020) found that crustaceans can
modulate the deterioration of microplastics into tiny particles
in which their stomach can essentially serve as a grinding mill
that grinds the plastic particles into even smaller ones thus
affecting the lower trophic levels of food chain. In the study,
85% of the examined specimens showed higher amount of
microplastics in the intestine than in the stomach with length
of 0.23 ± 0.16 and 1 ± 0.16 mm, respectively, indicating that a
considerable proportion of absorbed microplastics leaving the
stomach are broken by gastric mills, preceded by filtering
systems that discourage larger particles from accessing the
intestine. These results demonstrate the presence of a new
form of “secondary” microplastic releasing into the marine
environment by the lobsters (Cau et al. 2020). However, ear-
lier studies (Welden and Cowie 2016) have already shown
that continuous fed on plastics by lobsters results in higher
mortality rate or affects their growth and reproduction.

Clustered mussels serve as barriers to microplastic waste
poured into the ocean by delaying the ocean water that flows
over it, leading to the tripling of the amount of plastic taken up
by the filter feeders (Lim et al. 2020). The greater surface area
of the mussel bed is thus more likely to settle higher concen-
trations of waste particles floating over them, thereby acting as
a natural sink (Nel and Froneman 2018).

COVID-19 and microplastics

In 2019, the world witnessed the onset of the global COVID-
19 pandemic, first reported in Wuhan China (Khan et al.
2020), impacting millions of people. The use of plastic-
based personal protection equipments as a measure to mitigate
infection has risen dramatically since the COVID-19 epidemic
was declared as a global epidemic on 11 March 2020 by the
World Health Organization (Shah and Farrow 2020). Not only
are we experiencing the new pandemic but also the recurrence
of single-use plastics. Countries like the USA have stopped
recycling projects as a result of the pandemic, as officials have
been cautious about the possibility of the transmission of
COVID-19 in recycling plants. Italy prevented infected people
from sorting out their waste (Zambrano-Monserrate et al.
2020). Trading firms that once allowed customers to take their
bags have reconsidered the ban on plastic bags and have grad-
ually moved to single-use plastics promoting more online
food services (Soares et al. 2020).

In the COVID-19 epidemic, pollution from PPE is becom-
ing a rising concern as the wearing of masks to contain the
spread of corona virus from person to person was instructed
globally (Wu et al. 2020) and has become a frequent sight in
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countries around the world. Nanofiber electrospinning, often
used in the manufacture of personal protection equipments,
indicates that this PPEs can become a source for microfibers.
PPEs are mainly composites consisting of multiple non-
degrading polymers so their fate and sinks can vary according
to the characteristics of polymeric materials used (De-la-Torre
and Aragaw 2021). Surgical masks are made from various
polymer materials like polyethylene, PAN, polypropylene,
polyester, etc. Three layers of disposable mask consist of an
inner fibrous layer, a middle filtering layer, and an outer water
resisting layer (Aragaw 2020).About 11 and 4.5 g of PP and
other plastic derivatives can occur in one N95 and surgical
mask. Until properly disposed of, this extremely infectious
litter from the COVID-19 pandemic will persist in the atmo-
sphere for decades and eventually begin to split into
microplastics owing to a combination of factors such as tem-
perature, ultraviolet, hydrophobicity, and pH change, proba-
bly influencing biota (Akber Abbasi et al. 2020).

PPE overuse during pandemic exacerbates plastic waste in
the seas as the final conclusion of all sources of degradation is
geared toward the ocean. The problem will escalate as the
outbreak drifts on, leading to a potential spike in the already
existing plastic pollution in the marine environments (De-la-
Torre and Aragaw 2021).

Conclusion and future scope

Microsized particles, commonly referred to as microplastics,
are infesting the aquatic habit globally where a vast array of
organisms absorb these minute particles in which a significant
portion of the population comprises plastic remnants, causing
chronic effects. The eminence of plastics as a carrier for the
transportation of toxic substances or as an abrasive that phys-
ically harm the species in the habitat is far less evident.
Microplastic concentrations persist to an upsurge in the eco-
system as a consequence of the steer emergence of primary
microplastic and the disintegration of larger plastics.
Microplastic impacts epitomize a severe issue in almost every
marine system on the earth, regardless of how isolated from
potentially polluting sources. However, the study on freshwa-
ter micropollutants are limited compared to that of marine
systems; recently, it has become a matter of great concern.
Due to the nearness to sources and reachability to more pol-
lutants, MP present in freshwater is more critical to accumu-
lation of contaminants. Therefore, species in freshwater envi-
ronments can undergo greater exposure, particularly in the
vicinity of industrial and densely populated areas where both
hydrophobic toxins and microplastics may have higher con-
centrations. A reduction in growth ofGammarus pulex, fresh-
water crustacean, was observed with increasing polystyrene
concentration (Redondo-Hasselerharm et al. 2018).

In order to tackle the destructive impacts of microplastics, low
cost, high-quality, and environmentally sustainable plastic waste
management is required. Although the main problem of plastic
waste in water originates mainly from soil-based activities, it is
recommended that this issue be addressed. Waste management
measures include the minimization of sources, innovation in
products, reuse of water, recycling and mulching, the transfor-
mation of waste into power, and hindering of debris at entrance
points into the ocean.Microplastics may be used as an alternative
to metals such as aluminium and its combination as it causes
adverse toxic impacts on human body under administration, the
application of microplastics in medicines as an active and alter-
nate ingredient can treat the disease like duodenal ulcer and gas-
tritis in the future. The removal and biodegradation of
microplastics from water and aquatic systems are still limited in
the laboratory which can be commercialized under large scale
using microorganisms such as fungi, protozoans, and bacterial
spores in the future. Methods can be implemented before the
microplastics get converted into nanoplastics by segregating the
high-density plastics that accumulate at the bottom and the low-
density plastics that float at the surface of the water, to prevent
further aquatic contaminations. This can be accomplished by the
incorporation of coagulants; however, the harmful effects of
these materials in our human body is still not figured out. The
sewage outlets from industries fitted with ceramic filters can
hinder the microplastics from entering into the water bodies
preventing its contamination. In addition, considering the role
of COVID-19 pandemic in microplastic pollutions, there is high
need for environmentally responsible solutions so more and
more study on biodegradable PPEs need to be done in order to
prevent a potential pandemic of microplastics.
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