
 Open access  Journal Article  DOI:10.1103/PHYSREVE.73.056605

Effect of microscopic disorder on magnetic properties of metamaterials
— Source link 

Maxim V. Gorkunov, Maxim V. Gorkunov, Sergey A. Gredeskul, Sergey A. Gredeskul ...+2 more authors

Institutions: Australian National University, Russian Academy of Sciences, Ben-Gurion University of the Negev

Published on: 16 May 2006 - Physical Review E (American Physical Society)

Topics: Split-ring resonator and Metamaterial

Related papers:

 Negative Refraction Makes a Perfect Lens

 Magnetism from conductors and enhanced nonlinear phenomena

 Experimental Verification of a Negative Index of Refraction

 The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ

 Characterizing the effects of disorder in metamaterial structures

Share this paper:    

View more about this paper here: https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-
2u29rb56za

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVE.73.056605
https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-2u29rb56za
https://typeset.io/authors/maxim-v-gorkunov-451ty7mv3p
https://typeset.io/authors/maxim-v-gorkunov-451ty7mv3p
https://typeset.io/authors/sergey-a-gredeskul-2597mfqvez
https://typeset.io/authors/sergey-a-gredeskul-2597mfqvez
https://typeset.io/institutions/australian-national-university-1u3b0omq
https://typeset.io/institutions/russian-academy-of-sciences-21fvvc5i
https://typeset.io/institutions/ben-gurion-university-of-the-negev-2goi3hza
https://typeset.io/journals/physical-review-e-9qlkqn9m
https://typeset.io/topics/split-ring-resonator-3t3cl10j
https://typeset.io/topics/metamaterial-217xpgf0
https://typeset.io/papers/negative-refraction-makes-a-perfect-lens-2yepsrmjen
https://typeset.io/papers/magnetism-from-conductors-and-enhanced-nonlinear-phenomena-2fpnoamwae
https://typeset.io/papers/experimental-verification-of-a-negative-index-of-refraction-37hlxn3tta
https://typeset.io/papers/the-electrodynamics-of-substances-with-simultaneously-5d48k03ghv
https://typeset.io/papers/characterizing-the-effects-of-disorder-in-metamaterial-11qqygec2a
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-2u29rb56za
https://twitter.com/intent/tweet?text=Effect%20of%20microscopic%20disorder%20on%20magnetic%20properties%20of%20metamaterials&url=https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-2u29rb56za
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-2u29rb56za
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-2u29rb56za
https://typeset.io/papers/effect-of-microscopic-disorder-on-magnetic-properties-of-2u29rb56za


Effect of microscopic disorder on magnetic properties of metamaterials

Maxim V. Gorkunov,
1,2

Sergey A. Gredeskul,
1,3

Ilya V. Shadrivov,
1

and Yuri S. Kivshar
1

1
Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University,

Canberra ACT 0200, Australia
2
Institute of Crystallography, Russian Academy of Science, Moscow 119333, Russia

3
Department of Physics, Ben-Gurion University, Beer-Sheva, Israel

�Received 10 October 2005; revised manuscript received 10 March 2006; published 16 May 2006�

We analyze the effect of microscopic disorder on the macroscopic properties of composite metamaterials and

study how weak statistically independent fluctuations of the parameters of the structure elements can modify

their collective magnetic response and left-handed properties. We demonstrate that even a weak microscopic

disorder may lead to a substantial modification of the metamaterial magnetic properties, and a 10% deviation

in the parameters of the microscopic resonant elements may lead to a substantial suppression of the wave

propagation in a wide frequency range. A noticeable suppression occurs also if more than 10% of the resonant

magnetic elements possess strongly different properties, and in the latter case the defects can create an addi-

tional weak resonant line. These results are of a key importance for characterizing and optimizing novel

composite metamaterials with the left-handed properties at terahertz and optical frequencies.

DOI: 10.1103/PhysRevE.73.056605 PACS number�s�: 42.70.Qs, 41.20.Jb, 78.67.Pt

I. INTRODUCTION

Artificially fabricated composite conductive structures for
electromagnetic waves or metamaterials acquire a growing
attention of research during the last years due to their unique
properties of negative magnetic permeability and left-handed
wave propagation. Being composed of three-dimensional ar-
rays of identical conductive elements, the metamaterials

have much in common with conventional optical crystals

scaled to support the propagation of microwave or terahertz

radiation. In contrast to crystals, metamaterials allow tailor-

ing their macroscopic properties by adjusting the type and

geometry of their structural elements. In particular, it is pos-

sible to obtain negative permeability in magnetically reso-

nant metamaterials at the frequencies up to hundreds of tera-

hertz �1,2�. This appears to be especially useful for the

practical realization of the negative refraction phenomenon

�3�.
The simplest method to create a magnetically resonant

metamaterial is to assemble a periodic lattice of the resonant

conductive elements �RCEs�, where each element is much

smaller than the wavelength of the propagating electromag-

netic waves, and can be well approximated by a linear LC

contour. A small slit provides the contour with a certain ca-

pacitance while its shape determines self-inductance. As a

result, a resonance of the induced currents and corresponding

magnetization resonance occurs. Remarkably, the resistive

losses in RCEs are low enough to provide the quality factor

of the resonance of the order of 103 �1�.
During the recent years, a number of ideas have been

suggested for achieving better characteristics �4�, tunability

�5–7�, nonlinear wave coupling �8–11� in composite

metamaterials by inserting different types of active and pas-

sive electronic complements into the resonant circuits. One

of the common features of these seemingly different ap-

proaches is to modify the macroscopic properties by the

identical insertions into a microscopic structure of the

metamaterial, assuming technologically ideal fabrication

processes. It was always assumed that all RCEs are identical,

and no analysis of the effect of random deviations or disorder

was carried out. However, one should expect that even weak

fluctuations in the microscopic parameters may become criti-

cal near the magnetic resonance. On the other hand, after a

certain working time, a small amount of RCEs could expe-

rience a breakdown and will operate in a way different from

that of the majority of the elements. Thus, the problem of

disorder appears naturally in the physics of composite

metamaterials.

Recent experiments �12� demonstrated a significant de-

crease of the wave transmission due to defect elements in

one-dimensional metamaterial structures. Low transmission

in a one-dimensional magnetoinductive waveguide with

weak deviations of the element properties was also found in

numerical simulations �13�. The first theoretical study of the

effects of disorder in three-dimensional metamaterials has

been made in Ref. �14�, where the magnetic susceptibility for

a spatially uniform system �15� has been averaged with re-

spect to random variations of the RCE resonant frequency,

and the resulting change of the frequency dispersion of the

left-handed composite system has been found analytically.

The method used in Ref. �14� is based on a macroscopic

averaging performed prior to a statistical averaging. This is

possible only under the assumption that the resonant fre-

quency is a slowly varying random function of the coordi-

nates, and its correlation length rc satisfies the inequality

rresp � rc � � , �1�

where rresp is the characteristic length of the local response

�which is usually of the order of a few lattice constants �15��,
and � is the wavelength of the electromagnetic wave propa-

gating in the metamaterial. However, the opposite case,

rc � rresp, �2�

appears to be more realistic because even the nearest neigh-

boring RCEs are statistically independent. Then the primary

PHYSICAL REVIEW E 73, 056605 �2006�

1539-3755/2006/73�5�/056605�8� ©2006 The American Physical Society056605-1

http://dx.doi.org/10.1103/PhysRevE.73.056605


characteristic of the disordered structure is not the average

susceptibility itself but the current distribution, and the mag-

netic properties of the disordered system are determined by a

macroscopic average of the current. If the averaging length is

large with respect to the correlation length, i.e., if the in-

equality �2� is fulfilled, then the macroscopic current is a

self-averaged quantity �16�, and it should coincide with its

ensemble average. In this case, the magnetic properties of the

system are described by a statistical mean current.

Below we study systematically the effect of disorder on

the averaged characteristics and permeability of metamateri-

als, and consider two practically important models of the

disordered composite metamaterials, assuming the capaci-

tances Cn of different RCEs to be random quantities. In the

first model, we assume that the capacitances are completely

uncorrelated, but fluctuations are weak. The second model

corresponds to the small volume density ñ of defect RCEs

acting as impurities with substantially different capacitance

C̃. The difference can be very strong here covering two prac-

tically important cases of a casual RCE breakdown, C̃→�,

and the absence of some RCEs, C̃→0. The impurities make

the medium microscopically inhomogeneous. The volume in

which the local response is formed has to contain a large

number of impurities. In accordance with the condition �2�,
this implies an additional but not very restrictive condition:

the volume density of impurities should not be extremely

small, i.e., ñ��−3.

The paper is organized as follows. In Sec. II we analyze

the magnetic response of an ideally ordered metamaterial.

We start with reminding briefly the method of permeability

calculation developed in �15�, and also describe a theoretical

approach based on the response function of the discrete com-

posite medium, which later allows us to describe the proper-

ties and response of rather general microscopically inhomo-

geneous media. Section III is devoted to the study of effects

of small deviations in each resonant element. In Sec. IV, we

deal with the case of strong but rarefied impurities. Our gen-

eral conclusions are accompanied by some specific examples

calculated numerically for the typical metamaterial param-

eters. Finally, in Sec. V we discuss the quality and reliability

requirements for the electronic components to be used as

RCE insertions in the composite magnetic metamaterials.

II. RESPONSE OF MAGNETIC METAMATERIALS

A. Effective permeability

First we consider a composite metamaterial created by an

ideal three-dimensional lattice of identical RCEs. The RCEs

are placed in the parallel planes normal to the z axis �see Fig.

1�. We denote N the total macroscopic number of the lattice

sites, and each site is characterized by the index n. We as-

sume that the wavelength of the electromagnetic radiation is

much larger than both the RCE size and lattice constant,

which allows us to describe the electromagnetic properties of

the metamaterial using the effective magnetic permeability

and effective dielectric permittivity.

To derive the permeability of the particular metamaterial

we apply the procedure developed earlier in Ref. �15�. In

brief, the main steps include the following.

�i� The magnetization of the metamaterial exposed to a

homogeneous oscillating magnetic field parallel to the z axis

is calculated, taking into account the mutual inductive

coupling of RCEs.

�ii� The volume averaging over a unit cell of the overall

microscopic magnetic field yields the macroscopic magnetic

induction.

�iii� Excluding the external field allows us to obtain the

relation between the magnetic induction and the macroscopic

magnetic field, that defines the permeability.

Below we present these calculations in more detail.

The external magnetic field H
z

�0�
oscillating with the fre-

quency � gives rise to an electromotive force in each RCE,

E= i�0�SH
z

�0�
, where S is the RCE area. On the other hand,

the relation between the external electromotive forces and

the induced currents In is given by the mutual impedance

matrix �17� Ẑ with N2 elements:

�
m

ZnmIm = En, �3�

where for a periodic structure Znm=Z�n−m�. The diagonal

elements of the matrix Ẑ coincide with the RCE self-

impedance:

Z�0� = − i�L +
i

�C
+ R , �4�

while the nondiagonal elements are determined by the mu-

tual inductance:

Z�n − m� = − i�M�n − m� . �5�

In an ideally ordered composite, the currents In are the

same, and they can be found as

I0 =
E

Z0

, Z0 � �
n

Z�n� . �6�

Accordingly, the magnetization of the metamaterial is found

as

Mz = i��0nS2Hz
�0�

Z0
−1, �7�

where n is the volume density of RCEs.

FIG. 1. �Color online� Schematic of two layers of the metama-

terial with random insertions of defect resonant elements �shown in

green�.
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Next, we perform the macroscopic averaging of the mag-

netic field �external plus induced by RCEs�. As shown in

�15�, integrating the field over a unit cell yields a rather

general relation, which is independent of the details of the

material structure:

Bz = �0�Hz
�0� +

2

3
Mz� . �8�

Combining Eqs. �7� and �8� with the relation Bz=�0�Hz

+Mz� yields the standard formula of macroscopic electrody-

namics Bz=�0�zzHz, with the effective permeability of the

form

�zz =
iZ0 − �2/3���0nS2

iZ0 + �1/3���0nS2
. �9�

Note that the structure of this relation resembles the

Clausius-Mossotti formula obtained within the local field

theory approximation. As discussed in �15�, the permeability

�9� reduces to the Clausius-Mossotti relation in the limit of

infinitesimally small RCEs. However, for typical metamate-

rials, this limit is far from being realistic, and we rely on a

more general expression for permeability defined by Eq. �9�.

B. Metamaterial response function

Response function G appears to be another useful charac-

teristic of the metamaterial. Mathematically, it is an inverse

matrix of the mutual impedance matrix Ĝ= Ẑ−1, and it satis-

fies the equation

�
m

Z�n − m�G�m − l� = �n,l. �10�

This matrix has a clear physical meaning. Indeed, according

to Eq. �10� it is the distribution of currents for the system

with only one RCE �placed at the origin n=0� exposed to the

action of the unitary external electromotive force, i.e., En

=�n,0. Therefore, G�n� is nothing but the Green’s function of

the metamaterial.

To find G, we solve Eq. �10� via the Fourier transform in

the reciprocal space. The latter consists of N wave vectors k

within the first Brillouin zone. Let us define the Fourier

transform f̃�k� of a discrete function f�n� as

f̃�k� =
1

N
�
n

f�n�e−ik·n

so that the inverse transform has the form

f�n� = �
k

f̃�k�eik·n.

Then the inversion of the difference matrix can be easily

performed,

G�n� =
1

N
�
k

eik·n

�
m

Z�m�e−ik·m
. �11�

The poles of the Green’s function �i.e., zeros of the de-

nominator in Eq. �11�� determine the spectrum of linear

waves that can be excited in the composite metamaterial. In

the magnetostatic approximation, only a part of the spectrum

can be revealed. Conventional relativistic “lightlike” electro-

magnetic waves remain beyond the validity of this approach.

However, as we demonstrate below, small wave vectors and

high group velocities of the “lightlike” waves make their

contribution negligible. The excitations that determine the

Green’s function on a microscopic scale can be well explored

within the magnetostatic approximation. Being first predicted

in Ref. �18�, the magnetostatic excitations were observed in

ab initio simulations of a metamaterial sample exposed to an

external magnetic field �15� and soon after they were ex-

plored theoretically in one-, two-, and three-dimensional

metamaterial structures in Refs. �13,19,20�. Although the

waves are similar in many aspects to quasistatic excitations

in magnetic substances �magnetostatic waves and magnons�,
in metamaterials they are called magnetoinductive waves. In

the following we will use this established terminology.

Until now, the spectra of magnetoinductive waves in

three-dimensional metamaterials were analyzed only in the

nearest and next-nearest neighbor approximations �13,20�,
which provide only qualitative information. As will be dis-

cussed below in Sec. III B, in order to obtain quantitatively

reliable results we should take into account hundreds of

neighbors.

After changing the summation over the macroscopic num-

ber of k vectors by the integration over the first Brillouin

zone, B1, we obtain

G�n� =
1

�2��3n
	

B1

eik·nd3k

�m
Z�m�e−ik·m

. �12�

With the help of Eqs. �4� and �5� we can rewrite the denomi-

nator to obtain

G�n� =
i�C

�2��3n
	

B1

	2�k�eik·n d3k

�2 − 	2�k� + i�
�k�
. �13�

Here the spectrum of magnetoinductive waves, 	�k�, is in

agreement with the results of Ref. �13�,

	2�k� =
�0

2

1 + L−1�n
M�n�eik·n

, �14�

and the damping coefficient is determined as


�k� =
	2�k�

Q�0

, �15�

where �0= �LC�−1/2 and Q=�0L /R are the RCE resonant fre-

quency and quality factor, respectively.

To isolate the contribution of singular poles, we split the

integral in Eq. �13� into the real and imaginary parts,

G�n� =
�C

�2��3n
�A�n� + iB�n�� , �16�

where the imaginary part allows a straightforward numerical

integration,
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B�n� = 	
B1

	2�k���2 − 	2�k��eik·n

��2 − 	2�k��2 + �2
2�k�
d3k , �17�

whereas the real part

A�n� = 	
B1

�	2�k�
�k�eik·n

��2 − 	2�k��2 + �2
2�k�
d3k �18�

acquires a contribution at the surface SK built by the magne-

toinductive wave vectors K���, obeying the relation

	�K����=�. Since the RCE quality factor is high, the sin-

gular part dominates in Eq. �18�. In the vicinity of the surface

SK, we can write 	�k�
�+k·v�K�, where v�K� stands for

the group velocity. Next, we integrate along the surface nor-

mal reducing the volume integration in Eq. �18� to the sur-

face integral over SK,

A�n� = ��	
SK

eiK·n d2K

v�K�
, �19�

which is more suitable for numerical calculations.

Analyzing Eqs. �17� and �19�, it is easy to conclude that

accounting for the “lightlike” modes would not lead to any

noticeable corrections. These modes are located in the center

of the Brillouin zone near the point k=0, and their contribu-

tion to the integral B is apparently small. On the other hand,

the light group velocity is about two orders of magnitude

higher than that of the magnetoinductive waves. Therefore,

the “lightlike” part in A is also negligible.

III. WEAK FLUCTUATIONS

A. Magnetic permeability of disordered structures

In order to model the effect of a weak disorder in the

composite media, we assume that the values of the RCE

self-impedances experience random uncorrelated deviations

due to the capacitance fluctuations. This may correspond to

the results of a real fabrication process when the capaci-

tances of different resonators are not identical, and they can

be treated as independent quantities. In this case, the corre-

lation radius coincides with the lattice constant, rc=a, and

the inequality �2� is satisfied. Obviously, strong uncertainty

should totally destroy the macroscopic metamaterial re-

sponse. We assume here that the fluctuations are weak and

study their effect on the permeability in the second order of

the perturbation theory with respect to the capacitance fluc-

tuations, using the methods known in the solid state physics

�21�.
We define the local fluctuations of the RCE impedance as

�n =
1

�
� 1

Cn

−
1

C
� , �20�

where

1

C
� � 1

Cn

� , �21�

and the angle brackets stand for the statistical averaging.

To calculate the magnetic permeability of a disordered

metamaterial, we turn again to the composite medium ex-

posed to a homogeneous external radiation. Equation �3�
now takes the form

�
m

Z�n − m�Im + i�nIn = E . �22�

Applying an iterating procedure to Eq. �22�, we obtain

In = I0 − i�
m

G�n − m��mI0 − �
m,p

G�n − m�G�m − p��m�pIp.

�23�

The assumption of weak fluctuations allows us to substitute

I0 instead of Ip into the last term of Eq. �23�.
The important step in our subsequent analysis is the mac-

roscopic averaging of this equation. The size of the �macro-

scopic� volume of averaging should be small with respect to

the wavelength of the external field. On the other hand, this

size is much larger than the radius of the capacitance corre-

lations. Therefore, from the statistical point of view, the vol-

ume of averaging can be considered infinite. As a result,

instead of the volume averaging the statistical averaging can

be performed �16�. Taking into account that �n�=0, and the

capacitances of different RCEs are statistically independent,

�m�p���m,p we obtain that in the second order of the per-

turbation theory the average current induced in RCEs can be

presented as �cf. Eq. �6��

In� =
E

Zeff

, �24�

where the effective impedance

Zeff = Z0 + �2G�0� �25�

involves the square of the standard deviation,

�2 = �n
2� . �26�

Accordingly, the permeability of the weakly disordered

metamaterial takes the form �9� with the impedance Z0 being

replaced by the effective impedance Zeff.

We note that the fluctuations contribute to both imaginary

and real parts of Zeff. The imaginary part of the correction is

determined by B�0� and it affects mainly the real part of the

permeability. The real part of the correction leads to an in-

crease of Im��zz�, and it enhances the effective dissipation.

Remarkably, this occurs even when RCE losses are absent,

and the energy is dissipated without conversion into heating,

i.e., this dissipation mechanism is analogous to the Landau

damping. The nature of this nonheating dissipation becomes

clear if we note that it is determined by the term A�0� that

combines the contributions from all magnetostatic waves ex-

cited at the given frequency �. This suggests that the inci-

dent radiation experiences scattering on microscopic fluctua-

tions. The similar effect arising in electromagnetic media

without positional order �see, e.g., Ref. �22� and references

therein� is known as scattering losses or Raleigh scattering.

In our case, a very small correlation radius suppresses the

scattering into “lightlike” modes, but the scattering into mag-

netoinductive waves remains strong.
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B. Weak disorder in a typical metamaterial

As a specific example of the application of our theory, we

calculate the averaged magnetic permittivity numerically for

typical metamaterial parameters with a weak disorder. We

assume circular RCEs with radius r0=2 mm, wire thickness

l=0.1 mm, which leads to the self-inductance L=8.36 nHn

�see Ref. �17��. To obtain RCEs with the resonant frequency

�0=6��109 rad/s �0=3 GHz�, we take C=0.34 pF. The

lattice constants are a=2.1r0 in the plane and b=r0 in the z

direction. The RCE quality factor Q can reach the values of

103 �1�. However, we expect that the insertion of diodes or

other electronic components can lower this value to Q=102.

First, we calculate the linear spectrum of magnetoinduc-

tive waves from Eq. �14� and find a strong evidence of the

long-range interaction effects: the lattice sum converges

rather slow. In particular, in order to get an accuracy of a few

percent, we have to expand the summation radius to at least

ten lattice constants. A further increase of the summation

limits would be unjustified, since the sum should be calcu-

lated over the distances much smaller than the radiation

wavelength. We believe that the problem of the exact calcu-

lation of the spectrum of magnetoinductive waves in the

three-dimensional case needs a separate detailed consider-

ation. On the other hand, we observe that the maximum un-

certainty in the spectrum takes place along specific directions

perpendicular to the edges of the Brillouin zone. Therefore,

the resulting error in the integrals determining the discrete

Green’s function is extremely small.

Evaluating numerically the integrals A�0� and B�0� ac-

cording to Eqs. �17� and �19�, we obtain the effective imped-

ance and corresponding magnetic permeability. The fre-

quency dispersion of the permeability �zz is presented in Fig.

2 for the unperturbed metamaterial and for several values of

the standard deviation. Apparently, already 10% uncertainty

changes dramatically the permeability frequency dispersion

near the resonance. The effect is most pronounced for the

frequencies below the resonance. In a wide range, the imagi-

nary part of � becomes comparable with the real part, and a

weakly disordered nondissipative medium acts as strongly

dissipative. In the range of negative � above the resonance,

the losses are also considerably higher than those in a perfect

metamaterial. As a result, the frequency range appropriate for

the negative refraction shrinks.

IV. RAREFIED STRONG DEFECTS

A. Concentration expansion

In this section we consider a metamaterial with a small

amount of randomly distributed defective RCEs that differ

strongly from the regular RCEs, and therefore can be treated

as impurities. We assume that the dimensionless concentra-

tion of such impurities c= ñ /n is low, i.e., c�1. As before,

we assume that the deviations from the structure parameters

appear due to a difference in the RCE capacitances, and the

capacitance of the impurity, C̃, can even become very large

corresponding to a casual breakdown. We neglect any corre-

lation between the impurities, but assume that two impurities

cannot be placed on the same site. The applicability condi-

tion, ñ��−3, defines the lower limit for the impurity concen-

tration, cmin�10−3 for a typical metamaterial. Above this

limit, we can calculate statistically averaged current and con-

struct its concentration expansion using standard techniques

�16,23�.
In the system with impurities, the microscopic current dis-

tribution is substantially inhomogeneous. We are interested

in the normalized averaged value, defined as

I� =
1

N
�
n

In, �27�

where the summation is performed over a volume that in-

cludes a macroscopic number of impurities. The concentra-

tion expansion of the averaged current can be written in the

following form �16,23�:

I� = I0 + c�
p1

�I1�p1� − I0�

+
c2

2
�

p1�p2

�I2�p1,p2� − I1�p1� − I1�p2� + I0� + . . . ,

�28�

where

FIG. 2. Real �a� and imaginary �b� parts of the magnetic perme-

ability of metamaterial without fluctuations and with weak capaci-

tance fluctuations, ��0C, marked on the plots.
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I1�p1� �
1

N
�
n

In
�1��p1� �29�

describes the averaged current when a single impurity is lo-

cated at the site p1, whereas the function

I2�p1,p2� �
1

N
�
n

In
�2��p1,p2�

describes the same value for two impurities placed at the

sites p1 and p2. The higher-order terms involve the averaged

solutions for more impurities. Clearly, we can write formally

the expressions for any term of the expansion �23�. However,

in this paper we focus on the strongest effects that are linear

in the impurity concentration. To calculate the corresponding

coefficient, first we should find the corresponding current

distribution.

In an impure system exposed to a homogeneous external

field, the impedance matrix equation �3� takes the form

�
m

Z�n − m�Im + i��
p

�n,pIp = E , �30�

where the summation in the second term on the lhs is per-

formed over the impurity sites p only, and

� =
1

�� 1

C̃
−

1

C� . �31�

Inverting the matrix Ẑ, we rewrite Eq. �30� as follows:

In = I0 − i��
p

G�n − p�Ip. �32�

If a single impurity is located at the site p1, Eq. �32� taken

at n=p1 yields

Ip1
=

I0

1 + i�G�0�
, �33�

and the current distribution in this case becomes

In
�1��p1� = I0�1 −

i �G�n − p1�

1 + i �G�0�
� . �34�

Averaging this expression according to Eq. �29� and substi-

tuting the result into Eq. �28� leads to the same results �24�
and �9� for the averaged current and effective permeability

correspondingly, with the effective impedance in the form

Zeff = Z0 + c
i�

1 + i �G�0�
. �35�

B. Effective magnetic permeability

To support our results by a specific example, we take

typical parameters of metamaterials used above in Sec. III B.

First, we study the effect of impurities with an infinite ca-

pacitance, C̃→�, which corresponds, for instance, to a ca-

sual breakdown of the varactor diode insertions. Next, we

deal with other impurities that either do not contribute to the

magnetization or are just absent; this latter case is modeled

by setting C̃→0. Although these cases are two opposite ex-

treme limits, the resulting averaged permeabilities look simi-

lar and differ only by a few percent. This result is not sur-

prising because in both cases the currents induced in the

defect RCEs are either small or vanish.

In Fig. 3 we present the real and imaginary parts of the

magnetic permeability for several concentrations of the miss-

ing RCEs. As follows from those results, the resonance is

attenuated much more than one could expect from the fact

that a small part of RCEs do not contribute to the resonance.

The reason for such an enhancement is the scattering losses

that reduce the effective quality factor by an order of mag-

nitude or more. We note also that the metamaterial is more

sensitive to such perturbations in the frequency range of

negative �. The composite medium can tolerate 5% or less

malfunctioning RCEs, but for 10% and more a substantial

damping of the resonance occurs, and the imaginary part of

the permeability becomes comparable with its real part.

The impurities with a finite resonant frequency, i.e.,

�̃0�0, which strongly differs from the main frequency �0,

cause the observable effects, even if their concentration is

extremely low. As seen in Fig. 4, only 1% of such impurities

can build up their own weak resonance, with the position of

the resonance shifted from the impurity eigenfrequency.

In the linear approximation used here, the effect of mutual

interaction of impurities is neglected. Therefore, we do not

account for magnetoinductive waves arising at the frequen-

cies close to the impurity resonance. We expect that the cor-

FIG. 3. �a� Real and �b� imaginary parts of the magnetic perme-

ability of metamaterials without and with impurities �the impurity

concentration is shown near the curves�.
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responding scattering losses will broaden the resonance.

However, the detailed analysis of this and related phenomena

is beyond the scope of this paper.

V. CONCLUDING REMARKS

We have demonstrated that a weak microscopic disorder

in the conducting elements of composite metamaterials can

lead to a substantial modification of their resonant magnetic

response. According to our results, already 10% disorder in

the parameters causes substantial scattering of the incident

radiation into magnetoinductive waves. This modifies

strongly the macroscopic permeability of the metamaterial,

leading to an increase in losses. We believe that the study

of the effect of disorder and disorder-induced losses are

of critical importance for engineering novel metamaterials

with various electronic elements inserted into their micro-

scopic resonators. The inserted elements should possess no

more than a few percent deviation of their capacitance and/or

inductance to ensure that the metamaterial properties are

not distorted dramatically. Another restriction concerns

the insertion stability. The results obtained above demon-

strate that the metamaterial tolerates no more than 10% of

defect RCEs. Casual breakdown of a larger number of the

elements causes strong damping of the wave propagation in

metamaterials.

Our results show that even a small amount of defects can

build up a noticeable additional magnetic resonance, and it

can be useful for simple methods of sensitive quality control

of metamaterials. If RCE contains not a single capacitive

element but a combination of insertions with an ordinal slit,

a casual insertion breakdown would switch RCE to another

resonant frequency. The corresponding narrow gap �or peak�
in the metamaterial transmission can be used as a sensitive

measure of the concentration of damaged RCEs.

Finally, we point out that the effects of a microscopic

disorder discussed here would be crucially important in the

nanostructured metamaterials, even with simple RCEs with-

out electronic components. Clearly, the fabrication of reso-

nant elements on such scales is less accurate, so that random

fluctuations of the RCE shapes can lead to deviations of the

self-inductance and capacitance. Disorder in the positions of

RCEs determines the deviations of the mutual inductance.

We expect that the results obtained here can be important for

qualitative estimates of the properties of nanostructured left-

handed media. However, the problem requires more system-

atic analysis.
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