NASA TnI-81602

Effect of Milling and Leaching on the Structure of Sintered Silicon

H. C. Yeh
Cleveland State University
Cleveland, Ohio 44115
and
T. K. Glasgow and T. P. Herbell
Lewis Research Center
Cleveland, Ohio

Prepared for the

Annual Meeting of the American Ceramic Society
Chicago, Illinois, April 28-30, 1980

NAN^

effect of milling and leaching on the structure of sintered silicon by H. C. Meh

Cleveland State University Cleveland, Ohio 44115
and
T. K. Glasgow and T. P. Herbell

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

The effects of attrition milling and acid leaching on the sintering behavior and the resultant structures of two commercial silicon powders were investigated. Sintering was performed in He for 16 hours at $1200^{\circ}, 1250^{\circ}$, and 1300° C. Compacts of as-received Si did not densify during sintering. Milling reduced the average particle size to below 0.5 um and enhanced densitication (1.75 g/cc). Leaching milled Si further enhanced densification (1.90 g/cc max.) and decreased structural coarsening. After sintering, the structure of the milled and leached powder compacts appears favorable for the production of reaction bonded silicon nitride.

INTRODUCTION
Sometimes in the production of reaction bonded silicon nitride (RBSN) the compacted silicon (Si) powder is sintered before it is nitrided. It is technically desirable to perform the se steps independently, because some shrinkage does occur in the sintering step. Resultant distortions can be eliminated inexpensively by machining the sintered Si with conventional tooling, while after nitridation diamond grinding must be employed. Fortnately almost no dimensional change occurs during the nitriding step.

It is reasonable to expect that the structure and the properties of RBSN are dependent on the structure and density of its precursor. while there have been numerous publications on the subject of RBSN, ${ }^{1}$ few have discussed the control of structure of the sintered si compacts relative to the properties of the final RBSN. A recent paper by H. K. Baumgartner ${ }^{2}$ discusses some aspects of the relations between the structure of Si compacts and the final RBSN. Two earlier papers investigated the effect of nitrogen permeability through silicon compacts on the degree of nitridation, but the conclusions were contradictory. 3,4

The objective of this study was to determine the effect of variations in powder processing on the sintering behavior of Si powder compacts. Comminution, in the form of wet attrition milling, and acid leaching were used to vary the nature of the Si powders used. Test bars prepared from two commercial Si powders in the as-received, milled, and milled and leached condition were sintered in a helium atmosphere. Evaluation of the powders and the sintered specimens included chemical analysis, density, surface area, mercury porosimetry, metallography, and room temperature bend strength. EXPERIMENTAL PROCELURES

Two commercial Si powders*, designated $K B 1$ and UC respectively, were used in this study. Each of the two as-received powders was wet attrition milled for 4 hours in a stirred ball mill using hardened steel balls as media and heptance as a milling fluid. The milled powders were oesignated KBIM and UCM. Attrition milling of Si was described in detail in an earlier paper. 5 The milled powders were further modified by acid washing (leach-

[^0]ing) to produce two additional powders designated KbIML and UCML. The effect of leaching as-received powder was not determined. Leaching was done using an $1: 1$ volume ratio of concentrated $H C l$ and distilled water. 70 grams of milled powder were stirred into 770 ml of the acid solution. After 24 hours of leaching with intermittent stirring, the powaer was recovered by filtering (S a S No. 565 analytical filter paper). The resique was rinsea with distilled water until no acid was detected by pH paper. After air drying, the powder was sieved through a 70 mesh sieve.

Iron (Fe), carbon (C) and oxygen (O) contents of each as-received, asmilled, and as-milled and leached powder were determined by chemical analysis. Powder surface areas were determined by the three point BET (Brunauer, Emmett, and Teller) technique.

The as-received $K B I$ and $U C$ powders could not be compacted by uniaxial pressing. However, cylindrical bars about 1.3 cm diameter could be made by hydrostatic pressing in a rubber sleeve at 350 MPa . For convenience of evaluation and testing, these cylindrical bars were cut into rectangular bars approximately 0.3 by 1 by 5 cm using a diamono saw prior to sintering.

The attrition-milled and the milled and leached powders were easily die pressed into bars of approximately 0.3 by 0.9 by 7.5 cm at 60 MPa . These bars were subsequently repressed hyarostatically at 350 MPa to increase their strength.

In order to minimize the weight loss the bars during sintering, samples were buried in loose KbI Si powders in a high purity $\mathrm{Al}_{2} \mathrm{O}_{3}$ boat and then were loaded in an $\mathrm{Al}_{2} \mathrm{O}_{3}$ tube furnace with provisions for a flowing helium atmosphere. Two bars of each powder were put in the same boat and sintered at the same time. A more detailed description of the sintering furnace and procedures can be found in an earlier publication. 6

Bars were sintered for 16 hours at $1200^{\circ}, 1250^{\circ}$ and $1300^{\circ} \mathrm{C}$. Temperature was increased from ambient to the sintering temperature at a linear rate over a period of 4 hours.

Weights and dimensions of the bars were measured before and after each sintering run. Density was calculated from these measurements. Two bend test specimens were cut from each sintered bar. Room temperature tour-point bend strength was determined for all with their surfaces in the as-sintered condition samples. Light microscopy, mercury intrusion porosimetry analysis, and chemical analyses were pertormed on most samples before ana after sintering. Samples for light microscopy were infiltrated with epoxy resin prior to polishing.

Reported densities and BET surface areas are an average of two determinations, strengths are an averaye of four. Une specimen was used for each mercury intrustion porosimetry and chemical analysis.

RESULTS AND UISCUSSION
To show the effects of milling and milling and leaching, Table l lists the $\mathrm{fe}, \mathrm{C}, \mathrm{O}$ contents and Table II lists the BET specific areas of the Si powders under investigation. for convenience of comparison, also listed in Table II are the particle sizes calculated from the corresponaing measured BET surface areas assuming uniform spherical particle shape. It is apparent that milling arastically increased the impurity contents and the specific surface areas of the as-received powders; and leaching of the milled powders significantly reauced iron content, but only slightly altered the surface area. The variations in impurity contents and surface areas (or equivalent particle sizes) will be correlated with the sintering behaviors of the powders and the structures of the sintered materials to be presented in the following discussion.

The densities of silicon specimens, green and after sintering in helium for 16 hours at $1200^{\circ}, 1250^{\circ}$, and $1300^{\circ} \mathrm{C}$, are shown in a block diagram in Fiy. 1. In the diagram the specimens are grouped into two families in accordance with the starting powder type. In each family, M stands for specinens mage from millea powders, and ML stands for specimens made from milled and leached powders. Each row corresponds to a given sintering temperature marked on the left face of the block and the as compacted state (unsintered) labeled "Green." The densities shown in Fig. 1 range from a minimum of 1.35 to a maximum of $1.90 \mathrm{~g} / \mathrm{cc}$, corresponding to from 58 to 82 percent theoretical density of silicon ($2.33 \mathrm{~g} / \mathrm{cc}$). The $1.90 \mathrm{~g} / \mathrm{cc}$ specimen has the potential of forming a $3.15 \mathrm{~g} / \mathrm{cc} \mathrm{Si}_{3} \mathrm{~N}_{4}$ body corresponding to 99 percent of the theoretical density of $\mathrm{B}_{\mathrm{B}} \mathrm{Si}_{3} \mathrm{~N}_{4}(3.18 \mathrm{~g} / \mathrm{cc})$; this is based on the theoretical weight yain value, 66 percent, for a complete conversion of Si to $\mathrm{Si}_{3} \mathrm{lv}_{4}$. A more generally observed weight gain is 60 percent; a corresponding final density would be $3.04 \mathrm{~g} / \mathrm{cc}$ or 95.6 percent of theoretical. The ability of such dense sintered silicon samples to be fully nitrided is currently under investigation.

As-received KBI and UC powders did not exhibit appreciable densification. This is in agreement with the predicted behavior of Si powder with a particle size larger than about 0.5 micron. ${ }^{7}$ The milled ano the milled and leached KBI and UC powders (designated KBIM, KBIML, UCM and UCML), all have a particle size in the submicron range (Table II). These all showed a continued increase in density with sintering temperature as might be expected for Si powders less than 0.5 umaiameter. More interesting to note is the higher degree of densification with increasing temiperature of KBIML and UCML specimens than of their KBIM and UCM counterparts.

One of the reasons for the common practice of sintering Si powder compacts prior to nitriding is to increase their strength for ease of handing during machining into a desired shape. The average bend strengths of the sintered bars are plotted in a block diagram, Fig. 2. The measurea strengths of the sintered bars ret lect the bond (or neck) formation between particles. The formation of necks between adjacent particles during sintering of covalently bonged materials could be caused by mass transport through evaporation-condensation and surt ace diffusion mechanisms, which do not result in densification, as well as by volume and grain boundary diffusion mechanisms, which do lead to densification. 7 The phenomenon of forming necks without densification is clearly reflected by the steady increase in strength with temperature in both the KBI and UC samples, Fig. 2, which did not show appreciable densification, fig. 1. In contrast milled and milled and leached specimens showed increases in both strength and density, figs. 1 and 2. Leaching appearea to enhance both densification and strength development.

The changes in sintered bar strength and density were reflected also in the porosimetry measurements. For the purpose of comparison the characteristic pore size, defined as that pore size corresponding to 50 volume percent mercury penetration, was used. This characteristic pore size is plotted as a function of sintering temperature in fig. 3. Note that the pore sizes of the four millea and the four milled and leached powder compacts were almost identical at room temperature (the green state). The pore sizes of these four samples increased, with some spread, from about $\mathbf{u} .12$ to about 0.22 um after sintering at $1200^{\circ} \mathrm{C}$. The pore size continued to increase with sintering temperature at different rates, UCM having the nighest and KBIML having the lowest. We believe it is significant that the two
leached powder compacts (KBIML and UCML) exhioited less pore yrowth than the unleached counterparts (KBIM and UCM). This lower pore yrowth exhibited by the leached powder, relative to the unleached counterpart, is consistent with the higher degree of densification of the leached powder results presented earlier in Fig. 1. Another interesting observation on the four finer powders (KBIM, KBIML, UCM and UCML) is that the degree of pore yrowth of the samples increased with the fe content (Table I). The significance of this parallel trend between fe content and degree of pore growth requires more detailed experimental investigation before a definite correlation can be made.

Pore size was also measured on two KBI powder compacts and all the UC powder compacts. The trend of an increase in pore size with sintering temperature is also evident in Fig. 3.

The effects of milling and of milling and leaching on the microstructures of the sintered samples are shown in fig. 4, which compares the microstructures of UC, UCM, and UCML after sintering at $1300^{\circ} \mathrm{C}$ for 16 hours. Similar microstructural behavior was also observed among KBI, KBIM and KBIML samples. The variation in observed pore structures was in agreement with the porosimetry results presented in fig. 3. The retention of fine pore and particle size in the leached powders, even after sintering for 16 hours at $1300^{\circ} \mathrm{C}$, was consistent with the increased degree of shrinkage observed for leached powders.

CUNCLUSION
Attrition milling, as a powder preparation procedure, ennanced the densification during sintering of two commercial silicon powders. Acid leaching further enhanced the densification of the milled powders. Increasing sintering temperature increased the density of milled and milled and leached
powder compacts but compacts made from as-received powders coarsened without densification. Atter sintering the milled and leached silicon material exhibited a unitormly fine structure with densities up to $1.90 \mathrm{~g} / \mathrm{cc}$, which may be beneificial in subsequent nitriaation.

RE FERENCES

1. D. K. Messier, and M. N. Murphy; "An Annotated Bibliography on Silicon Nitride for Structural Applications," MCIC-77-29, Metals and Ceramics Information Center, 1977.
2. H. R. Baumgartner; "Effect of Silicon Microstructure upon Nitridation and Strength of Reaction Bonded Silicon Nitride," pp. 273-284 in Proceedings of the 1977 DARPA/NAVSEA Ceramic Gas Turbine Demonstration Engine Program Review. Edited by J. W. Fairbanks and R. W. Rice. Battelle Columbus Laboratories, Columbus, Ohio, 1978. Metals and Ceramics Information Center report MCIC-78-36.
3. A. Atkinson, P. J. Leatt and A. J. Moulson; "The Role of Nitrogen Flow into the Nitriding Compact in the Production of Reaction-Sintered Silicon Nitride," pp. 253-274 in Ceramics for Turbines and Other High-Temperature Engineering Applications, Proc. no. 22. Edited Dy D. J. Godfrey. British Ceramic Society, Stoke-On-Trent (England), 1973.
4. 5. Amato, D. Martorana, and M. Rossi; "The Nitriding of Silicon Powder Compacts," Powder Metall., 18, (36) 339-348 (1975).
1. T. P. Herbell, T. K. Glasgow, and N. J. Shaw; "Reaction Bonded Silicon Nitride Prepared from Wet Attrition-Milled Silicon," NASA TM-81428, 1980.
2. N. J. Shaw, and T. K. Glasgow; "formation of Porous Surface Layers in Reaction Bonded Silicon Nitride Uuring Processing," NASA TM-81493, 1979.
3. A. L. Stuijts; "Basic and Practical Aspects in Sintering Nitrogen Ceram ics," pp. 331-350 in Nitrogen Ceramics. Edited by F. L. Riley. Moordnotf, Leyden, 1977.
table I. - fe, o anu c contents in si puwders,
wEIGHT PERCENT

	KBI*	KBIM	KBIML	UC	UCM	UCML
Fe	0.36	3.53	1.28	0.56	4.93	1.75
0	.13	2.96	$3.3 U$.7	4.11	4.36
C	.085	.77	.57	.3	.7	.42

*KBI = as-received Kawecki-Berylco Si powder.
KBIM $=$ milled KBI.
KBIML = milled and leached KBI.
UC = as-received Union Carbide Si powder.
$U C M=$ milled $U C$.
UCML $=$ milled and leached UC.
table il. - specific surface area and particle size
OF Si PUWDEK

	KBI*	KBIM	KBIML	UC	UCM	UCML
BET surface area, M2/g	0.5	11.42	13.04	2.99	12.33	8.28
Particle size, um**	5.20	.22	.20	.90	.21	.30

*KBI = as-received Kawecki-Beryleo Si powder.
$K B I M=$ milled KBI.
KBIML $=$ milled and leached KBI.
$U C=$ as-received Union Carbide Si powder.
$U C M=$ milled $U C$.
UCML = milled and leached UC.
**Equivalent spherical particle size calculated from bET surface area.

Figure 1. - Density of Si powder compacts, green and after sintering for 16 hours.

Figure 2. Bend strengths of silicon samples sintered for 16 hours at 1200,1250 , or $1300^{\circ} \mathrm{C}$.

Figure 3. - Characteristic pore size versus sintering temperature (16 hr .) UC = as-received union carbide Si powder; UCM = milled UC; UCML = milled and leached UC; KBI = as-received Kawecki-Berylco Si powder; KBIM = milled KBI; KBIML = milled and leached KBI.

(a) AS-RECEIVED UC SILICON $p=1.67 \mathrm{~g} / \mathrm{cm}^{3}$.

(b) ATTRITION MILLED UC SILICON (UCM) $p=1.71 \mathrm{~g} / \mathrm{cm}^{3}$.

(c) ATTRITION MILLED AND LEACHED UC SILICON (UCM) $\mathrm{p}=1.74 \mathrm{~g} / \mathrm{cm}^{3}$.

Figure 4. - Effect of milling and milling and leaching on UC (union carbide) Si Powder compacts sintered for 16 hours at $1300^{\circ} \mathrm{C}(M=$ milled; ML= milled and leached).

[^1]Trade names or manufacturer's names are used in this report for identification only. This usage coes not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

National Aeronautics and	SPECIAL FOURTH CLASS MAIL	Postage and Fees Paid Space Administration
National Aeronautics and		
Washington, D.C.	Space Administration	
20546	NASA-451	

Olficial Business
Penally tor Private Use, $\$ 300$
LIBRARY
NASA
LANGLEY RESEARCH
CENTER
HAMPTON, VA

[^0]: *Supplied by Kawecki-berylco Industries, P.U. box 146®, Keadiny, PA 19603 and Union Carbide, Marietta, OH 45750.

[^1]: *For sale by the National Technical Information Service. Springfield. Virginia 22161

