Effect of monoalgal diet on the growth, survival and egg production in *Nannocalanus minor* (Copepoda: Calanoida)

Santhanam, P*., K. Jothiraj., N. Jeyaraj., S. Jeyanthi., A. Shenbaga Devi and S. Ananth

Marine Planktonology & Aquaculture Lab., Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India.

*[E-mail: sanplankton@yahoo.co.in; santhanamcopepod@gmail.com]

Received 19 August 2013; revised 21 October 2013

The effect of monoalgal diet on the growth, survival, egg production and egg hatching succession in calanoid copepod *Nannocalanus minor* was studied under laboratory condition. There are seven different microalgae such as *Chlorella marina*, *Dunaliella salina*, *Isochrysis galbana*, *Nannochloropsis* sp., *Coscinodiscus centralis*, *Chaetoceros affinis* and *Skeletonema costatum* were tested for their efficacy on survival of *N. minor* at two different algal cell concentrations *viz*. 10,000 and 20,000 cells/ml. Among the six diets tested, *Chlorella marina* shows the extensive survival in both lowest and highest algal concentrations where the 100% survival extends for 7th and 9th days of experiment while the least survival was obtained in diatom *Skeletonema costatum*. Likewise, copepod *N. minor* grew faster at *C. marina* than other algal feed tested presently. The egg production $(32\pm1.52 \text{ eggs/female/day})$ and hatching succession (93.75%) both are proportionally increased with increasing algal concentration (20,000 cells/ml) while at low algal concentration (1000 cells/ml) it was recorded as $3\pm1 \text{ eggs/female/day}$ and 44.33% respectively. The study provides a realistic basis for formulating suitable algal food and algal concentration required for copepod *N. minor* to achieve utmost growth, survival and fecundity in captive condition. This information can help in developing the culture technology on copepod *Nannocalanus minor* for it use in larval fish culture.

[Keywords: Copepod, microalgae, Nannocalanus minor, Chlorella marina, survival, egg production]

Introduction

Calanoid copepods are the most abundant and probably the most ecologically significant animals at the first consumer level of the marine food web. Calanoids plays an important role in the energy transfer between primary producers and pelagic fish populations, and it is thus a key factor influencing fish production¹⁻³. Nowadays, most reared marine fish larvae are fed on rotifers (Brachionus sp.) and brine shrimp (Artemia sp.). Artemia is widely used in many countries that practice commercial aquaculture due to its easiness of use. But these live feeds failed to prove their quality nutritional profile in fish and shrimp larvae. However, copepods are excellent foods with high nutritional value for zooplanktivorous fishes and shrimps ⁴⁻⁵. Furthermore, copepods provides wide size ranges (6 nauplii and 6 copepodite including adult) for fish larvae based on their mouth sizes. Moreover, the unique movement of copepods attracts the fish larvae to feed on them 6 . Copepods have a high content of both docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), and their nutritional feasibility judged by larval growth rate, survival, pigmentation and successful metamorphosis has been well

documented^{7,6}.

In recent decades, copepods culture paid a vast attraction due to their superior suitability in culturing fish and shrimp larvae. The problem in culturing copepods is failure in continuous mass production compared to Artemia and rotifer. Reproduction and growth rates in copepods have been restricted by numerous factors including temperature, salinity, food, food concentration and nutritive value of foods^{8,9}. Some foods may be readily ingested by female copepods and can promote high egg production, but low egg hatching success ¹⁰. Decrease in food concentration resulted that decrease in the reproductive success of a copepod ¹¹. The identification of food which is suitable for continuous copepod production is necessary one. The present study aimed to provide an idea to optimize the influence of different microalgae diet on growth, survival, egg laying and egg hatching of the calanoid copepod Nannocalanus minor.

Materials and Methods

Collection, identification and culture of copepod

Copepod samples were collected from Muthupet lagoon (Lat. 10° 20'N and Long 79° 35'E) using

plankton mesh (158µm) and transported to the laboratory with aeration. From the samples, Nannocalanus minor was identified under microscope using the key of Kasturirangan¹². After the conformation of species, 300 numbers of individuals that includes male and female of the healthy adults of *N. minor* were isolated and stocked in an oval shaped, flat-bottomed FRP (0.54 m dia, 0.81 m length) tank containing 80 litre filtered seawater of ambient salinity (32‰) with vigorous aeration. The water quality parameters such as temperature, salinity, pH and dissolved oxygen were maintained in the ranges of: 26-30° C; 28-32 ‰; 7.5-8.5; 5.0-7.5 ml/l respectively (during rearing period) fed with a daily ration of mixed algae viz., Chlorella marina, Dunaliella salina, Isochrvsis galbana. Nannochloropsis Coscinodiscus centralis. sp., Chaetoceros affinis and Skeletonema costatum in the concentration of 20,000cells/ml. The light intensity used for copepod culture system was 500 lx.

Microalgal Culture

Monocultures of seven marine microalgae such as *C.marina*, *D.salina*, *I.galbana*, *Nannochloropsis* sp., *C.centralis*, *C.affinis* and *S.costatum* stock cultures were obtained from Central Institute of Brackishwater Aquaculture (ICAR, Govt. of India, Chennai) and maintained separately in 1 and 2 liter conical flasks containing filtered seawater at 20-23°C temperature, 30‰ salinity and 7000-9000 light intensity (lux) fertilized with Conway's medium or Walne's medium¹³.

Effect of algal concentration on survival of N. *minor*

A 200 individuals including male and females of the healthy adults of N. minor were isolated and kept overnight in 250 ml beakers containing filtered seawater (1µm) of ambient salinity (32‰) with vigorous aeration for starving prior to the experiment. For survival experiment, ten individuals of N. minor were maintained separately in each glass bowl containing 100 ml of sterile seawater with each of seven types of live algae in different concentrations (10,000 and 20,000 cells/ml) were used. For each concentration of algal food, a separate bowl was maintained and fed up to 10 ml of mono algae. The algal concentration was diluted using sterile seawater in different ratios and quantified under compound microscope using a Sedgewick counting chamber.

The daily mortality of copepod was recorded carefully. The experimental sets were maintained at $28\pm1^{\circ}$ C till the death of all animals.

Effect of monoalgal diet on the growth of *N. minor*

The experiment on effect of different algal diet on *N. minor* growth was assessed according to Spiros and Gerard (1990). In brief, the nauplii, copepodite and adult copepods were fed with different microalgae were collected from the respective culture flasks. The total length of the different stages of copepods were measured under a microscope at a magnification of x10 using ocular and stage micrometers, from the tip of the prosome to the end of the caudal rami, excluding the caudal setae.

Effect of algal concentration on fecundity of N. *minor*

The effect of algal concentration on the egg production of copepod was determined by incubating male and female N. minor in Pyrex test tubes in the ratio of 1:1. The mixed microalgae containing C.marina, D.salina, I.galbana, Nannochloropsis sp., C.centralis, C.affinis and S.costatum was given at the following concentrations: 1000, 5000, 10,000 and 20,000 cells/ml. To estimate the hatching rate, laid eggs were siphoned out from the bottom of the culture flask and incubated in test tubes along with filtered seawater for 96 hours with the algal food concentration mentioned above, after that the hatched out nauplii were counted using a counting chamber under binocular microscope. Triplicates were made for each experiment. For the growth, survival and fecundity experiments, the culture system was maintained in static non-renewal condition.

Statistical analyses

The results obtained were statistically analyzed using simple correlation and analysis of variance (ANOVA) between algal concentration and copepod survival and algal concentration and fecundity.

Results and Discussion

Survival of *Nannocalanus minor* in low algal concentration

The present study inferred that the survival of *N. minor* was depending on the algal types and concentrations. In lowest algal concentration (10,000 cells/ml), 100% survival was noticed up to 2-7 days. Among the algae tested, *C.marina* shows high

1580

survival even in lowest algal concentration where 100% survival was occurred up to 7th day, 49% survival observed on 15th day and total mortality occurs on 17th day onwards. However, the *S.costatum* results the poor survival than rest of the algae tested where 100% survival observed up to 2nd day only, after that survival was declined to 48% on 10th day and total mortality was reported on 14th day onwards as shown in Fig.1.

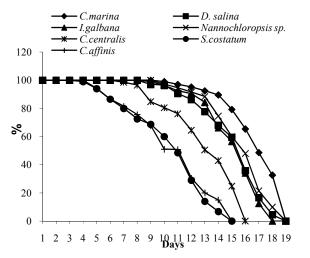


Fig. 1 Effect of low algal food concentration on survival of *Nannocalanus minor*

Survival of *Nannocalanus minor* in high algal concentration

In high algal concentration, the 100% survival was renowned up to 3-9 days. The maximum copepod survival was noticed in *C.marina* which shows100% survival up to 9th day, 48.6% on 17th day and total mortality on 19th day onwards while the *S.costatum* exhibits the poor survival than rest of the algal diets studied. Here, 100% survival was observed up to 3rd day only, after that survival decline to 48.5% on 11th day and complete mortality was procured on 15th day onwards (Fig. 2).

Growth of Nannocalanus minor

Copepod *N. minor* shows least growth at *S.costatum* where the Nauplii I (NI) grew to 0.094mm and Nauplii VI (NVI) reached 0.188mm. The length of Copepodite I (CI) and adult female (AF) and adult male (AM) were 0.39mm, 1.906mm and 1.743mm respectively. The growth of *N. minor* was comparatively higher in *C.marina*. Here the Nauplii (NI) was hatched after 24hrs with the length of 0.107mm while the body length of NVI was

0.275mm. The length of CI and CV were 0.427mm, 1.563mm (Female) and 1.266mm (male). Adult female and male copepod length was 1.963 and 1.756mm. The daily average growth of *N. minor* fed with different algal diets was given in Table 1 & 2.

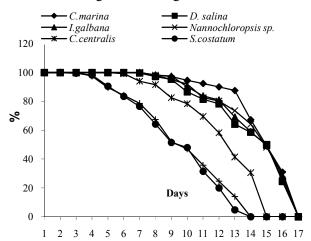


Fig. 2 Effect of high algal food concentration on survival of Nannocalanus minor

Effect of algal concentration on egg production of *N. Minor*

The egg production rate increased with increasing food concentration (Table 3). The utmost mean egg production $(32\pm1.52 \text{ eggs/female/day})$ was achieved with the maximum algal cell concentration (20,000 cells/ml) while the lowest ($3\pm1 \text{ eggs/female/day}$) egg production was noticed in lowest algal concentration of 1000cells/ml. Algal food concentration was positively correlated with egg production of copepod (r value = 0.97217). One way ANOVA between algal concentration and egg production was found highly significant with F Value 0.056318 (Table 4).

Effect of algal concentration on egg hatching of *N*. *minor*

The lowest algal cell concentration (1000cells/ml) results the lowest hatching (44.33%) whereas at high cell concentration (20,000cells/ml.) it was found as 93.75% (Table 3) as evidenced by correlation matrix where the correlation between hatching rate and algal food concentration found to be highly significant (P) with 'r' value of 0.98776.

Discussion

In our experiment, the survival of copepod *N*. *minor* was found to increase with increased algal

Table: 1 Influence of algal diets on growth (mm) of Nannocalanus minor Nauplii Stages								
Stages	C.marina	D.salina	I.galbana	Nannochloropsis sp.	C.centralis.	S.costatum.	C.affinis	
NI	0.107 ± 0.002	0.096 ± 0.005	0.104 ± 0.004	0.107 ± 0.001	0.094 ± 0.003	0.094 ± 0.002	0.096 ± 0.002	
NII	0.127 ± 0.001	0.107 ± 0.001	0.113±0.003	0.118 ± 0.001	0.106 ± 0.002	0.108±0.013	0.106 ± 0.002	
NIII	0.136 ± 0.002	0.118 ± 0.003	0.125 ± 0.004	0.127±0.003	0.115 ± 0.004	0.115±0.003	0.116±0.003	
NIV	0.155 ± 0.004	0.139 ± 0.001	0.145 ± 0.003	0.155±0.004	$0.129{\pm}0.004$	$0.124{\pm}0.004$	0.126 ± 0.003	
NV	0.179 ± 0.005	0.167 ± 0.003	0.168 ± 0.001	0.181±0.007	$0.149{\pm}0.001$	0.148 ± 0.003	0.155 ± 0.005	
NVI	0.275 ± 0.021	0.208 ± 0.012	0.201±0.013	0.24±0.036	0.188 ± 0.001	0.188 ± 0.005	0.191±0.004	
Table: 2 Influence of algal diets on growth (mm) of Nannocalanus minor Copepodite stages								
Stages	C.marina	D.salina	I.galbana	Nannochloropsis sp.	C.centralis.	S.costatum.	C.affinis	
CI	0.427 ± 0.009	0.394 ± 0.003	0.414 ± 0.005	0.456±0.041	$0.384{\pm}0.013$	0.39 ± 0.003	0.383±0.012	
CII	0.55 ± 0.026	0.445 ± 0.006	0.481 ± 0.025	0.527±0.010	$0.449{\pm}0.013$	0.440 ± 0.015	0.472 ± 0.032	
CIII	0.789 ± 0.005	0.652 ± 0.016	0.743 ± 0.044	0.768 ± 0.018	0.671 ± 0.016	0.66±0.015	0.668 ± 0.017	
CIV(♀)	$0.944{\pm}0.004$	$0.894{\pm}0.001$	0.94 ± 0.03	0.946±0.020	0.916 ± 0.025	0.888 ± 0.002	0.906 ± 0.012	
CIV(d)	0.931 ± 0.006	0.820 ± 0.005	0.906±0.005	0.921±0.006	0.813 ± 0.005	0.833 ± 0.020	0.847 ± 0.034	
CV(♀)	1.563 ± 0.020	1.42±0.045	1.493±0.085	1.526±0.035	1.366 ± 0.050	1.28 ± 0.01	1.4 ± 0.07	
CV(d)	1.266 ± 0.075	1.046 ± 0.041	1.15±0.026	1.176±0.025	0.988 ± 0.002	0.983 ± 0.003	0.987 ± 0.003	
Adult (Ŷ)	1.963 ± 0.037	1.936±0.015	1.933±0.005	1.946±0.055	1.936±0.035	1.906 ± 0.015	1.953 ± 0.020	
Adult (8)	1.756 ± 0.030	1.74 ± 0.02	1.75±0.01	1.873±0.100	1.743±0.040	1.743±0.04	1.74±0.036	
	Stages NI NII NIV NV NVI Tabl Stages CI CII CIV(♀) CIV(♂) CV(♀) CV(♂) Adult (♀)	Stages C.marina NI 0.107 ± 0.002 NII 0.127 ± 0.001 NIII 0.136 ± 0.002 NIV 0.155 ± 0.004 NV 0.155 ± 0.004 NV 0.179 ± 0.005 NVI 0.275 ± 0.021 Table: 2 Influence Stages C.marina CI 0.427 ± 0.009 CII 0.55 ± 0.026 CIII 0.789 ± 0.005 CIV(\bigcirc) 0.944 ± 0.004 CIV(\bigcirc) 0.931 ± 0.006 CV(\bigcirc) 1.563 ± 0.020 CV($ \bigcirc$) 1.266 ± 0.075 Adult (\bigcirc) 1.963 ± 0.037 Adult (\bigcirc) 1.756 ± 0.030	StagesC.marinaD.salinaNI 0.107 ± 0.002 0.096 ± 0.005 NII 0.127 ± 0.001 0.107 ± 0.001 NIII 0.136 ± 0.002 0.118 ± 0.003 NIV 0.155 ± 0.004 0.139 ± 0.001 NV 0.179 ± 0.005 0.167 ± 0.003 NVI 0.275 ± 0.021 0.208 ± 0.012 Table:2 Influence of algal diets orStagesC.marinaD.salinaCI 0.427 ± 0.009 0.394 ± 0.003 CII 0.55 ± 0.026 0.445 ± 0.006 CIII 0.789 ± 0.005 0.652 ± 0.016 CIV(\bigcirc) 0.931 ± 0.006 0.820 ± 0.005 CV(\bigcirc) 1.563 ± 0.020 1.42 ± 0.045 CV(\bigcirc) 1.266 ± 0.075 1.046 ± 0.041 Adult (\bigcirc) 1.963 ± 0.037 1.936 ± 0.015	StagesC.marinaD.salinaI.galbanaNI 0.107 ± 0.002 0.096 ± 0.005 0.104 ± 0.004 NII 0.127 ± 0.001 0.107 ± 0.001 0.113 ± 0.003 NIII 0.136 ± 0.002 0.118 ± 0.003 0.125 ± 0.004 NIV 0.155 ± 0.004 0.139 ± 0.001 0.145 ± 0.003 NV 0.179 ± 0.005 0.167 ± 0.003 0.168 ± 0.001 NV 0.275 ± 0.021 0.208 ± 0.012 0.201 ± 0.013 Table:2 Influence of algal diets on growth (mm)StagesC.marinaD.salinaI.galbanaCI 0.427 ± 0.009 0.394 ± 0.003 0.414 ± 0.005 CII 0.55 ± 0.026 0.445 ± 0.006 0.481 ± 0.025 CIII 0.789 ± 0.005 0.652 ± 0.016 0.743 ± 0.044 CIV(\diamondsuit) 0.944 ± 0.004 0.894 ± 0.001 0.94 ± 0.03 CIV(\diamondsuit) 0.931 ± 0.006 0.820 ± 0.005 0.906 ± 0.005 CV(\diamondsuit) 1.563 ± 0.020 1.42 ± 0.045 1.493 ± 0.085 CV(\diamondsuit) 1.266 ± 0.075 1.046 ± 0.011 1.15 ± 0.026 Adult (\diamondsuit) 1.963 ± 0.037 1.93 ± 0.005 Adult (\circlearrowright) 1.756 ± 0.030 1.74 ± 0.02 1.75 ± 0.01	StagesC.marinaD.salinaI.galbanaNannochloropsis sp.NI 0.107 ± 0.002 0.096 ± 0.005 0.104 ± 0.004 0.107 ± 0.001 NII 0.127 ± 0.001 0.107 ± 0.001 0.113 ± 0.003 0.118 ± 0.001 NIII 0.136 ± 0.002 0.118 ± 0.003 0.125 ± 0.004 0.127 ± 0.003 NIV 0.155 ± 0.004 0.139 ± 0.001 0.145 ± 0.003 0.155 ± 0.004 NV 0.179 ± 0.005 0.167 ± 0.003 0.168 ± 0.001 0.181 ± 0.007 NV1 0.275 ± 0.021 0.208 ± 0.012 0.201 ± 0.013 0.24 ± 0.036 Table:2Influence of algal diets on growth (mm) of Nannocalanus minStagesC.marinaD.salinaI.galbanaNannochloropsis sp.CI 0.427 ± 0.009 0.394 ± 0.003 0.414 ± 0.005 0.456 ± 0.041 CII 0.55 ± 0.026 0.445 ± 0.006 0.481 ± 0.025 0.527 ± 0.010 CII 0.59 ± 0.005 0.652 ± 0.016 0.743 ± 0.044 0.768 ± 0.018 CIV(\bigcirc) 0.94 ± 0.004 0.894 ± 0.001 0.94 ± 0.03 0.946 ± 0.020 CIV(\bigcirc) 0.931 ± 0.006 0.820 ± 0.005 0.906 ± 0.005 0.921 ± 0.006 CV(\bigcirc) 1.563 ± 0.020 1.42 ± 0.045 1.493 ± 0.085 1.526 ± 0.035 CV(\bigcirc) 1.266 ± 0.075 1.046 ± 0.011 1.15 ± 0.026 1.176 ± 0.025 Adult (\bigcirc) 1.963 ± 0.037 1.936 ± 0.015 1.933 ± 0.005 1.946 ± 0.055 Adult (\bigcirc) 1.756 ± 0.030 1.74 ± 0.02 1.75 ± 0.01 1.873 ± 0.100	StagesC.marinaD.salinaI.galbanaNannochloropsis sp.C.centralis.NI 0.107 ± 0.002 0.096 ± 0.005 0.104 ± 0.004 0.107 ± 0.001 0.094 ± 0.003 NII 0.127 ± 0.001 0.107 ± 0.001 0.113 ± 0.003 0.118 ± 0.001 0.106 ± 0.002 NIII 0.136 ± 0.002 0.118 ± 0.003 0.125 ± 0.004 0.127 ± 0.003 0.115 ± 0.004 NIV 0.155 ± 0.004 0.139 ± 0.001 0.145 ± 0.003 0.155 ± 0.004 0.129 ± 0.004 NV 0.179 ± 0.005 0.167 ± 0.003 0.168 ± 0.001 0.181 ± 0.007 0.149 ± 0.001 NV1 0.275 ± 0.021 0.208 ± 0.012 0.201 ± 0.013 0.24 ± 0.036 0.188 ± 0.001 Table: 2Influence of algal diets on growth (mm) of Nannocalanus minor CopepoditeStagesC.marinaD.salinaI.galbanaNannochloropsis sp.C.centralis.CI 0.427 ± 0.009 0.394 ± 0.003 0.414 ± 0.005 0.456 ± 0.041 0.384 ± 0.013 CII 0.55 ± 0.026 0.445 ± 0.006 0.481 ± 0.025 0.527 ± 0.010 0.449 ± 0.013 CII 0.59 ± 0.005 0.652 ± 0.016 0.743 ± 0.044 0.768 ± 0.018 0.671 ± 0.016 CIV(a) 0.944 ± 0.004 0.894 ± 0.001 0.94 ± 0.03 0.946 ± 0.020 0.916 ± 0.025 CIV(b) 0.931 ± 0.006 0.820 ± 0.005 0.906 ± 0.005 0.921 ± 0.006 0.813 ± 0.005 CV(a) 1.266 ± 0.075 1.046 ± 0.041 1.15 ± 0.026 1.176 ± 0.025 0.988 ± 0.002 Adult (a) 1.963 ± 0.037 1.936 ± 0.015 1.93 ± 0.005 1.946 ± 0.055 <td>StagesC.marinaD.salinaI.galbanaNannochloropsis sp.C.centralis.S.costatum.NI$0.107\pm0.002$$0.096\pm0.005$$0.104\pm0.004$$0.107\pm0.001$$0.094\pm0.003$$0.094\pm0.002NII0.127\pm0.001$$0.107\pm0.001$$0.113\pm0.003$$0.118\pm0.001$$0.106\pm0.002$$0.108\pm0.013$NIII$0.136\pm0.002$$0.118\pm0.003$$0.125\pm0.004$$0.127\pm0.003$$0.115\pm0.004$$0.115\pm0.004NIV0.155\pm0.004$$0.139\pm0.001$$0.145\pm0.003$$0.155\pm0.004$$0.129\pm0.004$$0.124\pm0.003NV0.179\pm0.005$$0.167\pm0.003$$0.168\pm0.001$$0.18\pm0.007$$0.149\pm0.001$$0.148\pm0.003$NV1$0.275\pm0.021$$0.208\pm0.012$$0.201\pm0.013$$0.24\pm0.036$$0.188\pm0.001$$0.188\pm0.005$Table: 2 Influence of algal diets on growth (mm) of Nannocalanus minor Copepodite stagesStagesC.marinaD.salinaI.galbanaNannochloropsis sp.C.centralis.S.costatum.CI$0.427\pm0.009$$0.394\pm0.003$$0.414\pm0.005$$0.456\pm0.041$$0.384\pm0.013$$0.39\pm0.003CII0.55\pm0.026$$0.445\pm0.006$$0.481\pm0.025$$0.527\pm0.010$$0.449\pm0.013$$0.440\pm0.015$CIII$0.789\pm0.005$$0.652\pm0.016$$0.743\pm0.044$$0.768\pm0.018$$0.671\pm0.016$$0.66\pm0.015$CIV(a)$0.94\pm0.004$$0.894\pm0.001$$0.94\pm0.035$$0.921\pm0.006$$0.813\pm0.005$$0.833\pm0.020$CV(a)$1.563\pm0.020$$1.42\pm0.045$$1.493\pm0.085$$1.526\pm0.035$$1.366\pm$</td>	StagesC.marinaD.salinaI.galbanaNannochloropsis sp.C.centralis.S.costatum.NI 0.107 ± 0.002 0.096 ± 0.005 0.104 ± 0.004 0.107 ± 0.001 0.094 ± 0.003 0.094 ± 0.002 NII 0.127 ± 0.001 0.107 ± 0.001 0.113 ± 0.003 0.118 ± 0.001 0.106 ± 0.002 0.108 ± 0.013 NIII 0.136 ± 0.002 0.118 ± 0.003 0.125 ± 0.004 0.127 ± 0.003 0.115 ± 0.004 0.115 ± 0.004 NIV 0.155 ± 0.004 0.139 ± 0.001 0.145 ± 0.003 0.155 ± 0.004 0.129 ± 0.004 0.124 ± 0.003 NV 0.179 ± 0.005 0.167 ± 0.003 0.168 ± 0.001 0.18 ± 0.007 0.149 ± 0.001 0.148 ± 0.003 NV1 0.275 ± 0.021 0.208 ± 0.012 0.201 ± 0.013 0.24 ± 0.036 0.188 ± 0.001 0.188 ± 0.005 Table: 2 Influence of algal diets on growth (mm) of Nannocalanus minor Copepodite stagesStagesC.marinaD.salinaI.galbanaNannochloropsis sp.C.centralis.S.costatum.CI 0.427 ± 0.009 0.394 ± 0.003 0.414 ± 0.005 0.456 ± 0.041 0.384 ± 0.013 0.39 ± 0.003 CII 0.55 ± 0.026 0.445 ± 0.006 0.481 ± 0.025 0.527 ± 0.010 0.449 ± 0.013 0.440 ± 0.015 CIII 0.789 ± 0.005 0.652 ± 0.016 0.743 ± 0.044 0.768 ± 0.018 0.671 ± 0.016 0.66 ± 0.015 CIV(a) 0.94 ± 0.004 0.894 ± 0.001 0.94 ± 0.035 0.921 ± 0.006 0.813 ± 0.005 0.833 ± 0.020 CV(a) 1.563 ± 0.020 1.42 ± 0.045 1.493 ± 0.085 1.526 ± 0.035 $1.366\pm$	

Note: ♀- Female; ♂- Male

concentration and decrease with decreased algal diets concentration. In low algal concentration, the copepod survival was found to be low might be due to the lack of food. As it could be easily understood, because of the insufficient food supply the copepod cannot showing further metabolism and survival, so that the species become to sudden mortality. However the high survival was observed in high algal concentration could be attributed to the availability of required amount of food as agreed by Luis¹⁴. The obtained realistic variations in the survival of N. minor with different algal feed could be related to the morphology of microalgae used ¹⁵. Presently, high survival was noticed in C.marina, which might be due to the favorable size and nutritional status of the prev ^{16, 17, 14}. Assimilation efficiency of *N. minor* was also comparatively higher in high algal diet concentration besides *C.marina* algal type because of its efficiency capacity ¹⁸. The lowest survival was noticed in S.costatum could be attributed to the less consuming capability of copepod on chain forming diatoms and also the mouth parts of copepod are not facilitating the capture of larger food organisms and therefore presently least survival was observed in S.costatum as agreed earlier by Perumal *et al.*¹⁹; Castro and Santos ¹¹; Santhanam and Perumal ¹⁵ and Santhanam *et al.*²⁰.

In the present experiment, the growth of copepod *N. minor* was affected by different algal foods. The maximum growth in copepod was achieved in

C.marina while the least growth was obtained at *S.costatum*. It is clear that the food limitation may effectively act as a filter for small copepods ²¹. The size and structure of algae might be a reason for slow growth noticed at *S.costatum*. The chain forming nature and larger size of *S.costatum* might not suitable for *N. minor*. Therefore slow growth was procured in copepod as reported earlier by some workers ²²⁻²⁴.

Table: 3 Effect of mixed microalgal concentration on egg production and hatching of <i>Nannocalanus minor</i>							
production and natering of <i>Nunnocatanus minor</i>							
Algal	Fecundity	Hatching rate	Hatching				
concentration	rate	Nauplii/female/	(%)				
(Mixed algae)	Eggs/female/	day					
(cells/ml)	day						
1000	3±1.0	1.33±0.57	44.33				
5000	14±1.41	8±1.41	57.14				
10000	22±1.41	19±0	86.36				
20000	32±1.52	30±0.577	93.75				

The egg production and hatching succession in *N. minor* was found to be highly significant with algal concentration with the 'r' values of 0.97217 and 0.98776 respectively. Different concentration of algal food results the unusual egg production in copepods ²³. The high algal concentration results the more egg production (32 ± 1.52) while at the low algal cell concentration (1000 cells/ml) copepod produces the least eggs (3 ± 1 eggs/female/day). Our result is similar to the findings of Nival *et al.* ²⁵ who stated that the calanoid copepod, *Centropages typicus* did not lay eggs at 500 cells/ml of algal concentration its due to all of the available energy being used for survival.

Table: 4 Correlation	coefficient (r)	values between algal					
concentration and fecundity of Nannocalanus minor							
Parameter	Egg production	 Hatching rate 					
Algal concentration	0.97217*	0.98776*					

Above 5000 cells/ml. algal concentration was enough for metabolic and egg production in *Centropages* sp. In our study, egg lying was started at 1000 cells/ml but in the case of *Centropages* sp. the egg laving was started at 5000 cells/ml. From these results, it could be inferred that N. minor is most suitable to culture and other physiological monitoring. Williams and Jones²⁶ described that the offspring production declined when the algal concentration is lower than the optimal level. The feeding history had a strong influence on egg production rate, which was much higher in females of Calanus finmarchicus exposed to different feeding conditions ²⁷. Results observed by Runge ²⁸ and Kimoto *et al.* ²⁹ indicate larger clutches was gained at high food concentrations C.finmarchicus and Sinocalanus tenellus in respectively. Apart from food concentration, the quality is also an important for reproductive success of copepods ³⁰. The factors such as particle size and species composition of food also influenced the egg production $^{31-32}$. Arnaud *et al.* 33 suggested that the nutritive value of food also controlled the clutch and egg production of copepod. The reproductive success of copepods not only dependent on egg production rate, but also on egg hatching rate, which may not be affected by food quality in the similar mode as egg production ³⁴. The insufficient food supply might be probably the reason for low hatching rate obtained presently in *N. minor* as agreed by Burkhart and Kleppel³⁵; Koski *et al.*³⁶ and Genuario and Anna³⁷.

Conclusion

The study provides a realistic basis for formulating ecological principles that govern food chains in the coastal and marine systems. The experiment also indicates that the levels of food concentrations and type of suitable food required for copepod *N. minor* at different trophic levels. From the study, it could be understood that the egg production increased with increasing food concentration. This experiment suggests that the food selectivity and feeding regimes may vary from the individual's grazing in relation to the availability of food and food size. Only few algal cultures serves as the best nutritional supplement to

the copepods and their size, morphology plays a role in feeding strategies. Hence, to make aware of the feeding selectivity of the calanoid copepod *N. minor*, detailed experiments on all these aspects are highly important.

Acknowledgement

Authors thanks the Head, Department of Marine Science and authorities of Bharathidasan University, Tiruhcirappalli-24, for facilities provided. Authors are acknowledged the Department of Biotechnology (DBT), Govt. of India, for financial support for this work.

References

- Gowen, R.J., Mc Cullough, G., Kleppel, G.S., Houchin, L., Elliott, P., Are copepods important grazers of the spring phytoplankton bloom in the western Irish Sea, *J. Plankton Res.*, 21(3) (1999) 465-483.
- 2 Mollmann, C., Kornilovs, G., Sidrevics, L., Long-term dynamics of main mesozooplankton species in the central Baltic Sea, *J. Plankton Res.*, 22(11) (2000) 2015-2038.
- 3 Biktashev, V.N, Brindley, J, Horwood, J.W., Phytoplankton blooms and fish recruitment rate, *J. Plankton Res.*, **25**(1) (2003) 21-33.
- 4 McLand, A., Ronnested, I., Fyhn,L.Berg, H.J and Wagghe, R., Water soluble vitamins in natural plankton (Copepods) during two consecutive spring blooms compared to vitamins in *Artemis franciscama* nauplii and metanauplii. *Mar.Biol.* 136 (2000) 765-772.
- 5 Azovsky, A.I., Saburova, M.A, Chertoprood, E.S and Polikarpov, I.G., Selective feeding of littoral harpacticoids on diatom algae: hungry gourmands, *Mar.Biol.* 148 (2005) 327-337.
- 6 Santhanam, P and Perumal, P., Evaluation of the marine copepod *Oithona rigida* Giesbrecht as live feed for larviculture of Asian seabass *Lates calcarifer* Bloch with special reference to nutritional value. *Indian J. Fish.*, 59 (2) (2012a) 127-134.
- 7 Evjemo, J.O., Reitan, K.I., Ingvar, O., Copepods as live food organisms in the larval rearing of halibut larvae (*Hippoglossus hippoglossus L.*) with special reference on the nutritional value, *Aquaculture.*, 227 (2003) 191–210.
- 8 Jonasdottir, S.H., Fields, D., Pantoja, S., Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston, *Mar. Ecol. Prog. Ser.*, 119 (1995) 87-98.
- 9 Pinto, C. S. C., Souza-Santos, L. P., Santos, P. J. P., Development and population dynamics of *Tisbe biminiensis* (Copepoda: Harpacticoida) reared on different diets, *Aquaculture*, 198 (2001) 253-267.
- 10 Turner, J.T., Ianora, A., Miralto, A., Laabir, M and Esposito, F., Decoupling of copepod grazing rates, fecundity and egghatching success on mixed and alternating diatom and dinoflagellate diets. *Mar. Ecol. Prog. Ser.*, 220 (2001) 187– 199.
- 11 Castro, A.C. M.V and Santos, L.P., Are the diatoms *Navícula* sp. and *Thalassiosita fluviatilis* suitable to be fed to the

benthic harpacticoid copepod Tisbe biminiensis?, J. Exp. Mar. Biol. Ecol., 327 (2005) 58-69.

- 12 Kasturirangan L R, A key for the more common planktonic copepods of the Indian waters (CSIR Publication) 1963, pp. 87.
- 13 Walne P R, Culture of bivalve mollusk: 50 years experience at conway (Fishing News (Book) Ltd.,) 1974, pp. 173.
- 14 Luis, E.C.C., Manuel, Y., Pavlos, M., Sofia, M and Maria, T. D., Live feeds for early stages of fish rearing, *Aquaculture Research.*, 41 (2010) 613-640.
- 15 Santhanam, P and Perumal, P., Feeding, survival, egg production and hatching rate of the marine copepod *Oithona rigida* Giesbrecht (Copepoda:Cyclopoida) under experimental conditions, J. Mar. biol. Ass. India., 54 (1) (2012b) 38-44.
- 16 Rauquirio, M. C and Felipe, F., Feeding and survival rates of the copepods *Euterpina acutifrons* Dana and *Acartia grani* Sars on the dinoflagellates *Alexandrium minutum* Balech and *Gyrodinium corsicum* Paulmier and the Chryptophyta *Rhodomonas baltica* Karsten, *J. Exp. Mar. Biol. Ecol.*, 273 (2002) 131-142.
- 17 Cook, K.B., Bunker, A., Hay, A., Hirst, A.G and Speirs, D.C., Naupliar development times and survival of the copepods *Calanus helgolandicus* and *Calanus finmarchicus* in relation to food and temperature, *J. Plankton Res.*, 29(9) (2007)757–767.
- 18 Lalli C M and Parsons T R, Biological Oceanography- An Introduction (Butterworth- Heinmann Oxford) 1997, pp. 314.
- 19 Perumal, P., Ashokprabu, V., Nedumaran, T and Santhanam, P., Studies on behaviour and survival rate of *Oithona rigida* Giesbrecht (Copepoda: Cyclopoida) fed with *Coscinodiscus centralis* Ehrenberg and *Skeletonema costatum* (Grev) Cleve, *Seaweed Res. Utiln.*, 22(1&2) (2000) 135-137.
- 20 Santhanam, P., Jeyaraj, N and Jothiraj, K., Effect of temperature and algal food concentration on egg production and hatching succession of tropical calanoid copepod, *Paracalanus parvus* (Claus), *J Environ Biol.*, 34 (2013) 243-246.
- 21 Ulrika, D., Charlotta, R.L., Elena, G., Britta, E and Magnus, B., Food quality effects on copepod growth and development: Implications for bioassays in ecotoxicological testing, *Ecotox Environ Safe.*, 72 (2009) 351-357.
- 22 Hirst, A.G and Bunker, A. J., Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight, *Limnol. Oceanogr.*, 48(5) (2003) 1988–2010.
- 23 Santhanam, P and Perumal, P., Effect of temperature, salinity and algal food concentration on population density, growth and survival of marine copepod *Oithona rigida* Giesbrecht, *Indian J Mar Sci.*, 41 (4) (2012) 369-376.
- 24 Jeyaraj, N and Santhanam, P., Influence of algal diet on population density, egg production and hatching succession

of the calanoid copepod, *Paracalanus parvus* (Claus, 1863), *J. Algal Biomass Utln.*, 4 (1) (2012) 1–8.

- 25 Nival, S., Pagano, M. and Nival, P., Laboratory study of the spawning rate of the calanoid copepod *Centropages typicus* effect of fluctuating food concentration, *J. Plankton Res.*, 12 (1990) 535-547.
- 26 Williams, T.D and Jones, M.B., Effects of temperature and food quantity on the reproduction of *Tisbe battagliai* (Copepoda: Harpacticoida), *J. Exp. Mar. Biol. Ecol.*, 236 (1999) 273-290.
- 27 Hirche, H.J., Meyer, U and Niehoff, B., Egg production of *Calanus finmarchicus* – effect of temperature, food and season, *Mar. Biol.*, 127 (1997) 609–620.
- 28 Runge, J.A., Egg production of the marine planktonic copepod *Calanus pacificiis* Brodsky: Laboratory observations, *J. Exp. Mar. Biol. Ecol.*, 74 (1984) 53-66.
- 29 Kimoto, K., Uye, S.I and Onbe, J., Egg production of a brackishwater calanoid copepod *Sinocalanus benellus* in relation to food abundance and temperature, *Bull. Plankton. Soc. Japan.*, 33 (1986) 133-145.
- 30 Runge, J.A., Plourde, S., Fecundity characteristics of *Calanus finmarchicus* in coastal waters of eastern Canada, *Ophelia.*, 44 (1996)171-187.
- 31 Koski, M and Kuosa, H., The effect of temperature, food concentration and female size on the egg production of the planktonic copepod *Acartia bifilosa, J. Plankton Res.*, 21 (1999) 1779–1789.
- 32 Hans, G. Dam and Rubens, M. Lopes., Omnivory in the calanoid copepod *Temora longicornis*: feeding, egg production and egg hatching rates, *J.Exp.Mar.Biol.Ecol.*, 292 (2003) 119-137.
- 33 Arnaud, L., Serge, A. Poulet., Anne, C., Gerhard, K., Adrianna, I and Mohamed, L., New evidence of the copepod maternal food effects on reproduction, *J.Exp.Mar.Biol.Ecol.*, 259 (2001) 85-107.
- 34 Miralto, A., Ianora, A., Guglielmo, L., Zagami, G and Buttino, I., Egg production and hatching success in the Peri-Antartic copepod *Calanus simillimus*, *J. Plankton Res.*, 20 (12) (1998) 2369-2378.
- 35 Burkhart, C. A and Kleppel, G.S., A new incubation system for the measurement of copepod egg production and egg hatching success in the field, *J. Exp. Mar. Biol. Ecol.*, 221 (1998) 89-97.
- 36 Koski, M., Engstrom, J and Viitasalo, M., Reproduction and survival of the calanoid copepod *Eurytemora affinis* fed with toxic and non-toxic cyanobacteria, *Mar. Ecol. Prog. Ser.*, 186 (1999)187-197.
- 37 Genuario, B and Anna, C.P., Hatching rate and diapause duration in eggs of *Paracartia latisetosa* (Copepoda: Calanoida), *J. Plankton Res.*, 29 (1) (2007)139-1247.

1584