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Abstract 
In the last decade, graphene has emerged as one of the best-performing reinforcement materials 

for nanocomposites. Incorporation of graphene into polymer results in a nanocomposite with a 

new microstructure responsible for its enhanced features. A morphological state of graphene 

flakes is one of the factors that govern formation of microstructure. Studies showed that 

graphene-oxide (GO) flakes can be found either as fully exfoliated or intercalated in polymer-

based nanocomposites. While traditional parameters are commonly taken into consideration in 

theoretical assessment of properties of composites by means of micromechanical models, the 

morphological state is often ignored. This research aims to investigate the effect of morphological 

state of GO flakes on stiffness of nanocomposites with widely used micromechanical models, 

e.g., rule of mixtures, Hui-Shia and Halpin-Tsai. Pure sodium alginate and nanocomposites on its 

basis reinforced with 1.0 and 2.5 wt% GO were used in the study. Parameters required for 

modelling were quantified with microstructural characterisation. Micromechanical models were 

adapted to account for the morphological state of intercalation observed in the characterisation 

study. Tensile experiments were employed to assess the adopted models, and the effect matrix 

stiffness, GO thickness, spacing of intercalates as well as the Poisson’s ratio and stiffness of 

inter-flake polymer layers was studied.   
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Introduction 
Excellent properties of graphene in many areas has been emphasised by specialists [1]: it 

outperforms many other nano-reinforcements in terms of boosting mechanical performance of 

nanocomposites [2,3]. The main reasons behind this are its strong carbon-carbon covalent bonds 
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and an inherently very large surface-to-volume ratio. Compared to other types of nanoparticles, 

graphene platelets can have a much larger surface area[4], which plays a key role in load 

transfer.  

Pristine graphene is formed of a nearly defect-free, one-atom layer lattice of pure carbon atoms, 

bonded to each other with sp2 hybridization. Other forms of graphene such as graphene oxide 

(GO), functionalized GO and graphene fluoride are also known. Before a synthesis method of 

pristine graphene in bulk quantities was realized [5], its other forms, especially GO, have been 

intensely used for manufacturing of graphene-based nanocomposites. As a result, many 

advances have been made in manufacturing of GO-reinforced nanocomposites. Thanks to its 

compatibility with polymers, GO is still widely researched and manufactured for reinforcement of 

polymer nanocomposites. A type of polymer is also an important matter to consider for 

compatibility with oxidized graphene. Ionita et al. [6] analysed alginate (Alg)-based GO 

nanocomposites (GO-Alg) and found good compatibility between functional groups of GO and 

alginate. GO-Alg nanocomposites are the main focus of this study. 

To optimise performance of nanocomposites, various fractions of graphene nanocomposites are 

usually employed. While numerical tools, such as, molecular dynamics [7] and finite-element 

simulations [8], can be preferred for design and analysis, some existing theoretical models of 

composites can be used for practical calculations. Some of these models preferred in graphene-

nanocomposite research are the rule of mixtures (RoM), Halpin-Tsai (HT) and Mori-Tanaka (MT) 

methods[9]. The RoM, which was originally developed for composites reinforced with continuous 

constituents, was modified by Padawer and Beecher [10] for discontinuous planar-particle 

composites. May et al. [11] investigated reinforcement efficiency of pristine graphene flakes 

employing a modified RoM (MRoM), While Yousefi et al. [12] used the RoM to compare the 

performance assessment of GO/polyurethane nanocomposites with those in literature. Voigt and 

Reuss approximations of the RoM were used to provide upper and lower bounds for the Young’s 

modulus of nanoparticle-reinforced nanocomposites. Many studies employed the HT 
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micromechanical model that was originally formulated for nanocomposites both with unidirectional 

and randomly oriented particles [13] for prediction of the Young’s modulus of graphene 

nanocomposites [12,14-16]. In this study, only the version for unidirectional alignment is 

considered since the microstructural analysis demonstrated that reinforcements are preferentially 

aligned [6]. Another analytical model, by Tandon and Weng (TW), which was derived from the MT 

method [17], is also used in the literature for calculation of the Young’s modulus of graphene-

reinforced nanocomposites [9,18,19]. Hui and Shia (HS) obtained simple closed-form expressions 

based on the TW method [20]; their method can be used to implement the MT approach in 

prediction of the elasticity modulus of graphene-nanocomposites [21]. The HS scheme assumes 

flakes as aligned in the matrix. 

Young’s moduli, volume fractions, orientations and aspect ratios of nano-reinforcement are the 

main parameters used in the analytical models to predict the effective stiffness of the 

nanocomposite. In these analytical models, linear elasticity of the phases is assumed and stress 

transfer is considered to be continuous throughout the interphases. Also, the models assume that 

the reinforcement flakes are homogeneously dispersed and fully exfoliated. However, depending 

on a manufacturing method and a type of materials constituting the nanocomposite, morphology 

of graphene flakes can differ. Barrett et al. [22] studied an effect of molecular structure of three 

different polymer matrices on mechanical performance and physical changes of their 

nanocomposites reinforced with reduced GO (rGO). They applied the same preparation method 

for all the nanocomposites, but while rGO dispersed as exfoliated in a polyhydroxyoctanoate 

matrix, it exhibited an intercalated morphology in polyhydroxyoctenoate. According to [23], 

nanocomposites produced with two different methods, namely, solvent mixing and melt blending, 

yield different morphologies of graphene flakes. While the solvent-mixing method gave a 

microstructure with homogeneously exfoliated and preferentially aligned graphene distribution in 

the matrix, the melt-blending method produced an intercalated and random distribution of flakes. 

Mechanical tests in these studies indicated from the effect of the resulting microstructures with 
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different morphologies of the reinforcements: nanocomposites with intercalated graphene flakes 

showed poorer mechanical performance. Hence, the theoretical prediction of mechanical 

properties of nanocomposites can be faulty if the morphology of the reinforcement is not taken 

into account.  

Generally, graphene dispersion in polymer nanocomposites is classified into three main states: 

stacked, intercalated and exfoliated [18]. Graphene or GO flakes with a stacked morphology are 

characterized by presence of more than several sheets. A flake with more than 10 atomic layers 

is not accepted as graphene [24,25]. Therefore, the main morphological states of graphene (and 

GO) are intercalated and exfoliated. As experiments showed [22,23], morphological differences 

caused a major effect on mechanical performance of composites. Lower stiffness reported for 

composites with intercalated graphene is mainly due to the fact that reinforcement in the matrix 

phase has a form of intercalated clusters – sandwiches of graphene and polymer. Obviously, 

such clusters are weaker than graphene and their aspect ratios are smaller. 

In this study, a micromechanical analysis of GO nanocomposites with intercalated morphology of 

reinforcement is performed. Transmission electron microscopy (TEM) images were used to 

assess microstructure and morphology of the studied materials. Thickness of GO flakes was 

found with atomic force microscopy, while effective mechanical properties were obtained with 

quasi-static tensile tests. For the sake of better prediction of the Young’s modulus of such 

materials, the micromechanical models were adapted to account the intercalated morphology. 

The effect of matrix stiffness, GO thickness, layer spacing in intercalates as well as the Poisson’s 

ratio and stiffness of inter-flake polymers were researched with the adapted models and a 

developed finite-element scheme.  

Experimental and modelling details 
Characterization 

A previous X-ray diffractometry (XRD) study, reported in [6], showed that a characteristic peak of 

a GO spectrum shifted towards lower angle values for GO-Alg nanocomposites. This observation 

revealed that morphology of GO flakes was intercalated. For a further understanding of 



5 

 

morphology and microstructure of this composite, a TEM study was conducted. To implement it, 

small pieces of composites were first embedded in epoxy. To obtain ~100 nm-thin sections of the 

samples, the materials were sliced using an ultra-microtome machine with a diamond knife. The 

sections were placed on copper grids and monitored using a JEOL JEM-2000FX TEM system 

with 100 kV acceleration voltage of electron beams. Micrographs with magnifications at 8000x to 

300000x were obtained. In the AFM study, a scanning probe microscope NTEGRA Aura - NT-

MDT (NT-MDT Co., Russia) was used to evaluate the thickness of GO. For this study, GO was 

dispersed in water and deposited on fresh cleaved mica substrate. 

Quasi-static tensile tests were conducted on the samples that were prepared according to 

“Standard Practice for Cutting Film and Sheeting Test Specimen, ASTM D6287-09”; their 

dimensions were 50 mm (length) × 3 mm (width). Instron 3345 uniaxial testing system with its 

Bluehill® software was used to perform the tensile tests. After maintaining the gauge length of 30 

mm, parameters of the test were set according to ASTM D3039. The tests were performed with 

three samples for each type of material. 

Modelling 

The traditional micromechanical models used to calculate the Young’s modulus of graphene-

nanocomposites consider reinforcements as fully exfoliated and homogeneously distributed. For 

composites with intercalated clusters of graphene, the use of such models can result in errors, as 

can be found in literature. For this reason, appropriate adjustments of models employed should 

be implemented before micromechanical analysis of such nanocomposites. Luo and Daniel [26] 

treated the intercalated structure of polymer-clay nanocomposites as a parallel system of 

platelets to calculate its Young’s modulus with the RoM and use it as input parameter in the MT 

model. GO-polymer intercalations were treated in similar way in that study, i.e. assuming them as 

a system of continuous and parallel platelets. The Young’s modulus of the intercalated structures 

𝐸𝐸f
ic was calculated using the Voigt’s RoM as they are composed of parallel layers of GO and 

polymer. Then, 𝐸𝐸fic was implemented as the Young’s modulus of inclusions in such widely used 
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micromechanical models as MRoM, HT and HS.  The respective equations for effective moduli in 

these models can be introduced as follows: 

 𝐸𝐸c
Voigt = 𝐸𝐸m𝑣𝑣m + 𝐸𝐸f𝑣𝑣f; (1) 

 𝐸𝐸cReuss =
𝐸𝐸m𝐸𝐸f

𝐸𝐸m𝑣𝑣f + 𝐸𝐸f𝑣𝑣m
 ; (2) 

 𝐸𝐸cmodified = 𝐸𝐸m𝑣𝑣m + 𝜂𝜂mrf𝐸𝐸f𝑣𝑣f, (3.a) 

where 𝜂𝜂mrf is the modulus-reduction factor: 

 
𝜂𝜂mrf = 1 −

tanh 𝑞𝑞
𝑞𝑞

 (3.b) 

with 
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(3.c) 

 
𝐸𝐸c
Halpin−Tsai = 𝐸𝐸m

1 + 𝜂𝜂L𝑣𝑣f𝜉𝜉
1 − 𝜂𝜂L𝑣𝑣f

; (4.a) 

where 
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1 − 𝑣𝑣f
4 �1

𝜉𝜉 + 3
𝜉𝜉 + 𝛬𝛬�  

, (5.a) 

where 

 
𝜉𝜉 = 𝑣𝑣f +

𝐸𝐸m
𝐸𝐸f − 𝐸𝐸m

+ 3(1 − 𝑣𝑣f)
�1 − 𝜋𝜋𝑡𝑡

2𝑙𝑙� �
𝑡𝑡
𝑙𝑙�
2
− 𝑡𝑡

2𝑙𝑙

�𝑡𝑡𝑙𝑙�
2
− 1

 
(5.b) 
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(5.c) 

In these models, 𝐸𝐸f is replaced with 𝐸𝐸fic- the Young’s modulus of intercalated clusters that is 

defined by the Voigt approximation of the RoM: 

 𝐸𝐸f
ic = 𝐸𝐸m𝑣𝑣mic + 𝐸𝐸f𝑣𝑣f

ic, (6) 
where 𝑣𝑣mic and 𝑣𝑣ficare the volume fractions of the matrix and GO in the intercalated clusters. Also, 

𝑣𝑣f and 𝑣𝑣m are replaced with 𝑣𝑣ic and 1 − 𝑣𝑣ic, respectively; 𝑣𝑣ic is defined by 
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𝑣𝑣ic = 𝑣𝑣f

𝑑𝑑sic

𝑡𝑡
, (7) 

where 𝑑𝑑sic is the spacing between the graphene layers in the clusters found with either XRD or 

TEM. In all the equations, indices f and m stand for the matrix and flakes, respectively, while 𝐺𝐺m, 

𝑙𝑙 and 𝑡𝑡 are the shear modulus of matrix, thickness and length of reinforcements, respectively. 

A volume fraction of the intercalated structures was calculated with Eq. (7), with geometric 

properties of the intercalated structures obtained from TEM images. In manufacturing of 

nanocomposites, the weight fraction is more broadly used than the volume one; hence, the 

weight fraction of GO flakes in the composites were converted into the volume fraction using 

 𝑣𝑣f =
𝑤𝑤f𝜌𝜌m

𝑤𝑤m𝜌𝜌f + 𝑤𝑤f𝜌𝜌m
, (8) 

where 𝜌𝜌 and 𝑤𝑤 are the density and weight fraction, respectively. 

Based on XRD studies [6] that showed that addition of GO had a minor effect on a crystalline 

structure of Alg, it was considered that the polymer intercalating GO had the same mechanical 

properties as the matrix.  

To study the effect of the Poisson’s ratio, a finite-element (FE) model was developed employing a 

MSC Marc® FE software package.. GO layers and the intercalating polymer between them were 

modelled with different material formulations; Solid-shell elements (type 185) were used in both 

cases. Thickness and length of the simulated intercalated structure were 25 nm and 2 µm, 

respectively, while the width was equal to one-tenth of the length. These geometric features were 

also used in the above theoretical models... Permanent contact between the GOs and the Alg 

layers was applied in FEM to represent existing covalent bonding. Before simulations, a mesh-

convergence study was performed; it showed that stress-strain behaviour of the model did not 

change considerably with the number of elements. Eventually,, simulations were implemented 

with the total number of elements of 5160. Boundary conditions were applied in a way to reflect 

those of the uniaxial tensile test; the FE model is shown in Fig. 1. Static, large-strain analysis was 

performed in simulations. 
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Results and discussion 
Experimental results 

The obtained AFM results (Fig. 2) indicated the presence of multiple and individual layers of GO 

in the sheet-like shapes with a rather non-uniform size distribution. The average thickness of 

individual GO sheets measured from the height profile of the AFM image was about 0.916 nm. 

TEM micrographs of the nanocomposites (Figs. 3 and 4) demonstrate intercalated structures 

(dark areas in Figs. 3(a) and (c)), which are homogeneously distributed throughout the matrix (a 

light grey colour). This distribution character was observed also in other micrographs taken from 

different areas of the nanocomposites. High-magnification micrographs (Figs. 3(b) and (d)) were 

taken to find thickness of the intercalated structures; the latter cannot be defined until a 

magnification, at which features of single flakes become observable, is reached. This is affected 

by the method of TEM that depicts a slice of specimen through its thickness, not an image of its 

surface: it gives a projected view. In other words, if a flake is not normal but rather inclined to the 

plane of the specimen’s slice used for TEM, a contour of the flake would be observed rather than 

its thickness. Hence, thicknesses measurements made at insufficient magnifications would be 

misleading. The solution to this is attaining a higher magnification, at which the edges of single 

graphene sheets can be realized; only in this case the true thickness of intercalations can be 

obtained for flake-reinforced nanocomposites. In the micrographs that were obtained at 200000x 

magnifications (Figs. 3 (b) and (d)), thin edges of GO sheets are seen. Therefore, the thickness of 

intercalations from images with this magnification is considered and used as the relevant 

parameter in the theoretical calculations. The magnitude of thickness obtained in this way was 

some 25 nm. 

Even higher magnification (Fig. 4(e)) was used to assess intercalation spacing. As suggested by 

the XRD results [6], GO intercalation spacing was found to be ~1.7 nm, 1.742 nm and 1.719 nm 

for 1.0 wt% and 2.5 wt% GO-Alg, respectively. 

In TEM (Fig. 3) and AFM images (Fig. 2), it is seen that GO diameter varies from 100 nm to 

several micrometres. However, since large-size flakes are highly dominant, the magnitudes of 
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diameter (or length) of the small-size flakes were not considered. Therefore, a mean flake 

diameter was determined as 2.0 µm from these images. 

Results of the performed tensile tests are shown together in a stress-strain diagram (see Fig. 5); 

values of the Young’s modulus, yield stress and yield strain calculated from the curves in Fig. 5 

are given in Table 1. Apparently, even a lower content of GO resulted in a considerable increase 

in toughness of the nanocomposite while the higher amount of GO made it brittle.  

Modelling results 

Examination of adapted theoretical models 

The Young’s moduli of the nanocomposites were estimated employing the micromechanical 

models, which were adapted as explained in Section  2.2. To assess the effect of intercalation, the 

estimations were also made with traditional micromechanical models. These models assume that 

the flakes are homogeneously dispersed and the stress transfer happens through the interface. 

Since the functional groups of both the matrix and GO lead to covalent bonding on the interfaces, 

it can be assumed that the stress transfer occurs through the interfaces. Also, TEM micrographs 

at 15000x magnifications (Figs. 3(a) and (c)) showed a homogeneous distribution of flakes. The 

Young’s modulus of Alg matrix was found as 4.75 GPa from the tensile tests (see Table 1;. the 

stiffness level for a single GO sheet is given in literature as 145.3 N m-1 [27]. The thickness of GO 

that was used in this study was found from AFM to be 0.916 nm (see Section   3.1). Using this 

thickness, the Young’s modulus of GO was found as 158.7 GPa. The average flake diameter was 

assessed as ~2.0 µm from the AFM and TEM images. The density of Alg film was calculated 

from [28] as 1.0 g cm-3, that of GO is given as 1.8 g cm-3 by [27]. Using Eq. (8), the volume 

fractions 𝑣𝑣f of GO were calculated as 0.56% and 1.4% for 1.0 wt% and 2.5 wt% GO-Alg, 

respectively. 

Predictions of the Young’s modulus, using the traditional formulations of micromechanical models 

as well as those adjusted to account for platelets’ morphology are shown in Figs. 6(a) and (b), 

respectively. Apparently, the latter models approximate the test results better than the traditional 
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ones do. It was also found that the MRoM is more suitable than the HS and HT models for 

predicting the modulus of GO-Alg nanocomposites.  

Importance of considering the intercalation phenomenon for prediction of the Young’s modulus of 

nanocomposites was studied additionally by taking several parameters into consideration. The 

parameters of interest are effects of matrix stiffness, stiffness of inter-flake polymers, the 

Poisson’s ratio of inter-flake polymers, layer-spacing of intercalates and GO thickness. These 

parameters were investigated using the morphology-adjusted MRoM (maMRoM), as it worked 

better for our samples than the modified HS and HT models. The deviations of composite moduli 

mentioned in the sections below were related to the respective maMRoM values. 

Effect of matrix stiffness 

The matrix modulus is one of the parameters defining the effect of reinforcement in composites. 

As the Young’s modulus of matrix material increases, while all other parameters are constant, the 

effect of reinforcement decreases. A study of this effect was aimed to reveal importance of 

considering the intercalation phenomena in predicting the effective Young’s modulus of 

nanocomposites. A chart in Fig. 7 shows deviation of the estimated Young’s modulus of 

nanocomposites as a function of modulus of the matrix material  for different volume fractions of 

GO, ranging from 0.1% to 10%. To create the chart, thickness and length of the intercalated 

structures, thickness of GO, and spacing between layers were kept constant with the values of 

those parameters given in the previous section. As can be seen from the graph, the deviation 

diminishes with the increasing matrix modulus. For matrixes with the modulus of 5 GPa, the 

deviation is less than 20%. , For stiffer matrices with modulus of 10 GPa and higher, it becomes 

less important to consider the intercalation effect since the deviation drops below 10%. Apart of 

the lowest volume fraction - 0.1 %, the latter does not seem to have a major role in this deviation. 

Therefore, it can be concluded that for GO-nanocomposites with matrix stiffness of 10 GPa and 

above, and with any volume fraction of GO, implementation of the account for intercalation is not 

necessary. However, for the nanocomposites with a softer matrix it is important for an adequate 
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assessment of effective elastic properties. 

Effect of inter-flake matrix stiffness 

Thin layers of matrix intercalated into the GO sheets can have their modulus different from that of 

the base matrix due to potential changes in their microstructure related to their small thickness. 

Therefore, the next stage of our study is focused on quantification of this effect. The respective 

results are presented in Fig. 8 for different volume fractions of GO and varying stiffness of the 

matrix (all the other parameters were fixed). The obtained results vividly demonstrate that for any 

analysed volume fraction of GO platelets, the variation of the inter-flake matrix modulus from -

50% to +50% has a marginal effect on the estimated effective stiffness. Thanks to the linear 

character of the curves, it can be predicted that even a 100% variation of the inter-flake matrix 

stiffness from that of the base matrix would not cause a considerable change in the overall 

composite stiffness. Hence, a modified micromechanical approach could safely use the 

assumption that layers between graphene sheets in intercalated platelets have the same stiffness 

as the base polymer matrix.   

Effect of Poisson’s ratio of inter-flake matrix  

As the modulus of inter-flake matrix may differ from that of the base matrix, its Poisson’s ratio can 

change too. To characterise the sensitivity of the composite’s modulus to the changes in the inter-

flake’s Poisson’s ratio, an FEM of the intercalated structure developed as explained in Section  2.2 

was used to perform tensile-test simulations to assess the Young’s moduli of the intercalated 

structures (flakes) with different moduli and Poisson’s ratios of the inter-flake matrix. While the 

length, thickness and spacing between layers of intercalated structures were kept constant as 2.0 

µm, 25 nm and 1.7 nm, respectively, the Poisson’s ratio of the inter-flake matrix was varied from 

0.1 to 0.49; calculations were carried out for matrix moduli of 0.1, 4.75 and 10 GPa. The GO 

thickness was kept the same at 0.916 nm, while the mechanical properties of the GO layers were 

fixed at the values given in previous sections. A change in Young’s moduli of the intercalated 

structures for three different levels of the matrix modulus is plotted in Fig. 9 depending on the 
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Poisson’s ratio. The maximum deviation is found for the high-modulus matrix, and it is less than 

3%. Such a small deviation in properties of flakes would have even a lower effect on the effective 

modulus of nanocomposites composite. Therefore, it can be concluded that the changes in 

Poisson’s ratio of the inter-flake matrix does not have a considerable effect on the 

nanocomposites’ moduli of elasticity. It can be omitted when doing the stiffness prediction of GO-

polymer nanocomposites. 

Effect of layer spacing 

As explained in the previous sections, layer spacing in flakes (GO platelets) can be measured 

with either XRD or TEM. Apparently, measuring at such small scales requires high precision. As a 

result, some small measurement errors can affect moduli estimation. In order to quantify 

sensitivity of such estimations to the potential errors in measurements of layer spacing, values of 

the Young’s modulus were calculated for different volume fractions of GO and matrix moduli. 

Other parameters were held constant at the levels described above. Deviations of the 

nanocomposites’ modulus in this study are plotted against the change in layer spacing in Fig. 10. 

The measurement error was considered to be between -20% and +20% of the original value. The 

results show that for volume fractions of GO up to 1.0 % of GO and any matrix modulus the 

composite modulus is not affected considerably. However, as the volume fraction increases and 

the matrix moduli decreases, the composite modulus gets more sensitive to measurement errors 

for the layer spacing and its deviations can exceed 50%.  

Effect of thickness of GO layers 

The thickness of GO layers (sheets), measured with either AFM or XRD, is reported to vary 

between 0.8 and 1.2 nm [29]. Knowing the level of stiffness of a single GO sheet - 145.3 N m-1, 

one can calculate its Young’s modulus depending on the thickness. Considering that GO 

thickness does not vary significantly for the same manufacturing method, a value found in the 

literature can be used in the calculations. However, this assumption may lead to misestimating 

the Young’s moduli of the studied nanocomposites. Keeping the length, thickness and layer 
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spacing of intercalated structures constant (as given in the previous section) and considering the 

reference GO thickness as 1 nm (the mean value of data reported in [29]), assessment of the 

Young’s modulus was carried out for varying levels of the volume fractions of GO and matrix 

modulus. The obtained results are presented in Fig. 11. The range of deviations in the GO 

thickness was assumed as ±20% to match the reported interval of 0.8-1.2 nm. Since the layer 

spacing was kept constant, the character of the effect is opposite in this case. The results show 

that, similar to the case of layer spacing, as the Young’s modulus of matrix decreases and 

volume fraction of GO increases, precise measurement of GO thickness gains importance for 

adequate assessment of the effective properties of the studied nanocomposites. 

Conclusion 
The effect of intercalated morphology of GO on nanocomposites with Alg matrix was analysed 

based on experimental, microstructural and numerical studies. Pure Alg polymer and 

nanocomposites with 1.0 and 2.5 wt% GO reinforcement were characterized with TEM and tested 

with tensile machine.  

Microstructural analysis on the nanocomposites with XRD and TEM suggested that GO flakes 

were intercalated rather than exfoliated. Traditional micromechanical models – HS, HT and 

MRoM – were adjusted to account for the intercalated structure. The Young’s modulus of the 

composites, calculated with both the original versions and ones accounting for the GO 

morphology, were compared with the experimental findings. The results showed that the adjusted 

models predicted the Young’s modulus much better than the traditional models. Among these 

micromechanical models incorporating the effect of GO morphology, the MRoM provided more 

accurate results than HT and HS.  

Using this version of the MRoM, the factors making the consideration of intercalation phenomena 

important were revealed and the effects of some parameters that can affect the effective 

properties, including variations in some parameters as well as potential measurement errors, 

were assessed. It was shown that nanocomposites with intercalated GO flakes with matrix modus 

of less than 10 GPa should be assessed with the adjusted models in order to have accurate 



14 

 

predictions.  The effect of mechanical properties of the inter-flake matrix were quantified, and it 

was found that potential changes in the Poisson’s ratio and the modulus of the inter-flake matrix 

did not have a considerable effect on the overall modulus of the studied nanocomposites. On the 

other hand, measurement errors in layer spacing and GO thickness could become important with 

the increase in the fraction of the flakes and the decrease of the matrix modulus.  The diagrams 

of changes in the effective elastic modulus obtained in this study for various parameters can help 

to decide the suitability of the micromechanical schemes – traditional or adjusted –for its 

prediction for GO-reinforced nanocomposites.  
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FIGURES 

 

Fig. 1 Finite-element model of intercalated structure with boundary conditions and layer detail 
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(a)      (b) 

Fig. 2 AFM image (a) and height profile (b) of GO sheets along line in (a) 

 

Fig. 3 TEM micrographs of GO-Alg: (a) and (b) for 1.0 wt%; (c) and (d) for 2.5 wt%; (a) and (c) at 
15000x magnification; (b) and (d) at 200000x magnification. 

 

Fig. 4 TEM micrographs of 2.5 wt% GO-Alg nanocomposites at different magnifications: 
(a)15000; (b) 50000; (c) 100000; (d) 300000; (e) ~1700000 
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Fig. 5 Stress-strain curves of studied materials 
 

 

Fig. 6 Effect of weight fraction of GO on experimental and theoretical values of Young's modulus 
of studied materials: (a) traditional models; (b) adjusted models 



19 

 

 

Fig. 7 Effect of Young’s modulus of matrix on deviation of nanocomposite’s modulus for different 
volume fractions of GO. 

 

Fig. 8 Effect of inter-flake matrix modulus (IFMM) on deviation of nanocomposite's modulus for 
different levels of volume fraction of GO and modulus of matrixes 
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Fig. 9 Effect of Poisson's ratio on of intercalated structures on their Young's modulus for different 
levels of matrix modulus 

 

 

Fig. 10 Effect of layer spacing on nanocomposite's modulus for different levels of volume fraction 
of GO and matrix modulus 
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Fig. 11 Effect of GO thickness on nanocomposite's modulus for different levels of volume fraction 
of GO and matrix modulus 

 

 

 

 

 

TABLE 
 

Table 1 Tensile properties of materials 
 Young’s 

modulus, 

GPa 

σy at offset 

strain 0.001, 

MPa 

σy at offset 

strain 0.002, 

MPa 

εy at offset 

strain 0.001, 

mm mm-1 

εy at offset 

strain 0.002, 

mm mm-1 

Pure alginate 4.75 48.8 55.3 0.011 0.014 

1.0 wt% GO-Alg 5.09 67 79.2 0.014 0.0175 

2.5 wt% GO-Alg 5.8 54.8 63.3 0.01 0.013 
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