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Effect of multiplicative noise on parametric instabilities
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Abstract

We report a study on the effect of external multiplicative noise on parametric instabilities using two different experimental
systems: an electronic RLC circuit, parametrically pumped with a voltage-variable capacitor, and surface waves generated by
vertically vibrating a layer of fluid (the Faraday instability). Both systems are forced by the superposition of a sinusoidal and a
noisy component. We study the statistical properties of the response of both systems to noisy parametric forcing and compare
them with theoretical predictions. When the detuning from parametric resonance is such that the bifurcation in the absence
of noise is supercritical, both systems behave in the same way under the influence of noise. We find that the effect of noise is
twofold: on one hand, it triggers the instability before its deterministic onset under the form of oscillatory bursts; on the other
hand, it inhibits the nonlinearly saturated oscillatory response above the deterministic onset. When the detuning is such that
the bifurcation is subcritical, we find that the two systems behave differently. In the case of the electronic oscillator, noise
mostly triggers random transitions between the two states of the bistable region that exists in the absence of noise, whereas
in the surface wave experiment new states are created by noise and the bistable region is strongly enlarged.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been known for a long time that random
fluctuations of the control parameters of a dynamical
system, or multiplicative noise, may generate surpris-
ing effects, such as stabilization by noise[1,2], differ-
ent types of noise induced transitions[3,4], stochastic
resonance (see for example[5]), etc. Although these
effects have been predicted for a great variety of sys-
tems, only a few quantitative experiments have been
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performed on the effect of noise on the threshold of
instabilities. Previous studies involve electronic oscil-
lators[6], spin waves in ferrites and antiferromagnets
[7,8] and electroconvection in nematic liquid crystals
[9,10], but only the effect of noise on supercritical bi-
furcations has been considered so far. Only recently,
experiments on the effect of noise on parametrically
driven surface waves have been performed in the case
of a subcritical bifurcation. New phenomena, such as
noise-induced-bistability, have been reported[11].

Contrary to the case of additive noise, the basic so-
lution of the deterministic system may be preserved
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in the case of multiplicative noise, and one can thus
consider the effect of noise on its stability properties.
The transition point can be shifted depending on the
intensity of multiplicative noise. Stabilization, i.e. in-
hibition of the instability, has been reported in various
situations[1,2,6]. Moreover, it has been found that
multiplicative noise can modify the bifurcation dia-
gram, generating new solutions that do not exist in the
corresponding deterministic system. Examples of this
kind of noise induced phase transitions can be found
in [3,12].

There are basic difficulties concerning the modeli-
sation of the above phenomena, which are already
apparent with the simplest possible example, a noisy
pitchfork bifurcation,

ẋ = [µ + ξ(t)]x − x3, (1)

whereµ is the deterministic control parameter and
ξ(t) represents a Gaussian white noise with zero mean.
First, the linear stability analysis of thex = 0 solu-
tion is misleading, as it was shown in[13]: the lin-
ear growth rates of the moments become positive for
µn < 0,µn depending onn, whereas it can be shown
that when the nonlinear term is taken into account
all the moments〈xn〉 go to zero forµ < 0, so that
the bifurcation occurs forµ = 0 independently ofn
[1,14].1 On the contrary, if the most probable value of
x is taken as an order parameter, the bifurcation from
zero occurs forµ > 0 and increasing with the noise
intensity.2 As a consequence, the knowledge of the
probability density function(PDF) ofx as a function
of µ is required in order to fully describe the system.

Another problem is the interaction of noise with the
damped modes of the deterministic system. Without
noise, these modes are adiabatically eliminated in or-
der to get the equation for the amplitude of the neutral
mode, i.e. the order parameter. In the presence of noise,
this elimination is no longer straightforward since the
damped modes are continuously excited by noise. This

1 This inadequacy of the linear stability analysis in the presence
of multiplicative noise has been also shown for more complex
model equations.

2 Thresholds corresponding to different stability criteria have
been compared in[15].

may influence even the linear stability problem as ob-
served on the example of the Duffing equation

1

γ
ẍ + ẋ = [µ + ξ(t)]x − x3. (2)

Without noise, this equation can be reduced toEq. (1)
in the vicinity of the bifurcation pointµ = 0. This
reduction is no longer possible in the presence of noise,
and the bifurcation from zero is shifted to larger values
of µ if 〈x2〉 is taken as an order parameter inEq. (2)
contrary to the case of(1) [1,2].

We study in this paper the effect of multiplicative
noise on a parametric instability. Previous analytical
and numerical studies have been performed on the
Mathieu equation with a damping term

ẍ + 2λẋ + ω2
0[1 + f (t)]x = 0, (3)

where the forcingf (t) involves both harmonic and
noisy components

f (t) = h cosΩt + ξ(t). (4)

In the case of forcing with noise only (h = 0), 〈x〉
vanishes fort → ∞ but the second moments ofx and
ẋ display a linear instability when the noise exceeds
a critical value[16–19].

When harmonic and random excitations are simul-
taneously present, the problem of the inhibition or
amplification of the parametric instability onset by
noise has been addressed theoretically and numeri-
cally [16,20]and an experimental study has been per-
formed using an electronic parametric oscillator[6].
Although the experimental study displayed an inhibi-
tion of the parametric instability by noise, the linear
stability analysis performed by Stratonovich showed
that the threshold for the growth of the amplitude of
the oscillations may be shifted in both directions, de-
pending on the relative magnitude of the harmonic ex-
citation amplitude,h, the power spectral density of the
noise atΩ � 2ω0, and the detuning from parametric
resonance,ν = Ω/2 − ω0.

When a nonlinear term saturating the growth of the
oscillation amplitude is added to the Mathieu equation,
the PDF of the oscillation amplitude may be obtained
[6]. It has been found that the inhibition of the para-
metric instability by noise could be explained only if
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the most probable value of the PDF of the oscillation
amplitude is taken as an order parameter. However,
this is not the quantity that was measured in the ex-
perimental study[6].

We report in this paper the measurement of the PDF
of the oscillation amplitude with two different exper-
imental systems undergoing a parametric instability
with multiplicative noise. The first one is a vertically
vibrated layer of fluid on which surface waves are
generated by the Faraday instability[21].3 The sec-
ond one is an electronic parametric oscillator, closely
described by a Mathieu equation with a cubic nonlin-
earity [22]. The study of these two systems has been
motivated by the fact that many damped modes are
present in the one involving surface waves whereas
this is not the case for the electronic oscillator. Thus,
as said above, it is not obvious that both systems dis-
play the same response to noise.

This paper is organized as follows. InSection 2, we
describe the two experiments. InSection 3, we recall
the general features of parametric instabilities in the
absence of noise.Section 4is devoted to the study of
the effect of noise on parametric instabilities in the
supercritical regime. The subcritical case is considered
in Section 5. The results are discussed and compared
to earlier studies inSection 6.

2. Description of the experimental systems

2.1. The electronic circuit

We have first designed an electronic parametric os-
cillator in order to study analogically the response of a
system governed by a nonlinear Mathieu equation to a
forcing which involves both harmonic and noisy com-
ponents. The electronic circuit is displayed inFig. 1.
Its consists of an RLC-oscillator where the inductance
is realized using a gyrator filter[23], which gives
a large and frequency independent inductance value
(L � 1H ), and whereC is a voltage-variable capac-
itor (varactor diodes BB909A)[23]. The linear reso-

3 Most of Faraday’s experiments were repeated by Lord Rayleigh
[21]. For more recent studies on the Faraday instability, see for
instance, papers of Binks and Van de Water, and Kudrolli et al.
[21].

Fig. 1. Diagram of the electronic circuit.

nance frequency of the RLC circuit isf0 � 7.2 kHz,
thus the capacitance of the varactor at low amplitude
is C0 � 488 pF. The dependence of the capacityC

of varactor diodes on their chargeq is the dominant
nonlinearity of the circuit. The use of pairs oppositely
polarized varicaps keeps the symmetryq → −q of
the Mathieu equation. Thus, we have to leading order
C � C0(1 + γ q2) with γ > 0 [24].

The parametric forcingv(t) is provided by a
two-channel synthesizer HP8904A through an AD633
multiplier M. The chargeq of the capacityC is thus
governed by the equation

d2q

dt2
+ R

L

dq

dt
+ q

LC
[1 + kv(t)] = 0, (5)

where k is the gain of the analog multiplier (k =
1/10V in our case). We thus get

q̈ + 2λq̇ + ω2
0[1 + f (t)](q − γ q3) = 0, (6)

with 2λ = R/L, ω2
0 = 1/LC0 andf (t) = kv(t). We

haveR � 555� and the quality factor of the RLC cir-
cuit isQ = Lω0/R � 77. The inductance value is cal-
culated from the values of the gyrator’s components.
We can then deduce the capacitance valueC0 from
the RLC resonance frequency. The global circuit resis-
tance can be evaluated from the parametric threshold
for a forcing frequencyΩ/2π . Thus, we can evaluate
the quality factor of the RLC circuit,Q = Lω0/R �
77, in good agreement with a direct measurement.

To avoid electromagnetic perturbations, the elec-
tronic circuit is enclosed in a metallic container
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playing the role of a Faraday cage. In addition, it is
thermally regulated at 18± 0.1◦C by circulating wa-
ter. Thus, the measurements are reproducible within a
5% accuracy. For all results, the measurements errors
are less than 1% for the parametric forcing parame-
ters (frequency and amplitude) and within 5% for the
response of the circuit.

2.2. The surface waves experiment

It is well known since Faraday[21] that standing
surface waves can be generated by vertically vibrating
a horizontal fluid layer. In the recent years, this pat-
tern forming system has been widely studied (see for
instance[25]). The linear stability analysis has been
performed by Benjamin and Ursell[26] in the small
viscosity limit. The deformation of the fluid surface
has been described by normal modes obeying a Math-
ieu equation. Thus, in this limit the system is analo-
gous to coupled parametric oscillators.

In the experiment described herein we study the ef-
fect of external multiplicative noise close to the bifur-
cation point of the instability. The schematical diagram
of the experimental setup is shown inFig. 2. Orien-
tational degeneracy is avoided by using an elongated
rectangular geometry so that the selected unstable
mode is strongly confined along one direction and the
excited wave can be considered as one-dimensional.
The fluid container is an aluminum vessel of di-
mensions 15 cm× 2 cm × 1 cm. It is rigidly at-
tached to an electromagnetic vibration exciter (Brüjel

Fig. 2. Schematical diagram of the experimental setup (ph.d.:
photodetector, acc.: accelerometer).

and Kjaer 4809) which produces a clean vertical ac-
celeration (horizontal acceleration less than 1% of the
vertical one).

The vibration exciter is driven by a frequency syn-
thesizer and the vertical acceleration is measured by
a piezoeletric accelerometer and a calibrated charge
amplifier. The fluid is distilled water. The fluid menis-
cus is eliminated by pinning the surface at the edges
of the container and adjusting the fluid volume until
the surface becomes flat everywhere[27]. To prevent
liquid evaporation and contamination of the surface,
the fluid container is closed with a Plexiglass plate and
it is temperature controlled by circulating water and a
thermal bath at 12.5±0.1◦C. In the absence of noise,
thresholds are evaluated within a precision of a few
percents. The stability of the experiment is checked to
be quite good over times of the order of 1 day, which
is the typical duration of each set of measurements in
the presence of noise.

All the experiments are performed close to the in-
stability threshold and the spatial pattern is a single
mode without defects. Thus, the amplitude of the sur-
face oscillations can be considered uniform along the
whole cell length and can be measured by using a local
optical detection[28]. The fluid is doped with black
ink in order to avoid reflection from the bottom of the
cell and an He–Ne laser beam is focussed on the fluid
surface. When the surface is flat, it reflects the light
beam in one point. When the instability develops, the
local slope of the surface is modulated by the wave,
thus modulating the position of the reflected spot. In
one period of oscillation, the reflected spot oscillates
between two vertical extrema whose distance is pro-
portional to the amplitude of the surface wave. A lens
collects the reflected beam and focus it onto a pho-
todetector that is essentially a rod of photoconductive
material. The photodetector provides a voltage which
is proportional to the position of the incoming beam,
thus to the height of the surface. This way, the voltage
signal follows the sinusoidal oscillation of the surface
and the amplitude of the instability can be directly ob-
tained by demodulating this signal.

A two-channel synthesizer HP8904A provides the
sinusoidal and the noise signal. The noise is fil-
tered, amplified and then summed to the sinusoidal
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excitation. Using a spectrum analyzer we check that
the filtered noise is large band with a cutoff frequency
around 1 kHz, so that it can be considered as a white
noise around the typical frequencies of the sinusoidal
signal (∼ 60 Hz). The two channel spectrum analyzer
records the signals of the photodetector and of the
accelerometer, so that the amplitude of the instability
and the corresponding acceleration are monitored at
the same time. When noise is added to the sinusoidal
forcing, the acceleration in the reference frame of the
fluid container isgeff = g+ a cos(Ωt)+ η(t), where
g is the acceleration of gravity. Thus, both the sinu-
soidal forcing and the noiseη(t), parametrically force
gravity-capillary waves. The amplitude of each mode
obeys a Mathieu equation in the linear approximation
and in the limit of zero viscosity[26].

2.3. Determination of the noise power spectral
density and measurement of the oscillation
amplitude

The effect of multiplicative noise on a subharmonic
parametric instability is characterized by the power
spectral density of noise at the frequencyΩ � 2ω0

[16],

κ(Ω) = 2
∫ ∞

0
〈ξξτ 〉 cos(Ωτ)dτ. (7)

For the electronic circuit, we measure the power spec-
tral density by averaging the spectral power of noise
over a frequency band centered inΩ and in the ab-
sence of the sinusoidal forcing. Since the noise spec-
trum is flat aroundΩ, we suppose that this procedure
gives a good estimation of the power spectral density
κ(Ω). The amplitudeh of the sinusoidal component is
set on the synthesizer.κ(Ω) is measured in mV2/Hz.
For bothh andκ(Ω), the normalization constant of the
multiplier k = 0.1 V−1 should be taken into account.

For the surface wave experiment, we have to mea-
sure directly the acceleration to which is submitted the
fluid container since we do not know precisely the re-
sponse of the vibration exciter. This acceleration is the
sum of the deterministic and the stochastic forcings.
To separate the noise component, we have averaged
the spectral power of the acceleration signal over a

frequency band of 30 Hz on the left of the sinusoidal
peak. Since the spectrum is flat around the peak, we
suppose that this procedure gives a good estimation of
the power spectral densityκF(Ω). κF(Ω) is measured
in mV2/Hz, where 1 mV corresponds to one unit of
acceleration, i.e. to 1 m/s2. The spectral power of the
acceleration signal atΩ gives the rms value of the
sinusoidal componentarms. Note that because of the
presence of the noisy component, the measured value
of arms is Gaussian distributed.

The responseu(t) = q(t)/C of the electronic oscil-
lator and the surface wave amplitude measured by the
photodetector both display oscillations at frequency
Ω/2 � ω0 with an envelope varying randomly under
the effect of noise. We have measured it with two dif-
ferent methods. In the surface waves experiment, we
have performed the FFT of the photodetector signal
on a frequency span of 400 Hz with a frequency res-
olution of 1 Hz, thus over a time interval of 1 s. This
time scale corresponds to about 30 periods of the wave
amplitude but is smaller than the characteristic dura-
tion of the wave bursts observed in the vicinity of the
bifurcation in the presence of noise. Thus, the time de-
pendence of the amplitude of the waves is well enough
resolved in order to compute its PDF and its mean
value. The spectral power of the photodetector signal
atΩ/2 gives the modulus|A| of the wave amplitude.
With the electronic circuit, we have used a lock-in am-
plifier in order to record both the amplitude|A| and
the phaseΦ of the oscillations. We have checked that
both methods give the same result for the PDF of|A|.

3. Parametric instabilities

3.1. Amplitude equation

We recall here the basic features of parametric in-
stabilities in the absence of noise. A canonical exam-
ple is the parametric pendulum

ẍ + 2λẋ + ω2
0[1 + f (t)] sinx = 0, (8)

wheref (t) = h cosΩt is the parametric forcing, 2λ
is the damping andω0 is the natural frequency. The
linear stability of the solutionx = 0 is thus governed
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by the Mathieuequation (3)that displays parametric
resonance whenevernΩ = 2ω0, with n integer. The
strongest resonance occurs forn = 1, i.e.Ω = 2ω0.
By the method of multiple scales, an amplitude equa-
tion can be obtained for the long time behavior of the
unstable mode. In the limit of small dissipation, the
temporal evolution of its slowly varying complex am-
plitudeΨ obeys a normal form equation of the type
[25]

∂tΨ = −(λ + iν)Ψ + µΨ̄ + iβ|Ψ |2Ψ, (9)

whereν = Ω/2−ω0 is the detuning from parametric
resonance,µ = ω0h/4 is proportional to the amplitude
of the forcing, andβ = −ω0/4 describes the leading
order frequency correction with increasing oscillation
amplitude. We writeΨ = AeiΦ , and get the stationary
solutions of the amplitude equation

βA2 = −ν ±
√
µ2 − λ2. (10)

For ν > 0 we have a supercritical bifurcation for
µc = √

λ2 + ν2. For ν < 0 the bifurcation is sub-
critical while the point(ν = 0, µc = λ) is tricritical.
The scaling behaviors above criticality display differ-
ent features depending onν. If ε = µ − µc is the
distance from threshold, the amplitude scales asA ∼
ε1/4 for ν = 0 (bifurcation at the tricritical point); for
the supercritical caseA ∼ ε1/2. The subcritical case,
as usual, has an unstable branch to which is associated
an hysteresis cycle (see below).

3.2. The electronic circuit as a parametric
oscillator

For the electronic circuit, the chargeq of the ca-
pacity C is governed byEq. (6) which is similar to
the pendulum equation up to leading nonlinear or-
der. Thus, the amplitudeEq. (9)governs the complex
amplitude of oscillations of the voltageu(t) = q/C

measured in the vicinity of the parametric instability
onset. The stability diagram of the electronic circuit
parametrically forced in the vicinity of the strongest
resonanceΩ/2π � 14.4 kHz, is displayed inFig. 3.
The zero solution is linearly unstable above the reso-
nance tongue (circles). As said above, the bifurcation

Fig. 3. Resonance tongue measured for the electronic circuit by
varying the forcing frequencyΩ. The bifurcation is subcritical for
negative detuning; the lower (respectively, higher) frontier of the
bistability region correspond to the squares (respectively, circles).

from zero is supercritical for positive detunings and
subcritical for negative ones. Thus, for negative detun-
ings, finite amplitude oscillations exist below the lin-
ear threshold, until the forcing amplitude is decreased
down to the nonlinear threshold (squares). These two
curves delimitate the bistability region in which both
the zero and oscillatory solutions are linearly stable.

3.3. Parametric amplification of surface waves

In the linear approximation and neglecting vis-
cous dissipation, the fluid surface deformation can
be decomposed in eigenmodes of amplitudeAk and
wavenumberk, each of them obeying a Mathieu-type
equation[26]

Äk + ω2
0k

(
1 + g1(t)

g + σk2/ρ

)
Ak = 0, (11)

where the effective acceleration in the reference frame
of the fluid container isgeff ≡ g+g1(t), with g1(t) =
a cos(Ωt)+η(t), g being the acceleration of gravity.
σ is the fluid surface tension andρ is its density.

The eigenfrequenciesω0k are related to the
wavenumbersk through the dispersion relation which,
in the deep water limit, i.e. sufficiently large heighth

of the fluid layer (h � 2π/k), reads

ω2
0(k) = gk+ σ

ρ
k3. (12)



90 R. Berthet et al. / Physica D 174 (2003) 84–99

By comparingEq. (11)to the standard form of the
Mathieuequation (3), we have

h ≡ a

g[1 + (klc)2]
(13)

and

ξ(t) ≡ η(t)

g[1 + (klc)2]
(14)

wherelc = √
σ/ρg is the capillary length of the fluid.

Thus, in the Faraday experiment, the surface waves
are parametrically driven. The most unstable mode is
the one with a wavenumber such thatω0(k) = Ω/2.
This resonance condition is in general only approxi-
mately satisfied because of boundary conditions such
that a small frequency detuningν is always present.
Its sign cannot be easily predicted. We have charac-
terized the response of the surface waves by explor-
ing a frequency range of the sinusoidal forcing around
Ω/2π = 60 Hz. The bifurcation displays supercritical
features atΩ/2π = 60 Hz whereas a subcritical be-
havior characterized by an hysteresis cycle is observed
atΩ/2π = 60.4 Hz. In the following, when we refer
to the supercritical or to the subcritical case we refer
to these two values ofΩ, respectively.

When the fluid viscosity is taken into account in
a phenomenological way, a Mathieu equation with a
damping term of the form ofEq. (3) can be found
for the modesAk. However, only the viscous damp-
ing in the bulk of the flow can be described that way.
The exact linear equation forAk involves also an inte-
gral term that traces back to viscous boundary layers
which generate an additional damping of the waves
[29]. However, viscous damping does not affect the
qualitative features of the subharmonic parametric res-
onance except in particular situations[30].

Thus, as far as we can neglect the spatial variations
of the wave amplitude, i.e. in the case of containers
with a moderate aspect ratio, the surface deformation
is described by a single standing wave mode oscillat-
ing at half the driving frequency. For fluids of small
viscosity, the amplitude of this mode is governed by
an equation analogous to the one derived for the para-
metric oscillator(9). The main difference between the
two systems is that the Faraday experiment also in-

volve many stable modes that may play a role in the
presence of noise.

4. Experimental results in the supercritical case

4.1. Noise induced amplification/inhibition of the
oscillations

We show inFig. 4 typical time recordings of the
oscillation amplitude of the parametrically amplified
surface waves in the presence of noise. For small
noise intensity, the stochastic part of the forcing adds
small fluctuations around the deterministic value of
the amplitude. These fluctuations are not symmet-
ric around the deterministic value and they become
more and more asymmetric for increasing noise am-
plitudes. For large values of noise, these fluctuations
are so strong that they qualitatively change the be-
havior of the signal. The most probable value of the
oscillation amplitude goes to zero so that it becomes
difficult to recognize whether the sinusoidal forcing
is above the deterministic threshold or not (compare
Fig. 4b and d). In this regime, the temporal behavior
of the oscillation amplitude is characterized by bursts,
corresponding to rare and intense events separated
by “laminar” periods without oscillation. We have
checked that when we observe a peak of the am-
plitude, the instability is homogeneously developed
along the whole cell length. Therefore, the intermit-
tent behavior is a purely temporal one and it is not
related to the formation of spatial domains.

For the electronic circuit, the oscillation amplitude
in the presence of noise behaves in a similar way. By
means of a lock-in detection, we have also measured
the phase of the temporal signals and we show the
results inFig. 5. We first observe that, above the de-
terministic threshold, the phase fluctuates around one
of its two possible deterministic values, as long as the
noise amplitude is not too large (Fig. 5a). Thus, the res-
ponse of the oscillator is phase-locked when the osci-
llation amplitude remains large enough. When the
noise intensity is increased, the amplitude almost
vanishes between bursts and the phase jumps between
its two possible deterministic values (Fig. 5b). Note
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Fig. 4. Temporal evolution of the amplitude of oscillations in the presence of noise for the surface wave experiment. The amplitude is
measured in arbitrary units. On the left, the average acceleration is〈arms〉 = 5.4 m/s2, corresponding to a forcing above the deterministic
threshold. The noise intensity isκF(Ω) = 0.06 mV2/Hz in (a) andκF(Ω) = 0.94 mV2/Hz in (b). On the right, the average acceleration is
〈arms〉 = 5.0 m/s2, corresponding to a forcing below the deterministic threshold. The noise intensity isκF(Ω) = 0.07 mV2/Hz in (c) and
κF(Ω) = 1.19 mV2/Hz in (d).

however, that the phase remains locked during the
bursts when the oscillation amplitude is large. The
intermittent bursts in the oscillation amplitude are
thus accompanied by intermittent phase jumps ofπ ,
which is the signature of a strong phase decorrelation
of the signal. Phase jumps in the presence of noise
are always observed below the deterministic threshold
(Fig. 5c and d). However, here too the phase remains
locked during large oscillatory bursts.

The average value of the oscillation amplitude as a
function of the noise intensity is displayed inFig. 6.
A comparison with the bifurcation diagram in the
absence of noise is not straightforward. Actually, the
transition point seems to be shifted at a value smaller
than the deterministic one, but just beyond the tran-
sition, noise reduces the amplitude of oscillations.
Thus, below threshold, the average oscillation ampli-
tude increases with noise whereas above threshold it
decreases for increasing noise. The relative variation
of the oscillation amplitude with respect to noise is
of the same order of magnitude on both sides of the
transition point (Fig. 6a and c). Therefore, the usual
notion of threshold becomes ambiguous even in the
presence of multiplicative noise. Considering only
the supercritical regime, one may conclude that the
parametric instability is inhibited by noise as said in

reference[6]. On the other hand, considering the in-
crease of the mean oscillation amplitude with increas-
ing noise below the deterministic threshold, we may
conclude that the instability onset is shifted towards
lower values in the presence of noise. It is thus not
possible in general to state whether noise amplifies or
inhibits the oscillations. This ambiguity traces back to
the choice of the order parameter of the transition in
the presence of noise. One may indeed take, the mean
value of the oscillation amplitude, the most probable
value of the amplitude, the phase coherent part of
the amplitude, as different possible choices, and get
different answers.4 In order to resolve the ambiguity,
it is necessary to look at the statistical properties of
the signals and hence to measure the whole PDF of
the amplitude of oscillations.

4.2. Statistical properties of oscillations in the
presence of noise

The PDFs of the oscillation amplitude measured
with the electronic circuit for different noise inten-
sities and at a fixed sinusoidal forcing are displayed
in Fig. 7. When the sinusoidal forcing is above the

4 Other stability criteria can also been considered, see[15].



92 R. Berthet et al. / Physica D 174 (2003) 84–99

Fig. 5. Temporal evolution of the amplitude|A| and the phaseΦ of the oscillations measured with the electronic circuit: (a) and (b)
h = 31.25 mV, i.e. above the deterministic threshold for a noise intensity: (a)κ(Ω) = 0.94 mV2/Hz and (b)κ(Ω) = 8.25 mV2/Hz; (c) and
(d) h = 24.5 mV, i.e. below the deterministic threshold for a noise intensity: (c)κ(Ω) = 0.94 mV2/Hz and (d)κ(Ω) = 8.25 mV2/Hz.

deterministic threshold, the PDFs behave according to
the theoretical predictions[6,16]. For small noise, the
amplitude fluctuates in the vicinity of its deterministic
value and the PDF is almost Gaussian. When the noise
intensity is increased, the PDF becomes asymmetric.
For a critical noise intensity, there is a transition at
which the most probable value vanishes (seeFig. 7a).
We can compare our results with the analytical pre-
diction obtained from the stationary solution of the
Fokker–Planck equation with the assumption that the
oscillator response is phase-locked[6]. As we showed
above, this assumption is correct above the determin-
istic threshold for small enough noise intensity. The

PDF is then of the form

P(X) ∝ X(a−1) exp(−bX), (15)

whereX = |A|2, a andb depends on the characteris-
tics of the electrical circuit. We did not try to calculate
a andb as functions of the circuit parameters, but it
is clear fromEq. (15) that 〈X〉 = a/b andσ(X) =√
a/b. We have determined〈X〉 andσ from the ex-

perimental data and then we have inserted these val-
ues in the above expression of the PDF. By doing this
and normalizing the PDF to one, we find that this pre-
diction (full lines inFig. 7a) is in agreement with our
experimental data.



R. Berthet et al. / Physica D 174 (2003) 84–99 93

Fig. 6. Average value of the oscillation amplitude measured with the electronic circuit as a function of the noise intensity: (a)h = 27 mV
and (c)h = 39 mV and as a function ofh for different noise intensities (b):κ(Ω) = 0 mV2/Hz (solid line),κ(Ω) = 0.38 mV2/Hz (circles),
κ(Ω) = 2.10 mV2/Hz (squares),κ(Ω) = 3.75 mV2/Hz (diamonds),κ(Ω) = 8.25 mV2/Hz (reversed triangles),κ(Ω) = 15.00 mV2/Hz
(triangles).

When the sinusoidal forcing is below the determin-
istic threshold, the PDFs becomes wider and wider as
we add more and more noise. Nevertheless, the most
probable value remains zero as a consequence of the
fact that the system spends most of the time close to
the fixed point corresponding to the stable solution in
the absence of noise. The large events being rare, the
average value does not deviate considerably from zero.

Fig. 7. PDFs of the amplitude of oscillations measured with the electronic circuit for increasing values of noise. (a)h = 34.5 mV, i.e.
above the deterministic threshold. The full lines correspond to the fit withEq. (15). (b) h = 29.5 mV, i.e. below the deterministic threshold.

5. Experimental results in the subcritical case

5.1. Experimental results for the electronic circuit

As said above, the parametric oscillator undergoes
a subcritical bifurcation in the case of negative detun-
ing. Time recordings of the oscillation amplitude and
phase in the presence of noise are displayed inFig. 8.
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Fig. 8. Temporal evolution of the amplitude|A| and the phaseΦ of the oscillations measured with the electronic circuit in the case of a
subcritical bifurcation: (a) and (b)h = 32 mV, i.e. above the deterministic linear threshold for a noise intensity: (a)κ(Ω) = 0.24 mV2/Hz and
(b) κ(Ω) = 5.85 mV2/Hz; (c) and (d)h = 29.5 mV, i.e. below the deterministic linear threshold for a noise intensity: (c)κ(Ω) = 0.24 mV2/Hz
and (d)κ(Ω) = 3.75 mV2/Hz.

Above the linear threshold, at first sight, the behavior
looks similar to the one observed in the supercritical
case. For small noise intensities, the amplitude and
the phase fluctuate in the vicinity of their determin-
istic values (Fig. 8a). For larger noise intensities, the
mean amplitude decreases and phase jumps are ob-
served when the instantaneous value of the amplitude
goes to zero (Fig. 8b). However, the PDFs do not dis-
play the continuous shift to zero of the most probable
value as in the supercritical case. Two local maxima
are observed and their positions are almost not affected
by the noise intensity (Fig. 9a). The larger one traces

back to the bifurcated limit cycle of the deterministic
system; its amplitude is decreased in the presence of
noise as in the supercritical case. The smaller one cor-
responds to the zero solution of the deterministic sys-
tem which is slightly increased in amplitude under the
effect of noise, again as in the supercritical case. How-
ever, above the deterministic linear threshold, the zero
solution is no longer stable in the absence of noise. The
existence of the smaller maximum of the PDF, thus
means that the zero solution is “stabilized” by noise.

The effect of noise on the time recordings of the os-
cillation amplitude and phase in the bistability region
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of the deterministic system, are displayed inFig. 8c
and d. For small enough noise, the amplitude fluctuates
in the vicinity of zero and the phase undergoes erratic
jumps as in the supercritical case (Fig. 8c). When the
noise intensity increases, transitions to the finite mean
amplitude limit cycle are generated, and the oscillator
displays random jumps between the zero and non-zero
states which are both linearly stable in the determin-
istic system. The phase is locked when the oscillation
amplitude is finite (Fig. 8d). The corresponding PDFs
display two local maxima for zero and finite ampli-
tudes (Fig. 9b). When the noise intensity is increased,
the probability of the finite amplitude state decreases,
showing again that large noise tends to “stabilize” the
zero solution. However, the position of the local max-
ima of the PDF are not affected by the intensity of
noise.

In conclusion, the effect of noise on a parametrically
amplified limit cycle depends on the super or subcriti-
cal nature of the bifurcation, even out of the bistability
range of the deterministic system. Instead of the con-
tinuous shift to zero of the finite amplitude maximum
of the PDF observed in the supercritical case, two lo-
cal maxima of the PDF of the oscillation amplitude
are observed in the subcritical case. Although, these
two maxima trace back to the two metastable states
of the deterministic system, their amplitude and their
relative stability are affected by noise. As in the super-

Fig. 9. PDFs of the oscillation amplitude as a function of the noise intensity, measured with the electronic circuit in the subcritical case:
(a) h = 32 mV, i.e. above the deterministic linear threshold; (b)h = 29.5 mV, i.e. below the deterministic linear threshold.

critical case, the bifurcation diagram in the presence
of noise strongly depends on the choice of the order
parameter. If the mean value of the oscillation ampli-
tude is chosen, the bifurcation remains first-order for
a low external noise level, but becomes continuous at
high enough noise (Fig. 10a). This may be analogous
in the time domain, to the phenomenon observed in
phase transitions, where it has been shown that mi-
croscopic random impurities or other type of spatial
disorder, may produce rounding of a first-order phase
transition[31–34]. If the most probable value of the
PDF is taken as an order parameter, the transition ob-
viously remains discontinuous but the bistability range
is modified by noise (Fig. 10b).

5.2. Noise-induced-bistability of parametric
surface waves

We study in this section the effect of noise on the
parametric amplification of surface waves through a
subcritical bifurcation and we emphasize the differ-
ences with respect to the electronic oscillator. Time
recordings of the amplitude of the waves in the pres-
ence of noise are displayed inFig. 11 as the sinu-
soidal forcing is increased. The frequency of the para-
metric excitation isΩ/2π = 60.4 Hz, corresponding
to a negative detuning (roughly a tenth of Hz). Con-
sequently, the bifurcation without noise is subcritical
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Fig. 10. Bifurcation diagram for: (a) the average value〈|A|〉 and (b) the most probable valueAmp of the oscillation amplitude measured
with the electronic circuit in the subcritical case and for different noise intensities. We report in (c) the two most probable values of
the corresponding PDFs together with their average values. Solid (respectively, dashed) lines represent the bifurcation diagrams in the
absence of noise for increasing (respectively, decreasing) forcing.κ(Ω) = 0.94 mV2/Hz (diamonds),κ(Ω) = 2.10 mV2/Hz (circles),
κ(Ω) = 3.75 mV2/Hz (crosses),κ(Ω) = 5.85 mV2/Hz (stars),κ(Ω) = 3.75 mV2/Hz (pentagons),κ(Ω) = 11.48 mV2/Hz (triangles),
κ(Ω) = 15.00 mV2/Hz (squares). Thin lines are just guides for the eyes.

and the wave amplitude abruptly jumps to a finite
value for a rms accelerationac = 5.8± 0.1 m/s2. The
noise intensity isκF(Ω) = 0.10 mV2/Hz. We can see

Fig. 11. Temporal evolution of the wave amplitude in the
subcritical case for a noise intensityκF(Ω) = 0.10 mV2/Hz.
The sinusoidal forcing corresponds to an average acceleration
〈arms〉 = 5.7,5.9,6.2,6.4 m/s2 in (a), (b), (c) and (d), respectively.

(Fig. 11a) that noise triggers oscillatory bursts before
the deterministic threshold, as in the supercritical case.
The presence of this rare but large events makes the
average value of the wave amplitude different from
zero before the deterministic threshold. Note however,
that the most probable value is zero. When the aver-
age acceleration is increased the amplitude begins to
switch between two values indicated by the two dot-
ted lines inFig. 11b and c. Both values are increasing
when the amplitude of the sinusoidal forcing is in-
creased, and the system spends more and more time
in the vicinity of the largest one. The PDFs corre-
sponding to the time recordings ofFig. 11 are dis-
played inFig. 12. At first sight, one may think that,
as in the case of the electronic oscillator, the effect of
noise consists of triggering transitions between the two
metastable states that exist in the vicinity of a subcriti-
cal bifurcation. We emphasize below that this is not the
case.

The amplitude of the waves measured in the ab-
sence of noise is shown with circles in the bifurcation
diagram displayed inFig. 13. As said above, there is
an abrupt jump from zero to finite amplitude forac =
5.8 ± 0.1 m/s2. The subcritical nature of the bifurca-
tion is due to negative detuning. The bistable region
in the vicinity of this subcritical bifurcation is rather
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Fig. 12. PDFs of the wave amplitude in the subcritical case for a noise intensityκF(Ω) = 0.10 mV2/Hz and for different values of the
deterministic forcing:〈arms〉 = 5.7,5.9,6.2,6.4 m/s2 in (a), (b), (c) and (d), respectively.

small but is strongly enlarged in the presence of noise.
The most probable values of the wave amplitude in
the presence of noise (κF(Ω) = 0.10 mV2/Hz as in
Fig. 11) are plotted inFig. 13. We observe a lower
branch that continuously increases from zero and an

Fig. 13. Bifurcation diagram for the amplitude of the surface
waves in the subcritical case. The wave amplitude|A| is measured
in arbitrary units. Circles are measured in the absence of noise.
Crosses correspond to the average value〈|A|〉 measured for a noise
intensityκF(Ω) = 0.10 mV2/Hz. For the same set of measurements
triangles represent the most probable values of the corresponding
PDF. Lines are guides for the eyes.

upper branch which exists for a rms acceleration above
a1 = 5.9± 0.1 m/s2. Thus, two branches of solutions,
displaying a bistable region, are created by noise. The
two dotted lines mark the beginning of the bistable re-
gion and the pointa2 = 6.2 ± 0.1 m/s2 above which
the probability of visiting the lower branch has de-
creased to ten percent of the probability of visiting the
upper one.

The average wave amplitude〈|A|〉 is shown with
crosses inFig. 13. We first observe that〈|A|〉 in-
creases continuously from zero when the average
acceleration,〈arms〉, is increased. However,〈|A|〉
does not interpolate between the two branches of
the deterministic bifurcation diagram as it would do
if the only effect of noise were to generate random
transitions between these two states. It of course
interpolates between the two branches for the most
probable value of the wave amplitude. The same
bifurcation diagram is displayed inFig. 14 for a
larger noise intensity (κF(Ω) = 0.18 mV2/Hz.) The
behavior is qualitatively the same but, rather surpris-
ingly, the noise induced bistable region is shifted to
higher values of the average acceleration. The value
of the slope of〈|A|〉 versus the average acceleration
decreases.
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Fig. 14. Bifurcation diagram (crosses) of the average wave am-
plitude in the subcritical case forκF(Ω) = 0.18 mV2/Hz. Trian-
gles represent the most probable values of the corresponding PDF.
Lines are guides for the eyes.

6. Conclusions

The effect of multiplicative noise on parametric
instabilities has been considered for a long time. Both
an analytical linear stability analysis of the zero solu-
tion of the Mathieu equation with a forcing involving
harmonic and noisy components[16], and an experi-
ment with an electronic parametric oscillator[6], have
been performed. Our experimental results differ in
several important aspects from the previous studies:
first, concerning the experimental measurements, we
have measured both the amplitude and the phase of
the oscillations in the presence of noise. Second, we
have studied the PDF of the oscillation amplitude and
compared it with the theoretical prediction made with
the assumption of phase-locked oscillations. Second,
we have also considered the effect of noise on a sub-
critical bifurcation and compared a low dimensional
dynamical system (the electronic oscillator) with a
spatially extended one which involves many modes
that may be excited by noise.

The effect of noise on parametric amplification is
twofold. When the system is below the deterministic
threshold for the instability, noise triggers the onset of
oscillations. On the other hand, once the oscillations
are developed, noise decreases their amplitude. The
first behavior may be described by the linear study

of Stratonovich in the case of small noise[16]. In-
deed, the threshold can be lowered by noise depending
on the relative strength of noise, forcing and detun-
ing from resonance. But, once an oscillatory regime
is developed, the nonlinearity becomes important. In
this case, the dominant effect is the phase decorrela-
tion induced by noise. This is equivalent to introduce
detunings bringing the oscillator out of resonance and
thus, decreasing its amplitude.

We have shown that the effect of noise on a para-
metrically amplified limit cycle depends on the super
or subcritical nature of the bifurcation. Instead of the
continuous shift to zero of the finite amplitude max-
imum of the PDF observed in the supercritical case,
two local maxima of the PDF of the oscillation ampli-
tude are observed in the subcritical case. In the case of
the electronic oscillator, i.e. a low dimensional dynam-
ical system, these two maxima trace back to the two
metastable states of the deterministic system. In the
case of surface waves new states can be “stabilized” by
noise and the bistable region of the deterministic sys-
tem may be strongly enlarged by multiplicative noise.
We note that “noise-enhanced multistability” has been
reported in a simple model of coupled oscillators but
also requires additive noise[35]. The structure of this
model being of a very different nature than the one
involved in parametric amplification, we expect that
noise-induced bistability can be observed with other
subcritical pattern-forming instabilities.
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