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Abstract—This paper explores contact heating in microelectro-
mechanical systems (MEMS) switches with contact spot sizes
less than 100 nm in diameter. Experiments are conducted to
demonstrate that contact heating causes a drop in contact resis-
tance. However, existing theory is shown to over-predict heating
for MEMS switch contacts because it does not consider ballistic
transport of electrons in the contact. Therefore, we extend the
theory and develop a predictive model that shows excellent
agreement with the experimental results. It is also observed that
mechanical cycling causes an increase in contact resistance. We
identify this effect as related to the build-up of an insulating film
and demonstrate operational conditions to prevent an increase
in contact resistance. The improved understanding of contact
behavior gained through our modeling and experiments allows
switch performance to be improved. [1424]

Index Terms—Electrical contacts, microelectromechanical sys-
tems (MEMS), switches.

I. INTRODUCTION

M
ANY examples of metal contact RF MEMS switches are
presented in the literature (for example, [1]–[3]). These

have demonstrated the excellent performance typical of MEMS
switches—highoff-state impedance, lowon-state impedance,ex-
cellent linearity, and low power consumption. This performance
makes them attractive alternatives to solid-state switches in mil-
itary and commercial radar systems, satellite and wireless com-
munications systems, and wireless sensors [4]. In addition to the
advantages mentioned above, metal contact switches offer signif-
icantly wider bandwidth as compared to capacitive switches, al-
lowing them to be used in reconfigurable antennas and circuits in-
tendedformultiple frequencybands.Understanding thefailureof
metal contact switches is challenging, however, due to the com-
plex interactions between deformation, current flow, and heating
at the contact [5]. Still, individual examples of such switches have
demonstrated reliable operation to several billion cycles [3], [6].

Several failure mechanisms have been noted for metal contact
switches, including adhesion [3], melting, material transport [7],
thermally induced explosions related to boiling of the contact
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metal [8], and increasing contact resistance [1], [3]. Typically,
these failure mechanisms have been noted rather than studied
in more depth. For example, an increase in contact resistance as
the switch cycles has been reported for both large-scale silver
contacts [9] and for MEMS contacts at high cycle numbers [1],
[3], but these works have not suggested a hypothesis for the
physical cause of the increase.

In addition, it is significant that each failure mechanism above
relates to the contact behavior. Therefore, improvements in relia-
bilityandpowerhandlingcapabilityrequireasolidunderstanding
of the physics governing contact formation. However, while con-
tact mechanics has been studied extensively over many years, mi-
croscale contacts present new challenges. The forces in MEMS
contacts (typically tens to hundreds of micro-Newtons) are ap-
proximatelyone thousand times smaller than what haspreviously
beenconsidered asa microcontact force—on theorder of200 mN
[10]. Such small forces produce contact spots with size normally
comparable to or smaller than the electron mean free path in the
material ( 50 nm), leading to additional contact resistance due
to boundary scattering of electrons passing though the contact.

Heating in contacts due to the passage of current has been
studied extensively by Holm [10]. Moreover, finite difference
analysis [11] and finite element analysis [12] have both been
applied to the heating of contacts in MEMS switches. In all of
these works, however, the contact spot size has been assumed
to be larger than the electron mean free path. Our experiments
suggest that MEMS contacts frequently have spot sizes on the
order of or smaller than the mean free path. Such small contact
spots are expected to experience reduced heating compared to
spots larger than the mean free path.

Hence, in this paper we show that existing contact theory sig-
nificantly over-predicts contact heating for such small contact
spots. We develop improved theory of contact heating for small
spots and demonstrate the use of heating for preventing con-
tact resistance increase. In multiple experimental results, we
show the accuracy of the improved theory. Further, we inves-
tigate the causes of contact resistance increase. The resulting
understanding allows improved switch operation by keeping re-
sistance low.

II. EXISTING CONTACT THEORY

A significant component of contact resistance is caused by
the roughness of the contacting surfaces (see Fig. 1). As the sur-
faces come together, high points on each surface make contact,
producing real contact at a finite number of asperities. MEMS
switch contacts operated under typical conditions are also likely
to be covered by a thin insulating film due to process residuals,
impurities in the ambient (most likely hydrocarbons), or some
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other source. The presence of this insulating film further limits

metal-to-metal contact by allowing real contact only at breaks

in the film. This creates a restriction causing a larger resistance

across the contact than results from contact asperities alone.

A contact normally consists of multiple spots of different

sizes. Therefore, prediction of contact spot size distribution is

necessary to fully model contact resistance. Assuming that the

spots are sufficiently far apart that they do not interfere signifi-

cantly with each other, the resistance of the th spot, , acts in

parallel with the others. Hence, the total contact resistance ,

accounting for spots, is given by

(1)

Contact surfaces are often modeled using fractal theory, where

the contact spot distribution follows the power law proposed by

Mandelbrot [13]. Integrating over each spot gives [14]

(2)

where is the total contact area, is the fractal dimension

(a parameter between 2 and 3), and is the area of the largest

contact spot. AFM imaging of the gold surfaces used for our

experiments showed that for this case is less than 2.05, and

therefore is approximately equal to —indicating that the

largest spot , with the lowest contact resistance, dom-

inates the total contact resistance. Then

(3)

Therefore, the contact resistance can be treated as if it were

caused by a single contact spot. By contrast, some previous work

in MEMS contacts has estimated that a few tens of asperities

were in contact [1], [15]. However, this previous work used a

different fabrication process which resulted in much rougher

contact dimples, which would cause the assumption that is

near 2 to be violated. Moreover, the estimate that one asperity

dominates the resistance does not preclude the presence of addi-

tional contact asperities, so long as the additional contact spots

are sufficiently smaller than the largest spot to contribute little

to the contact conductance.

As current flows, it heats the contact spot to an elevated tem-

perature. This heating can be extremely localized, resulting in

contact temperatures tens or even hundreds of degrees higher

than the surrounding material. For metal contacts, Holm has ex-

pressed the contact spot temperature as a function of contact

voltage as [10]

(4)

Here, is the Lorentz constant and

is the ambient temperature. At sufficient contact temperature,

annealing of the contact takes place, reducing the contact hard-

ness (a phenomenon known as “contact softening” [10]). More-

over, heating of the contact spot may also cause breakdown or

delamination of the insulating film, allowing real contact over

a larger area. Either effect is measured as a decrease in contact

resistance. This is illustrated in Fig. 1. The published softening

Fig. 1. Illustration of contribution of surface roughness and insulating films
to contact resistance. Heating due to current flow in the contact spot leads to a
resistance decrease caused by material annealing or film breakdown.

Fig. 2. SEM of a gold contact which boiled due to current flow.

Fig. 3. SEM image of a sample contact-type switch. Probe placement is shown
for four-point-probe measurement of contact resistance.

temperature for gold contacts is 100 , corresponding to a con-

tact voltage of 70–80 mV for contacts near room temperature

[10]. Contact melting or boiling (see Fig. 2) is also possible at

higher temperatures. For gold these occur at 1063 and 2817 ,

respectively, or about 430 and 900 mV, according to (4).

III. FABRICATION AND EXPERIMENTS

To study contact heating and its effects on contact resistance,

we fabricated and tested metal-contact MEMS switches. A SEM
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Fig. 4. (a) SEM image of the micromachined dimple, and (b) AFM scan of the gold contact surface.

image of a typical switch is shown in Fig. 3. The switch con-

sists of a fixed-fixed beam situated across the ground lines of

a coplanar waveguide. The beam and underlying electrodes are

sputtered gold. Electrostatic force is used to pull the beam down

until the dimple in the center of the beam contacts the central con-

ductor of the waveguide. To avoid charging, there is no dielec-

tric film coating the actuation electrodes. Instead, the stiffness of

the beam is relied upon to prevent shorting. The total gap under

the beam is 1.54 , with a dimple height of 1.18 , leaving

a distance of 0.36 to travel before contact occurs. The tested

beams had a width of 100 , a thickness of 3.1 , and a length

of either 400 or 500 . The beam geometry allows four-point

probe measurements of contact resistance, as illustrated in Fig. 3.

The dimples varied in size between 5 5 and , but

no difference in contact resistance behavior was seen between

dimples of varying size. SEM imaging of the dimples suggests

that the bottoms are very flat, without any detectable curvature,

as shown in Fig. 4(a). Similarly, AFM imaging of the contact

electrode showed that it has rms roughness of approximately

13 nm. A sample AFM scan is shown in Fig. 4(b).

We measured switch pull-down voltage (the voltage just

required to initiate contact) and ultimate pull-in voltage (the

voltage causing unstable collapse onto the actuation electrodes)

and compared them to predictions of a mechanical model to

extract Young’s modulus and residual stress. We estimated the

Young’s modulus of our gold film to be 50 5 GPa, with a

residual tensile stress of about 92 6 MPa. Several papers have

Fig. 5. Illustration of fabrication steps.

previously reported estimates between 50–55 GPa for Young’s

modulus of microfabricated gold structures, comparing well

with our measurement [16]–[18]. Contact occurred at approx-

imately 55 V for the 500 beam and about 60 V for the

400 beam, and catastrophic collapse onto the actuation

electrodes occurs at about 100 and 124 V, respectively.

The contact force in the switches was calculated based on

the measured actuation voltage using a mechanical-electrostatic

model employing the finite difference method to simulate me-

chanical deflection. A reduced-order model based on relations

for the capacitance of a microstrip line was used to simulate

the electrostatic force [19]. The model was validated by com-

parison to simulations using both ANSYS and CoventorWare.
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Fig. 6. Experimental setup.

Both comparisons showed a maximum error in the contact force

of less than 1.4% over a variety of loading conditions. However,

the uncertainty in the values of Young’s modulus and residual

stress contributes to uncertainty in the contact force predictions.

Overall, we estimate that the contact forces reported here are ac-

curate to within up to a contact force of about 218

[20]. Using this same technique, we estimate contact opening

forces (or elastic restoring forces) of 60 and 70 for the 500

and 400 beams, respectively.

A. Fabrication

The switches were fabricated using metal surface microma-

chining, shown in Fig. 5. The substrate is a silicon wafer with a

layer of thermal oxide for isolation. The first gold layer, used for

actuation and contact electrodes and for wiring, is sputtered and

patterned, Fig. 5(a). Next, a thin layer of photoresist is spun on

and patterned to define the anchors, Fig. 5(b). The thickness of

this layer determines the gap between the dimple and the contact

electrode. The second layer of photoresist is then spun on and

patterned to define the dimples, Fig. 5(c). Finally, the mechan-

ical layer of gold is sputtered and patterned to create the beams,

Fig. 5(d). In the end, the beams are released by wet etching and

supercritical drying, Fig. 5(e).

B. Experimental Setup

To avoid stiction, the switches were tested in a sealed vacuum

chamber kept at 5–8 mTorr. An illustration of the experimental

setup is shown in Fig. 6. The vacuum level is sufficient to re-

duce the moisture in the chamber, but not to ensure a clean gold

surface, and thus a thin hydrocarbon layer probably coats the

gold surface [21]. Nevertheless, at low moisture, the switches

showed significantly reduced adhesion. When operated in air,

the switches sometimes stuck down, but those operated in

vacuum did not. The chamber is also fitted with a temperature

controller that operates from room temperature to over 700 K.

Contact resistance has been shown both experimentally and

numerically to remain equal to its dc value at extremely high

frequencies (for these switches, higher than 20 THz) [22], [23].

Hence, our experiments were simplified by measuring the dc

contact resistance rather than S-parameters. Two multimeters

were used to record current flow and voltage drop across the

contact using the four-point probe technique. A dual-channel

power supply was used to provide the contact voltage as well

as the actuation signal, with a voltage amplifier to provide

the high actuation voltage. All instruments were controlled by

a computer running LabVIEW. The contact force was con-

trolled by varying the actuation voltage. We found that after

fabrication, the switches normally showed very high contact

resistance (above 100 ). However, by applying a burn-in

contact voltage of 2–3 V, the resistance was reduced to 1–2 .

The burn-in process is very similar to A-fritting as discussed by

Holm [10]. It is unknown, however, whether the same physics

is involved. After burn-in, 500 cold-switched break-in cycles

were performed.

The power supply (Agilent E3646A) allows both a current

limit and a voltage limit to be set. When the output is turned on,

the instrument increases the voltage until either limit is reached,

allowing for operation in either current-controlled or voltage-

controlled modes. Hence, we were able to specify either the

contact voltage or the contact current. For example, when ap-

plying the 2–3 V burn-in signal mentioned above, we set the

current limit to 1 mA, so that the power supply automatically

reduced the voltage when the contact resistance dropped, pre-

venting contact melting. Similarly, during the 500 break-in cy-

cles, the power supply provided 5 mA of current through the

contact in each break-in cycle.

IV. EXPERIMENTAL RESULTS

First, we tested the response of the contact resistance to exter-

nally applied heating. As subsequent results will show, we were

able to increase the resistance in a switch by mechanical cy-

cling without the application of current to the contact. Using this

method, we raised the resistance in a switch to about 68 . Using

the thermal stage, we then raised the temperature of the entire
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Fig. 7. Contact resistance of a contact heated by a thermal stage.

chip from room temperature to 90 and recorded the con-

tact resistance during heating. The results are shown in Fig. 7.

The stage was heated at a rate of 6 per minute, sufficiently

slow to assume quasistatic heating of the contact. The contact

voltage was maintained below 10 mV to prevent self-heating,

and the contact force was approximately 80 . During heating,

we observed a large drop in contact resistance, from about 70

to about 3 . In fact, the resistance began to drop soon after the

temperature began to rise, but the largest portion of the drop oc-

curred between 60 and 70 .

A resistance reduction caused by contact heating is called

“contact softening” [10], [24]. Note, however, that true contact

softeningoccurs insurfacesheatedsufficiently tocauseannealing

of dislocations in the contact. Since our contacts contain impuri-

ties, it is uncertain whether the observed resistance reduction is

due to annealing or to enhanced diffusion of the impurities away

from the contact at elevated temperature, resulting in a larger

contact area. However, since both effects are caused by heating,

we will refer to any thermally induced resistance reduction as

contact softening. This paper will further explore the cause of

the resistance reduction after presenting all of the relevant data.

We can approximate the softening temperature (or tempera-

ture causing softening) as , significantly smaller than

the published softening temperature of 100 , which is based

on the assumption of contact annealing. Note that thermal stress

during heating will increase the contact force somewhat (pre-

dicted contact force at 90 is about 218 ). However, tests

performed at room temperature show that varying contact force

by changing actuation voltage causes a 4% drop in contact re-

sistance between 80 and 218 —much less than the dramatic

95% decrease seen here. Similarly, several previous results for

microscale contact resistance have shown little dependence on

contact force for forces between about 100 and 1,000 [11],

[25], [26]. Hence, the majority of the resistance drop is caused

by the externally applied heating.

Next, we studied self-heating of the contact. We measured

V–I curves of the contact resistance under varying contact force

(that is, using different actuation voltages) for hundreds of

contact events on more than 10 switches. The data were taken

by stepping the current and measuring the contact voltage.

At least 50 cycles separated each V–I test to prevent any test

Fig. 8. Voltage vs. contact resistance showing contact softening. The raw V-I
data are shown in the inset.

being affected by the previous ones. We found that an increase

in contact voltage beyond a threshold caused the contact

resistance to decrease in every case. After the decrease, the

contact resistance remained low for immediately subsequent

cycles. However, during the 50 cycles after each V–I curve, the

contact resistance returned to its original value. Fig. 8 shows

typical voltage-contact resistance curves for a 500 beam at

six levels of contact force. The raw V–I data are shown in the

inset. The resistance remains nearly constant or shows a slight

rise (due to the increase in resistivity with temperature) until

the voltage reaches approximately 70–80 mV. At this point,

the resistance decreases rapidly, similar to experimental data in

[10] or [27].

A. Low-Resistance Switch Operation

Experiments also revealed that with switches tested using a

low voltage limit of 10 mV, the contact resistance tended to

continuously increase as the switch cycled. The cause of this

resistance increase is not known, but it has been observed pre-

viously [1], [3]. We will present a hypothesis for this resistance

increase in the next section. However, we found that when the

voltage limit was increased above 0.5 V (while keeping the cur-

rent below 1 mA to avoid excessive heating), contact heating

caused the contact resistance to stay nearly constant over hun-

dreds of cycles. We observed this behavior under both hot and

cold switching. Here, hot switching is defined as switching per-

formed with a voltage placed across the contacts throughout the

on–off cycle. In cold switching, voltage is only placed on the

switch when the electrodes are in contact. Typical cold-switched

results are shown for the both steady resistance and rising resis-

tance in Fig. 9(a) and (b). The contact force in each cycle for

this data is about 48 .

To demonstrate that the elevated temperature resulting from

contact heating is responsible for avoiding the contact resis-

tance rise, we tested a switch heated to 80 using externally-

applied heating from the thermal stage. The current and voltage

limits, and the contact force, were the same as the data in

Fig. 9(b)—1 mA, 10 mV, and 48 (note that in this experiment
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Fig. 9. Cold-switched operation with current limit of 1 mA and voltage limit of
(a) 1.3 V (showing steady resistance) and (b) 0.01 V (showing rising resistance).

Fig. 10. Comparison of contact resistance for contacts operated at room-
temperature and heated to 80 C.

the actuation voltage was reduced to keep the contact force the

same at elevated temperature). Fig. 10 compares the resulting

contact resistance measurements to the data in Fig. 9(b). Over

more than 200 cycles, while the room-temperature contact resis-

tance increases hundreds of times, the heated contact resistance

remains low, showing that heating prevents the increase in

contact resistance. While these low-cycle experiments cannot

prove that life may be extended in this way, these results suggest

that contact heating may be used to avoid this important failure

mechanism for MEMS switches.

TABLE I
EXPERIMENTAL RESULTS REGARDING CONTACT RESISTANCE INCREASE

B. Exploration of Resistance Increase

Table I summarizes experimental results that give a better un-

derstanding of contact resistance rise. The first two lines give the

average resistance rise after no operation for 14 and 19 days, re-

spectively. In this case, the contact resistance of a switch was

measured , and the contact was then opened. For the

next two weeks, neither it nor any of the switches nearby was

tested, while the chip remained in the vacuum chamber. On the

fourteenth day, the switch was cycled five times with a contact

force of about 48 . The average contact resistance was 5.24

higher than the initial contact resistance, with a standard devia-

tion of 0.2 . After five further days of no additional operation,

the switch was cycled another five times at the same contact

force. In these cycles, the average contact resistance showed an

overall increase of 7.88 (with standard deviation of 0.8 )

compared to the initial contact resistance of 2 . Hence, al-

though the process was quite slow, the contact resistance in-

creased even when no handling of the switches took place. The

most likely cause for such an increase is the gradual build-up or

repair of an insulating film.

The last two lines compare the average contact resistance rise

after 100 cycles for switches tested with a voltage limit of 10 mV

and for switches tested with no contact voltage applied. These

experiments were performed to test the hypothesis that electro-

static force pulled impurities into the contact area, increasing

resistance. In each case, three sets of 100 cycles were averaged,

with each set beginning after the contact was softened to an ini-

tial resistance of 5–10 . As before, the contact force in each

case was about 48 . The results indicate a statistically in-

significant difference. Hence, mechanical cycling alone is an

important factor in the resistance increase.

C. Inconsistencies With Existing Contact Heating Theory

The data in Fig. 8 indicate contact resistance reduction at a

threshold voltage of approximately 75–80 mV for an initial con-

tact resistance near 1 . This threshold voltage is called the

“softening voltage” [10], [24]. (Initial contact resistance here

is the resistance measured at the start, on the linear part of the

V–I curve.) However, further testing showed that the softening

voltage increases as the contact resistance rises. This was tested

by measuring V–I curves with a variety of initial contact resis-

tance magnitudes. Fig. 11 gives the softening voltages extracted

from V–I curves of 21 contacts with initial contact resistances

varying from 0.5 to 336 . The resistances were varied by using

mechanical cycling to raise the resistance and contact heating

to reduce it. The plot shows that the softening voltage increases

for larger initial contact resistance from about 70 mV at 0.5
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Fig. 11. Softening voltage dependence on contact resistance showing the
increase in the softening voltage with higher contact resistance. The lines
drawn on each data point give experimental uncertainty in the measurements.

to over 350 mV at 336 (again, a contact force of about 48

was used). These values are all higher than predictions using

existing theory, as shown by the line at 52 mV. This line repre-

sents the voltage prediction from (4) for heating a contact from

22 to 65 , the softening temperature measured from Fig. 7.

In fact, existing theory gives no explanation for why contact

heating should depend on the initial contact resistance. To ex-

plain these inconsistencies, we develop below improved theory

for modeling the contact heating in MEMS-scale contacts. First,

we consider further the cause of the resistance increase.

V. DISCUSSION OF RESULTS

While Fig. 10 shows that contact heating prevents immediate

contact resistance rise, the cause of this rapid rise was not ap-

parent. We had previously suggested that cold-working of the

contact asperities led to hardening of the metal, increasing con-

tact resistance [28]. However, while this may be responsible for

a portion of the observed increase, it is unlikely that strain hard-

ening can account for a thousand-fold increase like that shown

in Fig. 9(b). Since contact resistance scales as the square root of

hardness [24], such a large increase in resistance would require

hardness to increase one million times.

In fact, only the presence of impurities is likely to cause such

a large change in contact resistance. We have already men-

tioned that previous work indicated that sputtered gold films

most likely retain a thin insulating layer, probably composed

of hydrocarbons adsorbed onto the surface [21]. The high

contact resistance of the switches prior to burn-in supports this

idea. However, we believe that actual metal-to-metal contact

occurs after the initial burn-in because the V-I curves are very

linear up to the softening voltage, as will be shown in Fig. 15.

In addition, we have found that contacts with lower contact

resistance have higher adhesion, suggesting that a larger metal

area is in contact [29].

The results reported in Table I further support the idea that the

resistance increase is caused by build-up of an insulating film,

with mechanical cycling largely responsible for the build-up.

The contact behavior suggested by our results is summarized

Fig. 12. Hypothesis describing contact behavior.

in Fig. 12. Part (a) shows two surfaces in contact. Both surfaces

are covered with an insulating film. Placing sufficient voltage on

the contact surfaces causes breakdown of the insulating film, al-

lowing current flow, Fig. 12(b). When the surfaces pull apart, the

contact spot is still bare (no film), as depicted in Fig. 12(c). How-

ever, randomness in the contact closing process causes the film-

free spots to be misaligned in subsequent cycles, Fig. 12(d). This

causes the insulating film to be pressed onto the edges of the

film-free areas, promoting regrowth of the film and leading to

increasing contact resistance. This behavior also explains why

there appears to be just one real contact spot. When the insu-

lating film initially breaks down in one spot, the voltage imme-

diately drops as current begins to flow, reducing the stress on the

rest of the film. Based on this hypothesis, the contact resistance

increase would not be observed in ultra-high vacuum, since it

has been shown that the film is removed in such an environment

[21].

VI. THEORY

For a contact radius on the order of the electron mean free

path (about 38 nm in gold [30]) or smaller, the current is con-

stricted by both lattice scattering and boundary scattering of

electrons. For both ohmic constriction and boundary scattering,

the contact resistance for a spot of radius is [31]

(5)

where is the mean free path, and is the electrical resistivity.

is the Maxwell spreading resistance (the resistance due to

lattice scattering), and is the Sharvin resistance (the addi-

tional resistance due to boundary scattering in small constric-

tions). Also, is a scaling function. While this equation

is well-known, most of the existing work on contact heating

considers only the contribution of the Maxwell spreading re-

sistance [10], [32]. Even for the smallest contact resistance in

Fig. 11 of 0.5 , (5) gives a contact radius of 51.8 nm, com-

parable to the electron mean free path. (For this calculation,

we used a measured resistivity of .) Hence,

much of the measured resistance results from boundary scat-

tering of electrons. However, boundary-scattered electrons do
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Fig. 13. Half of a contact showing the contact surface, an intermediate
isothermal-equipotential surface, and a surface far from the contact spot. Labels
show the potential and resistance (measured with respect to the contact surface)
as well as temperature.

not transfer heat to the metal lattice within the contact constric-

tion (see [33]), leading to a reduction in the contact tempera-

ture for a given contact voltage. The existing model of contact

heating does not include this effect.

In addition, the existing model of (4) assumes that the tem-

perature far from the contact spot is equal in each of the con-

tacting bodies. This is not true for many MEMS contacts, since

the small size of the moving contact makes heating of the entire

moving body unlikely. Hence, a difference exists between the

substrate (at room temperature) and the moving body (at an el-

evated temperature). Therefore, understanding of the nanoscale

contact heating requires consideration of both the device-level

temperature and the extremely localized heating of the contact

spot. At the nanometer scale, models relate the real contact size

and contact voltage with the contact temperature. On the de-

vice level, an integrated electrothermal model is necessary to

describe the relationship between current flow and temperature.

A. Asperity Heating Model

The goal of the nanoscale contact heating model is to relate

the contact voltage to the contact spot temperature while

considering the effects of contact spot size. The principle dif-

ference between the theory presented here and existing theory

is that we assume that heating in the contact is due only to the

Maxwell term in (5), .

Greenwood and Williamson have previously shown that

equipotential surfaces are also isothermals in a contact [32].

For initial development of the model, we assume that the

contact is symmetric, with maximum temperature at the contact

asperity. This assumption will be relaxed later. Hence, we

analyze a half-contact. See Fig. 13 for an illustration, with

labels showing potential, resistance, and temperature at the

contact spot, an arbitrary intermediate isothermal-equipotential

surface, and on a surface sufficiently far from the contact. We

further assume that the potential on an equipotential surface

can be broken into Maxwell and Sharvin components as

(6)

and are the Maxwell and Sharvin components of re-

sistance between the surface and the contact spot, and

is the total resistance in the same volume.

Assuming that the Maxwell resistance is the only source of

contact heating, we can write the total heat generated between

the contact spot and any isothermal as . The isothermal

differential temperature is then

(7)

where is the corresponding differential thermal resistance

of the surface. If we assume that conduction through the metal is

the dominant form of heat transfer through the contact, we can

also compare the differential thermal and electrical resistances

on any equipotential surface via the relation

(8)

Here, and are the effective electrical resistivity and

thermal conductivity of the metal accounting for size effects.

Substituting (6) and (8) into (7) then gives

(9)

Integrating from the contact spot to the far surface produces

(10)

Unfortunately, the detailed geometry of the contact is re-

quired to calculate and . However, we may estimate

the ratio as that of the overall Maxwell resistance to

the overall contact resistance, . Making

this substitution into (10) and evaluating the integral gives

(11)

The left-hand side of (11) may be evaluated using the Wiede-

mann–Franz law. This law states that for metals, ,

where and are the material electrical resistivity and thermal

conductivity [34]. The Wiedemann–Franz law has been shown

to apply even at atomistic length scales, the size of the smallest

possible contact spots, so it applies to the factor as well

[35], resulting in

(12)

The only difference between (12) and (4) is the factor .

This factor is nearly unity when is small (when is much

larger than ), and it decreases to nearly zero for large (when

is much smaller than ). Therefore, for a small contact resis-

tance, (12) is equal to (4), deviating only when boundary scat-

tering contributes to the contact resistance.

Equation (12) gives the asperity temperature assuming both

contact surfaces are at the same temperature . As described

above, the moving surface in a MEMS switch is likely to be

heated by the passage of current, and so the material in the con-

tact surfaces is at different temperatures and (we arbi-

trarily choose ). In this case, a constant additional heat
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flux will flow through the contact, and so (7) will have an ad-

ditional term

(13)

The flux is added if the isothermal surface is in contact body

1 (at ) and subtracted in body 2 (at ). Following the same

derivation used for (12) leads to

(14)

(15)

Eliminating from both equations yields

(16)

We remark that (16) is identical to (12) when .

We also note that (12) has been experimentally validated using

MEMS switch contacts [36].

B. Electrothermal Model

Use of (16) requires knowledge of and , the temper-

atures of the contacting bodies. We can assume that the fixed

contact remains at ambient temperature, . However,

electrothermal modeling of the switch is required to calculate

, the temperature in the moving contact. The electrothermal

model used here is described in [37]. Briefly, 2-D finite ele-

ment modeling (FEM) is used to solve the heat equation with

the electric current as a heat source. The model includes effects

due to heat conduction and contact heating, as well as electrical

and thermal contact resistance. Convective and radiative heat

transfer are ignored because they are insignificant.

C. Comparison to Experimental Data

Using the combination of FEM and (16), we analyzed the

data of Fig. 8 to determine the contact spot temperature and

percent real contact area increase. First, we used the FEM to

calculate the temperature in the beam near the contact. We then

computed the contact spot temperature using (16). Finding the

real contact area requires knowledge of the change in average

electrical resistivity as the contact is heated. Holm estimated that

the average resistivity changes as [10]

(17)

where and are respectively the average and room tempera-

ture resistivities and , the difference between the

contact spot temperature and room temperature. We estimated

the contact spot size for each data point of Fig. 8 using (5) and

(17), allowing estimation of the area increase as , where

is the real contact radius and is the initial contact radius (the

first data point for each V–I curve).

Fig. 14 shows the calculated percent contact area increase

as a function of the predicted contact temperature. The data

show rapidly increasing contact area above about 65 . This

result agrees well with the experimental threshold temperature

Fig. 14. Percent increase in contact area as a function of contact spot
temperature for the data shown in Fig. 8.

Fig. 15. Four V-I curves with contact temperature isothermals. The expected
softening region, 60–80 C, is shaded for emphasis. After becoming nonlinear,
the V–I curves follow the shaded isothermals, showing that softening continues
at the same temperature as current increases.

of 60–70 . However, we emphasize again that these temper-

atures are well below the published softening temperature for

gold of 100 [10]. We believe that the resistance decrease in

our experiments is due to the thermal breakdown of bonds be-

tween the gold and the insulating film, allowing the film to be

easily pushed aside. Alternatively, it has been shown that gold

melting temperature drops for small gold particles [38]. Hence,

it is also possible that softening occurs at reduced temperature

for small contact spots. Softening at the published softening

temperature has been linked to annealing, leading to a reduc-

tion in hardness of the work-hardened contact spot [10]. We be-

lieve that the reason for the disparity is that our measurements

are recording a different physical phenomenon (breakdown of

an insulating film) that seems to dominate contact resistance in

low-force MEMS contacts.

Four V-I curves from the tests summarized in Fig. 11 are

shown in Fig. 15 and compared to model predictions of asperity

temperature. The contacts had initial resistance of 2, 17, 50, and

336 . Contact temperature isothermals are shown for tempera-

tures from 30 to 100 . These isothermal lines were calculated
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Fig. 16. The expected after-softening contact resistance as a function of
current carried by the contact.

by converting (16) into two parametric equations describing the

voltage and current in a contact at a given temperature

(18)

(19)

The isothermals in Fig. 15 were generated by choosing a range

of values for the contact resistance , setting equal to the

ambient temperature of 22 , and calculating using the finite

element model. The onset of nonlinearity for each V-I curve oc-

curs at approximately 70 , agreeing with the experimentally

determined softening temperature. Moreover, a key result is the

nonlinear part of the V–I curves. Once the V–I lines become

nonlinear, they follow the isothermals, staying largely within

the shaded region (60–80 ). Therefore, when the current is

increased after the first contact softening, the contact resistance

continues to decrease, keeping the contact temperature approx-

imately constant. This important result provides another strong

validation of the theory.

The V–I data in Fig. 15 are similar to data for B-fritting pre-

sented by Holm [10]. B-fritting is the growth of a contact spot

due to breakdown of an insulating film under sufficient voltage.

Our results suggest that in this case, B-fritting is caused by

heating of the contact spot—an idea supported also by the data

of Fig. 7, when the switch was heated externally by the thermal

stage. By contrast, Holm attributed B-fritting to electrostatic

force acting on ions in the film.

Fig. 15 also illustrates another important result. Since the V–I

curve after softening stays near the 60–80 isothermals, we

may predict the reduced resistance resulting from softening as

a function of the current carried by the contact. The resistance

after softening is simply that corresponding to a contact tem-

perature of roughly 60–80 . Fig. 16 shows the resulting rela-

tionship. The upper and lower estimates on this plot represent

the isothermal curves corresponding to 80 and 60 , respec-

tively, in Fig. 15. The isothermal curves are replotted to illustrate

the relationship between the contact resistance after softening

and the current causing softening. This understanding is vital

in modeling the contact behavior after heating has taken place.

VII. CONCLUSION

We performed experiments that demonstrated a contact resis-

tance reduction when a metal-to-metal contact is heated. This

reduction is called contact softening. Softening occurs both for

externally-heated contacts and for those heated by the passage

of current (see Figs. 7 and 8). We also found that existing theory

over-predicts internal heating for MEMS contacts. In addition,

we showed that contacts with larger resistance require a higher

contact voltage for heating. This effect is not predicted by ex-

isting theory (see Fig. 11). Therefore, we proposed a new ap-

proach to explain these effects. The resulting theory predicts that

for a given contact voltage, small contact spots with a radius less

than about 40 nm (those with high resistance) will show reduced

heating compared to larger spots. This is because boundary-

scattered electrons (which account for much of the resistance of

small spots) do not heat the contact region. Our predictions com-

pare well with experimental data. Using the theory to explain ex-

perimental results, we can confirm that both externally-heated

and voltage-heated contacts are softened at a temperature of

60–70 . Further, as shown in Fig. 15, increasing the contact

current after softening takes place leads to further resistance re-

duction. This further reduction occurs such that the contact tem-

perature remains nearly constant despite the increased current

(see the shaded region in Fig. 15). This allows approximate pre-

diction of the contact resistance after the contact has been soft-

ened at a given current.

We also found that contact heating can be used to con-

trol contact resistance increase, a commonly-reported failure

mechanism for MEMS switches. Our experiments showed that

unheated contacts showed significantly larger resistance as the

switch cycled. The data suggest that this increase may be due to

the build-up of an insulating film. However, contacts heated ei-

ther externally or internally (by the passage of current) showed

low resistance over many hundreds of cycles (see Figs. 9 and

10). Further experiments are planned to study the effect of

contact heating on switch lifetime. We believe that heating

breaks down the insulating film, reducing resistance. Therefore,

contact heating allows control of contact resistance in MEMS

switches. Comparisons between theory and experiments verify

this conclusion.
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