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Effect of Nanotube Functionalization on the Elastic Properties
of Polyethylene Nanotube Composites
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The effects of the chemical functionalization of a single-wall carbon nanotube in nanotube/polyethylene compos-

ites on the bulk elastic properties are presented. Constitutive equations are established for composites containing

both functionalized and nonfunctionalized nanotubes using an equivalent-continuum modeling technique. The

elastic properties of both composite systems are predicted for amorphous and crystalline polyethylene matrices

with various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific com-

posite materials considered in this study most of the elastic stiffness constants of the composite with functionalized

nanotubes are either less than or equal to those of the composite without functionalized nanotubes.

Nomenclature

A f = strain concentration tensor of effective fiber
Ci jmn, C = elastic stiffness tensor of the composite

C
f

kl , C f = elastic stiffness tensor of effective fiber
Cm

kl , Cm = elastic stiffness tensor of matrix
C0 = elastic stiffness tensor of reference medium
c f = effective fiber volume fraction
D I = molecular mechanics parameter
E, Ei = composite Young’s modulus
e = applied strain
G, Gkl = composite shear modulus
I = identity tensor
K

f

i j = plane-strain bulk modulus of effective fiber
K r = molecular mechanics parameter
K θ = molecular mechanics parameter
R = molecular mechanics parameter
r I = molecular mechanics parameter
S = Eshelby tensor
ui (B) = displacements applied onto boundary B
V = volume of effective fiber
xi = coordinate system of effective fiber
γ = applied shear strain
δi j = Kronecker delta
εi j = strain tensor

η
f

kl = effective fiber parameter tensor
� = molecular mechanics parameter
κ, µ = orientation parameters
� f = total strain energy of effective fiber
σi j = stress tensor
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Introduction

S INGLE-WALLED carbon nanotube (SWCNT)-reinforced
polymer composites have the potential to provide order-of-

magnitude increases in strength and stiffness relative to typical
carbon-fiber reinforced polymeric composites.1 The remarkable
property-to-weight ratio of these materials makes them ideal candi-
dates for aerospace-related structural applications. The mechanical
behavior of nanotube/polymer composites depends not only on the
individual properties of the polymer and the nanotubes, but also on
the nanotube/polymer interaction.

Because of the nanoscale nature of the constituents, a multiscale
modeling effort must first address behavior that occurs at the local
or constituent level. In this study, the polymer/nanotube interaction
is assumed to be confined to a cylindrical region surrounding the
SWCNT and extending a finite radius away from the exterior of
the tube. The strength or integrity of this nanotube/polymer inter-
action is defined by the ability to transfer mechanical load between
the nanotube and polymer and has been a matter of significant dis-
cussion in the literature.2−14 In general, two basic approaches have
been proposed to improve the strength of the interaction. The first
approach involves forming a strong, nonbonded interaction between
the polymer and the nanotube without modifying the nanotube struc-
ture. This approach assumes a chemical strengthening of the non-
bonded interactions with the nanotube15 and the improvement of
the apparent mechanical connection with the nanotube, for exam-
ple, by wrapping a large polymer molecule around the nanotube.16,17

The second approach requires the formation of a chemical covalent
bond between the nanotube and polymer directly, also known as
functionalization. There is reasonable evidence for the presence of
such nanotube/polymer covalent bonds.18,19 Some studies have indi-
cated that functionalization can occur through chemical bonds added
to the nanotube sidewalls.3−8 Addition of small organic groups to
nanotube sidewalls has been reported via in situ generated dia-
zonium compounds4 and by fluorination of nanotubes5,6 followed
by alkylation.7 Functionalization can also occur through oxidiz-
ing the nanotube sample to induce the formation hydroxyl or car-
boxylic acid groups at surface defects on the nanotube.9−14 This
type of functionalization can occur with copolymers,9−11 proteins,12

organosilanes,13 and metal catalysts.14 It is known that covalent
bonding affects the elastic mechanical properties of the nanotube
itself because the formation of a chemical bond with carbon atoms
in a nanotube interrupts the sp2 hybridization of the nanotube,
thereby forming a site that is closer to an sp3 hybridized carbon.20,21
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However, analysis has not provided a description of how function-
alization affects the overall mechanical properties of the composite.

A recent simulation study by one of the authors22 has predicted
that for carbon nanotube/polyethylene composites there is at least
a one-order-of-magnitude increase in the strength for composites
with covalent bonding between the nanotube and adjacent polymer
molecules, relative to systems without the covalent bonds. How-
ever, the hybridization change can weaken the chemical bonds in
the vicinity of the functionalization, and this effect should be mani-
fested as a proportional change in the material elastic constants.15,16

It is proposed therefore that hierarchical analysis and subsequent
predictions of macroscopic, elastic behavior can provide additional
insights into the relative merits of nanotube functionalization and
the relationship of functionalization to nanotube/polymer bulk me-
chanical properties.

In the present paper, elastic constitutive models are developed
for nanotube/polyethylene composites, with and without function-
alization, to predict the effect of functionalization on the elastic me-
chanical stiffness properties. The constitutive models are established
using a recently developed, multiscale modeling method for predict-
ing the elastic properties of nanotube/polymer composites.23,24 The
equivalent-continuum models are then combined with a microme-
chanical analysis to predict Young’s moduli and the shear moduli
of composite systems with amorphous and crystalline polyethylene
matrices, various nanotube lengths, volume fractions, and orienta-
tions. Results from these analyses are quantified, and the predicted
elastic mechanical properties of the functionalized and nonfunction-
alized nanotube composite systems are compared.

Materials

Three materials were used in this study to represent the nan-
otube/polymer composite. The single-walled carbon nanotube was
a (10, 10) nanotube of radius 6.78 Å. The polymer matrix material
immediately adjacent to the nanotube was a crystalline polyethy-
lene. The properties of this material were assumed to be orthotropic
and are determined using the method outlined in this paper. The
bulk, amorphous polymer matrix material was polyethylene and
was assumed to be isotropic, with a representative Young’s modu-
lus and Poisson’s ratio of 0.9 GPa and 0.3, respectively. Crystalline
polymers are typically composed of crystalline lamellae that are
dispersed in an amorphous polymer phase.25 Impurities are usu-
ally segregated to the amorphous phase. As an approximation, it is
assumed in this paper that the crystalline polymer maintains its crys-
talline structure throughout the entire material and that the nanotube
is directly incorporated into the polymer crystal.

Equivalent-Continuum Modeling

To apply modeling and computer simulation to enhance the devel-
opment of nanostructured materials systems, it is necessary to con-
sider the structure–property relationships. These relationships relate
the intrinsic structure of the material to the desired engineering-level
property or performance. Therefore, in spite of the importance of
understanding the molecular structure and nature of materials, at
some level in the multiscale analysis the behavior of collections
of molecules and atoms must be homogenized. At this level, the
continuum level, the observed macroscopic behaviour is explained
by disregarding the discrete atomistic and molecular structure and
assuming that the material is continuously distributed throughout
its volume. The continuum material is assumed to have an average
density and can be subjected to body forces such as gravity and
surface forces such as the contact between two bodies. The current
approach for connecting atomistic models to continuum models uses
relevant input from the atomistic simulations and attempts to carry
forward the critical information that represents the continuum with
the intrinsic nanoscale features incorporated as well. This section
describes this modeling approach.

A hierarchical modeling scheme based on the equivalent-
continuum modeling technique is used to predict the bulk me-
chanical behavior of nanostructured materials.23,24 In summary, the
hierarchical model consists of three major steps. First, a suitable

representative volume element (RVE) of the nanostructured mate-
rial is chosen based on the geometry of a molecular model. Second,
an equivalent-truss finite element model of the RVE is developed as
an intermediate step to link the molecular and equivalent-continuum
models. Finally, an equivalent-continuum model of the RVE is de-
veloped in which the molecular potential energy and the total strain
energy in the molecular and equivalent-continuum models, respec-
tively, under identical loading conditions, are set equal. The effec-
tive mechanical properties of the equivalent continuum are then
determined from equating these energies. Each step of the imple-
mentation of this method for a functionalized and nonfunctionalized
nanotube/polyethylene composite and a pure crystalline polyethy-
lene material is described next. Further details of the modeling
method can be found in Refs. 23 and 24.

Molecular Model

The purpose of the molecular model is to establish the structure of
the equilibrated molecular system. Molecular-dynamics (MD) sim-
ulations were therefore used to determine the equilibrium structures
of the nonfunctionalized nanotube composite, functionalized nan-
otube composite, and the pure crystalline polymer (left-hand sides of
Figs. 1, 2, and 3, respectively). The RVE of a typical nanostructured
material is on the nanometer length scale; therefore, the material of
the RVE is not considered continuous but is a discrete assemblage
of many atoms. The molecular model represents the RVE of the
equilibrium molecular structure of the nanostructured material. In-
teraction of the atoms is described in terms of molecular-mechanics
force constants, which are known for most atomic structures.26

Fig. 1 Equivalent-continuum modeling of nonfunctionalized system.

Only the bond-stretch elements are shown in the truss model.

Fig. 2 Equivalent-continuum modeling of functionalized system. Only

the bond-stretch elements are shown in the truss model.
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Fig. 3 Equivalent-continuum modeling of crystalline polyethylene.

Only the bond-stretch elements are shown in the truss model.

Fig. 4 Modeled atomic structure of the functionalized nanotube/

polyethylene composite.

For both composite systems examined in this study, the starting
configuration for the MD simulation was a crystalline polyethy-
lene matrix containing a (10, 10) nanotube of radius 6.78 Å. To
establish the equilibrium molecular structure, the matrix contained
176 chains of 42 CH2 units. To establish a simplified, cylindrical
RVE geometry, the selected RVEs did not contain all 176 chains,
as shown in Figs. 1–3. These chains were aligned and continuous
along the entire length of the RVE. For clarity, two views of the
molecular models are included in Figs. 1–3 for each material. These
views were chosen because of their clear depiction of the molecular
structure, as they are aligned with axes of material symmetry. Even
though Figs. 1–3 are two dimensional, the actual molecular mod-
els were three dimensional. For all three models, the nanotube and
polymer chains were replicated across the periodic boundaries of the
simulation cell, making them infinitely long in the x1 direction. In
the composite with nanotube functionalization, two polymer chains
were attached to six carbons of the nanotube by chemical linkages
consisting of 2 CH2 groups. The linkages are presented schemat-
ically in Fig. 4. In the MD simulations of the composite, all of
the covalent chemical bonds were modeled with the hydrocarbon
potential developed by Brenner et al.27 The nonbonded interactions
between the polymer chains and between the nanotube and the poly-
mer chains were modeled with the Lennard–Jones potential with the
parameters used previously.22,28 The systems were then equilibrated
at 300 K for 1–2 ps via the MD simulation. The MD simulations
were carried out using the DL-POLY c© (Ref. 29) software.

The equivalent-continuum modeling technique used in this study
requires the interaction of the atoms in the molecular model to be

Table 1 Bond-stretching parameters

Bond stretching R, Å K r , kcal/(mole Å2)

Csp2–Csp2 1.400 469
Csp2–Csp3 1.510 317
Csp3–Csp3 1.526 310
Csp3–H 1.090 340

Table 2 Bond-angle variation parameters

Bond-angle variation �, deg K θ , kcal/(mole rad2)

Csp2–Csp2–Csp2 120.0 63
Csp2–Csp2–Csp3 120.0 70
Csp2–Csp3–Csp2 120.0 63
Csp2–Csp3–Csp3 114.0 63
Csp3–Csp3–Csp3 109.5 40
Csp3–Csp3–H 109.5 50
H–Csp3–H 109.5 35

Table 3 Van der Waals interaction parameters

Van der Waals interaction D I , kcal/mole r I , Å

Csp2 0.0860 3.816
Csp3 0.1094 3.816
H 0.0157 2.974

described in terms of molecular-mechanics force constants. Con-
sequently, the interaction of the atoms in the molecular model was
defined in terms of bond stretching, bond-angle variation, and Van
der Waals interactions.24 The force constants used for both models
are shown in Tables 1–3 and were taken from the AMBER force
field30 in a manner similar to that presented by Odegard et al.24 The
force constants were assigned with respect to the structure indicated
in Fig. 4 in that the atoms labeled as Csp2, Csp3, and H correspond
to aromatic carbon atoms (sp2 orbital), aliphatic carbon atoms (sp3

orbital), and hydrogen atoms that are attached to aliphatic carbon
atoms, respectively. In the nonfunctionalized system, all of the car-
bon atoms in the nanotube were modeled as aromatic carbon atoms.

Truss Model

The transition from molecular model to continuum is facilitated
by the selection of a RVE. The RVE is several nanometers in ex-
tent and thus consists of an assemblage of many atoms. As depicted
schematically in Figs. 1–3, a pin-jointed model that uses truss ele-
ments to represent the chemical bonds in the lattice structure can rep-
resent the RVE. To implement the resultant equivalent-truss struc-
tures, finite element models were developed by using ANSYS® 6
(Ref. 31) (middle portion of Figs. 1–3). Each element (LINK8) was
a three-dimensional pin-jointed truss element with six degrees of
freedom (three displacement components on each end) that rep-
resented a single atomic interaction. Each node corresponded to
an atom in the equilibrium structure of the molecular model. The
Young’s moduli of the truss elements were determined such that
the total molecular potential energy of the molecular model and the
strain energy of the equivalent-truss are equal for the same loading
conditions. A total of 36,907 elements and 4751 nodes were used in
the model of the nonfunctionalized nanotube, and a total of 36,481
elements and 4747 nodes was used for the model of the function-
alized nanotube. For the crystalline polyethylene model, a total of
44,408 elements and 5469 nodes was used.

Continuum Model

With the equivalent-truss structure in place, the continuum mod-
els were constructed. The continuum model represents a key step
in the homogenization process and is used to effectively define the
structure–property relationships. The geometries of the homoge-
neous, equivalent-continuum RVEs were assumed to be cylindrical,
similar to that of the molecular and truss models (right-hand side of
Figs. 1–3). The mechanical properties of the continuum solid cylin-
ders were determined by equating the total strain energies of the
equivalent-truss and equivalent-continuum models under identical
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loading conditions. The rationale for determining the actual size of
this cylindrical region is presented in detail in a subsequent section.
The molecular model of the functionalized nanotube/polyethylene
composite was assumed to exhibit orthotropic symmetry. There are
nine independent material parameters required to determine the en-
tire set of elastic constants for an orthotropic material, and each of the
nine parameters can be determined from a single boundary condition
applied to both equivalent-truss and equivalent-continuum models.
For convenience, the nonfunctionalized and crystalline polyethy-
lene models were also treated as orthotropic materials. Once the
mechanical properties of the equivalent-continuum RVEs were de-
termined, the two composite material RVEs were assumed to behave
in the composite as effective fibers and were used in subsequent mi-
cromechanical analyses.

Effective-Fiber Constitutive Model

The constitutive relationship of an orthotropic equivalent-
continuum RVE (which is henceforth also referred to as an effective
fiber) is

σ11 = C
f

11ε11 + C
f

12ε22 + C
f

13ε33

σ22 = C
f

12ε11 + C
f

22ε22 + C
f

23ε33

σ33 = C
f

13ε11 + C
f

23ε22 + C
f

33ε33

σ23 = 2C
f

44ε23, σ13 = 2C
f

55ε13, σ12 = 2C
f

66ε12 (1)

where σi j and εi j are the stress and strain components, respectively
(i, j = 1, 2, 3), and C

f

kl are the elastic stiffness components of the
effective fiber (denoted by superscript f ), which are written in the
usual contracted notation (k, l = 1, . . . , 6).

Nine independent elastic properties are required to describe the
overall elastic behavior of an orthotropic material, as shown in
Eq. (1). For convenience, the nine independent elastic properties
that can be used to describe the overall behavior of the effective fiber
are the three elastic axial stiffness components C

f

11, C
f

22, and C
f

33;
the three plane-strain bulk moduli K

f

23, K
f

13, and K
f

12; and the three
elastic shear-stiffness components C

f

44, C
f

55, and C
f

66. The three
plane-strain bulk moduli are defined as

K
f

23 = 1
4

(

C
f

22 + C
f

33 + 2C
f

23

)

, K
f

13 = 1
4

(

C
f

11 + C
f

33 + 2C
f

13

)

K
f

12 = 1
4

(

C
f

11 + C
f

22 + 2C
f

12

)

(2)

where the subscripts indicate the plane that is subjected to a plane-
strain deformation. Equation (2) can be easily derived in a manner
similar to the derivation of the transverse bulk modulus for a trans-
versely isotropic material.24 Once the nine independent elastic prop-
erties are determined, the elastic interaction stiffness components
C23, C13, and C12 can be calculated from the relations in Eq. (2).

Boundary Conditions

At this point, the values of the nine elastic parameters are un-
known. These values are determined by applying nine identical sets
of boundary conditions to the equivalent-truss model and the effec-
tive fiber and by subsequently equating the strain energies by adjust-
ing the nine independent elastic properties. Nine sets of boundary
conditions were chosen to uniquely determine each of the nine in-
dependent elastic properties.

The displacements applied at the boundaries of the RVE are gen-
eralized by

ui (B) = εi j x j (3)

where B is the bounding surface, x j is defined in Figs. 1–3, and
the summation convention associated with repeated indices is used.
The total strain energy of the effective fiber is

� f = (V/2)σi jεi j (4)

The boundary conditions and strain energies for each of the nine
independent elastic properties are listed in Tables 4–6. Unspecified
strain components in Tables 4–6 are zero valued.

Table 4 Boundary conditions for axial stiffness components

Boundary Boundary Strain
Property condition displacement energy

C
f

11
ε11 = e u1(B) = ex1 � f = (V/2)C

f

11
e2

u2(B) = 0
u3(B) = 0

C
f

22
ε22 = e u1(B) = 0 � f = (V/2)C

f

22
e2

u2(B) = ex2

u3(B) = 0

C
f

33
ε33 = e u1(B) = 0 � f = (V/2)C

f

33
e2

u2(B) = 0
u3(B) = ex3

Table 5 Boundary conditions for plane-strain bulk moduli

Boundary Boundary Strain
Property condition displacement energy

K
f

23
ε22 = ε33 = e u1(B) = 0 � f = 2V K

f

23
e2

u2(B) = ex2

u3(B) = ex3

K
f

13
ε11 = ε33 = e u1(B) = ex1 � f = 2V K

f

13
e2

u2(B) = 0
u3(B) = ex3

K
f

12
ε11 = ε22 = e u1(B) = ex1 � f = 2V K

f

12
e2

u2(B) = ex2

u3(B) = 0

Table 6 Boundary conditions for shear-stiffness components

Boundary Boundary Strain
Property condition displacement energy

C
f

44
ε23 = γ /2 u1(B) = 0 � f = (V/2)C

f

44
γ 2

u2(B) = (γ /2)x3

u3(B) = (γ /2)x2

C
f

55
ε13 = γ /2 u1(B) = (γ /2)x3 � f = (V/2)C

f

55
γ 2

u2(B) = 0
u3(B) = (γ /2)x1

C
f

66
ε12 = γ /2 u1(B) = (γ /2)x2 � f = (V/2)C

f

66
γ 2

u2(B) = (γ /2)x1

u3(B) = 0

Boundary Region

The displacements specified in Tables 4–6 were applied to each
node in the boundary region of the equivalent-truss model (indicated
in Figs. 1–3), and the corresponding strain energies were calculated
by summing the strain energies of each individual truss member in
the RVE.

It was assumed that the thickness of the boundary region was
equal to the maximum distance for which a positive-definite re-
lationship exists between the force and displacement of all of the
atom types. It was also assumed that the contribution of the en-
ergies associated with van der Waals forces between atoms with a
larger distance than this maximum was relatively small and could be
neglected.

Based on the repeating unit used in the MD simulation, the ef-
fective fiber radius and length were chosen to be 1.1 and 4.3 nm,
respectively. The calculated values of the nine independent param-
eters for the effective fibers with and without functionalization and
the crystalline polyethylene material are listed in Table 7.

For the implementation of this modeling approach in this study,
only static loading conditions were assumed. That is, the change in
the equivalent-continuum material response as a function of time
was not included, and it was therefore assumed that the material
behaved in an elastic manner. Only the MD simulation included the
effects of time, but only to establish a reliable RVE of the molecular
models.
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Table 7 Equivalent-continuum properties (GPa)

Nonfunctionalized Functionalized Crystalline
Property effective fiber effective fiber polyethylene

C
f

11
548.7 487.7 194.7

C
f

22
16.8 24.5 3.6

C
f

33
16.5 20.6 3.5

K
f

23
14.8 19.5 2.6

K
f

13
149.3 137.1 51.3

K
f

12
149.2 138.7 52.0

C
f

44
7.1 12.7 6.3

C
f

55
144.0 155.4 5.1

C
f

66
144.9 137.0 5.1

Micromechanical Modeling

Homogenization of a multiconstituent material requires the com-
bination of the continuum method and a micromechanics model
to provide a transition from the microscale to the macroscale. Mi-
cromechanics assumes small-deformation continuum mechanics as
outlined in the preceding section. Continuum mechanics, in general,
assumes uniform material properties within the boundaries of the
problem. At the microscale, this assumption of uniformity might
not hold, and hence the micromechanics method is used to express
the continuum quantities associated with an infinitesimal material
element in terms of the parameters that characterize the structure
and properties of the microconstituents of the element. Constitutive
models of the effective fiber/polymer composites were developed
with a micromechanical analysis by using the mechanical proper-
ties of the nanotube/polymer effective fibers and the bulk polymer
matrix material. For the composites considered in this study, the
polymer molecules that were near the polymer/nanotube interface
were included in the effective fiber, and it was assumed that the ma-
trix polymer surrounding the effective fiber had mechanical proper-
ties equal to those of bulk polyethylene. Two types of polyethylene
matricies were considered, an isotropic amorphous matrix and an
anisotropic crystalline matrix. All relative movement and interaction
of the polymer chains with respect to each other were modeled at the
molecular level. This motion and interaction is therefore indirectly
considered in the subsequent determination of the properties for
the effective fibers, and it is therefore assumed that perfect bond-
ing exists between the nanotube/polymer effective fibers and the
surrounding polymer matrix in the micromechanics analysis.

A micromechanics method was used to predict the elastic me-
chanical properties of the composite material considered herein.32

For this method, the overall elastic-stiffness tensor of the composite
containing orthotropic effective fibers embedded in a matrix mate-
rial is

C = Cm + c f (C f − Cm)A f (5)

where A f is given by

A f =
[

I + SC−1
0 (C f − C0)

]−1
(6)

where S is the Eshelby tensor,33 which is given in detail elsewhere,34

and C0 is given by

C0
kl = Cm

kl

1 + η
f

klc f

1 − η
f

klc f

(7)

where

η
f

kl =
C

f

kl − Cm
kl

C
f

kl + Cm
kl

(8)

In Eqs. (7) and (8), the usual contracted notation (k, l = 1, . . . , 6)
is employed, and there is no summation over repeated tensor sub-
scripts. For unidirectional-aligned effective fibers, orientation aver-
aging of Eq. (5) is not necessary, and the resulting elastic stiffness

components of the composite have orthotropic symmetry. For three-
dimensional randomly oriented effective fibers, the orientation av-
erage of the stiffness tensor C is

〈C〉 = 〈Ci jmn〉 =
(

κ − 2
3
µ
)

(δi jδmn) + µ(δimδ jn + δinδ jm) (9)

where i, j, m, n = 1, 2, 3; the indicial summation convention is
used; and

κ = 1
9
Ci i j j , µ = 1

10

(

Ci j i j − 1
3
Ci i j j

)

(10)

Therefore, from Eqs. (9) and (10), 〈C〉 is isotropic.
Although it is convenient to establish constitutive equations of the

composites in terms of the composite stiffness tensor C, the Young’s
and shear moduli are the elastic constants that are most often used
to compare the mechanical properties. Although the shear moduli
of the composite material (G44, G55, G66) are simply equal to the
shear-stiffness components (C44, C55, C66), the Young’s moduli (E1,
E2, E3) were calculated by using the components of the compliance
tensor of the composite material, which was determined by invert-
ing the composite stiffness tensor C (Ref. 35). The subscripts of the
Young’s moduli and shear moduli indicate the principal direction
associated with the quantity, similar to Eq. (1). Therefore, E1 is the
longitudinal Young’s modulus (parallel to the nanotube), E2 and E3

are transverse Young’s moduli, G44 is the transverse shear modulus,
and G55 and G66 are longitudinal shear moduli. Because the ran-
dom composites are isotropic, their mechanical properties are com-
pletely described by their Young’s modulus E (E = E1 = E2 = E3)

and shear modulus G (G = G44 = G55 = G66).
For the effective fiber/polymer composites considered in the

present study, the elastic stiffness components, volume fraction,
length, and orientation of the effective fiber were used for the fiber
properties in Eq. (5). The effective fibers were assumed to have
an spheroidal geometry for the Eshelby tensor, so that any length
of effective fiber could be modeled. Although the nanotube and
effective-fiber lengths are equivalent, the nanotube volume fraction
was determined to be 52.9% of the effective-fiber volume fraction.
This value was calculated by assuming the nanotube volume is de-
fined as the total space occupied by the nanotube, including half of
the unoccupied space between the nanotube and polymer. For the
crystalline matrix, the properties of the crystalline polyethylene in
Table 7 were used. The overall composite stiffness was calculated
for effective-fiber lengths up to 450 nm and effective fiber volume
fractions up to 90%, which corresponds to the maximum volume
fraction for hexagonally packed fibers. The calculations were per-
formed assuming both perfectly aligned and three-dimensional ran-
domly oriented effective fibers in both an amorphous and crystalline
polyethylene matrix. The Eshelby tensor in Eq. (6) was evaluated
numerically by using Gaussian quadrature.36

The amorphous polymer composite is modeled without directly
applying the equivalent-continuum modeling technique to a nan-
otube/amorphous polymer system. Instead, the amorphous polymer
composite is modeled with the effect fiber, which contains crys-
talline polyethylene molecules surrounding the nanotube, embedded
in an amorphous polymer material. Therefore, for a more detailed
study on the effects of nanotube functionalization on mechanical
properties in completely amorphous, entangled polymer composite
systems, the effective fiber should contain the nanotube and amor-
phous polymer chains.

Results and Discussion

In this section, the elastic constants of the three equivalent-
continuum models are compared and discussed. The moduli of the
nanotube composites, as predicted using the micromechanics tech-
nique just described, are also presented in terms of nanotube length,
volume fraction, and orientation.

Equivalent-Continuum Models

In Table 7, it is clear that functionalization had a measurable
effect on the elastic properties of the effective fibers. Although
functionalization reduced the longitudinal elastic constant C

f

11 by
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11%, it enhanced the transverse elastic constants C
f

22 and C
f

33 by 46
and 25%, respectively. Similarly, the longitudinal plane-strain bulk
moduli K

f

13 and K
f

12 were reduced by functionalization by 8 and
7%, respectively, whereas the transverse plane-strain bulk modulus
K

f

23 was increased by 3%. Functionalization changed the longi-
tudinal shear moduli C

f

55 and C
f

66 by +8 and −6%, respectively.
The transverse shear modulus C

f

44 was enhanced by 79% with the
functionalization. At the length scale of the effective fiber, it appears
that the key benefit of functionalization in nanotube/polymer com-
posites is a significant gain in transverse elastic properties. This gain
comes at the expense of smaller losses in the longitudinal properties.

The properties of the crystalline polyethylene material are pro-
vided in Table 7. Clearly the elastic properties of the polyethylene are
lower than those of the nanotube/polyethylene effective fibers, indi-
cating a definite reinforcing effect of nanotubes. The properties of
the crystalline polymer (Table 7) are bounded by those found in the
literature obtained by experimental and analytical techniques.37,38

The literature values of the mechanical properties show considerable
variation because of the difficulties of obtaining the properties of
crystalline polymers via experimental and analytical techniques.39,40

Elastic Properties of Composites

The calculated Young’s moduli of the nanotube composites with
the amorphous matrix are plotted in Fig. 5 as a function of nan-
otube length, for a 1% nanotube volume fraction. The longitudinal
Young’s modulus of the aligned composite and the Young’s mod-
ulus of the random composite had a nonlinear dependence on the
nanotube length. An increase in the Young’s modulus with respect
to an increase in nanotube length is expected to correspond to a
relative increase in load transfer efficiency between the nanotube
and the surrounding polymer. The data in Fig. 5 indicate that at a
nanotube length of about 400 nm, the efficiency of load transfer is
nearly maximized, as evidenced by the nearly zero slope in the data
curve. Further increases in nanotube length beyond 400 nm result in
relatively small increases in Young’s modulus for a given nanotube
volume fraction. As the nanotube length became greater than ap-
proximately 100 nm, the Young’s modulus for the composite without
nanotube functionalization became larger than that of the compos-
ite with nanotube functionalization for the random composite and
longitudinal deformation of the aligned composite. At 450 nm, the
functionalization reduced the longitudinal Young’s modulus of the
aligned composite and the Young’s modulus of the random compos-
ite by 11 and 7%, respectively. In contrast, the transverse Young’s
modulus of the aligned composite had no dependence on nanotube
length. Also, there was no effect of functionalization on the trans-
verse deformation of the aligned composite.

The shear moduli of the nanotube composites with the amorphous
matrix are plotted in Fig. 6 as a function of nanotube length for a 1%
nanotube volume fraction. The shear modulus of the random com-
posite had a nonlinear dependence on nanotube length, whereas the

Fig. 5 Young’s moduli Ei of the composite systems vs nanotube length

for a 1% nanotube volume fraction.

Fig. 6 Shear moduli Gij of the composite systems vs nanotube length

for a 1% nanotube volume fraction.

Fig. 7 Longitudinal Young’s moduli E1 of the composite systems vs

nanotube volume fraction for a nanotube length of 400 nm.

shear modulus of the aligned composite had no dependence on nan-
otube length. Again, the data indicate that the efficiency of load
transfer, as evidenced by a modulus change, is nearly maximized
at a nanotube length of about 400 nm. As the nanotube length be-
came greater than approximately 100 nm, the shear modulus for the
nonfunctionalized nanotube composite became larger than that of
the functionalized nanotube composite for the random composite.
At 450 nm, the functionalization reduced the Young’s modulus of
the random composite by 8%. There was no significant effect of
functionalization on the shear modulus of the aligned composite as
the nanotube length was increased.

The longitudinal Young’s moduli of the random and aligned com-
posites with both amorphous and crystalline matrices are plotted in
Fig. 7 as a function of nanotube volume fraction, for a constant nan-
otube length of 400 nm. At this nanotube length, the change in the
longitudinal Young’s modulus with respect to nanotube volume frac-
tion of the aligned composite was nearly linear, resembling a linear
rule-of-mixtures relationship. Over the complete range of nanotube
volume fraction, the functionalization of the nanotube reduced the
longitudinal Young’s modulus of all three composites.

The transverse Young’s moduli of the aligned composites with
both amorphous and crystalline matrices are plotted in Fig. 8 as a
function of nanotube volume fraction, for a constant nanotube length
of 400 nm. In contrast to the Young’s moduli in Fig. 7, the transverse
Young’s moduli of both composites improved when the nanotubes
were functionalized. This result is consistent with the improvement
in the transverse properties of the functionalized nanotube effective
fiber. The enhancement is evident for nanotube volume fractions
greater than 10% in both composites.

The longitudinal shear moduli of the composites with both amor-
phous and crystalline matrices are plotted in Fig. 9 as a function



1834 ODEGARD, FRANKLAND, AND GATES

Fig. 8 Transverse Young’s moduli E2 of the composite systems vs nan-

otube volume fraction for a nanotube length of 400 nm.

Fig. 9 Longitudinal shear moduli G55 and G66 of the composite sys-

tems vs nanotube volume fraction for a nanotube length of 400 nm.

Fig. 10 Transverse shear moduli G44 of the composite systems vs nan-

otube volume fraction for a nanotube length of 400 nm.

of nanotube volume fraction. As the nanotube volume fraction in-
creased, the functionalization reduced the shear modulus of the ran-
domly oriented nanotube composite with the amorphous matrix.
However, there was no significant effect of the functionalization on
the shear moduli of the aligned composites with amorphous and
crystalline matrices for the given range of nanotube volume frac-
tions.

The transverse shear moduli of the composites with both amor-
phous and crystalline matrices are plotted in Fig. 10 as a func-
tion of nanotube volume fraction. As the nanotube volume fraction

increased, the functionalization improved the transverse shear mod-
ulus of both composites. The improvement was particularly notice-
able for the composite with the crystalline matrix at large nanotube
volume fractions. This trend is very similar to volume fraction de-
pendence of the transverse Young’s moduli of the same composites.

Conclusions

In this study, the bulk elastic properties of a single-walled car-
bon nanotube/polyethylene composite have been predicted for both
functionalized and nonfunctionalized nanotubes in amorphous and
crystalline polyethylene matrices using a hierarchical approach
based on the equivalent continuum method. It was assumed that
functionalization would affect the load transfer between the nan-
otube and the surrounding matrix and that changes in predicted
elastic stiffness could be directly related to the efficiency of the
load-transfer mechanism. The effective continuum analysis method
established constitutive equations for both functionalized and non-
functionalized nanotube composites systems by using a hierarchi-
cal modeling technique that predicted elastic bulk behavior, using
intrinsic properties developed through molecular dynamics simu-
lations. The elastic properties of the composites with and without
nanotube functionalization have been examined for various nan-
otube lengths, volume fractions, nanotube orientations, and both
amorphous and crystalline polyethylene matrices.

For a fixed nanotube volume fraction of 1% and various nanotube
lengths, the Young’s and shear moduli of the random composites and
the longitudinal Young’s moduli of the aligned composites have
been shown to decrease up to 11% when the nanotube is function-
alized. For a fixed nanotube length of 400 nm and various nanotube
volume fractions, the longitudinal Young’s moduli of the aligned
composites and both the Young’s and shear moduli of the random
composites have also been shown to decrease up to 12% when the
nanotube is functionalized. However, under these conditions the
transverse Young’s moduli and the transverse shear moduli of the
aligned composites have shown an increase of up to 45% when the
nanotube is functionalized.

The primary implication of these results is that although chem-
ical functionalization of single-walled carbon nanotubes has been
considered as a means to increase load-transfer efficiency in a nan-
otube/polymer composite, this functionalization has, in fact, de-
graded most of the macroscopic elastic stiffness components of the
composite materials considered in this study. In general, this oc-
curs for both random composites and aligned composites with both
amorphous and crystalline matrices over a wide range of nanotube
volume fractions and lengths.
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