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Effect of neuroactive compounds on the settlement of mussel (Perna canaliculus) larvae 

 
Abstract 

Herein, we present the first laboratory study on the effects of pharmacologically 

active compounds on larval settlement of the green-lipped mussel, Perna canaliculus.  

Competent hatchery-reared larvae were exposed to seawater containing excess K+ in the form 

of KCl and K2SO4 and the neurotransmitters γ-aminobutyric acid (GABA) and acetylcholine.  

Both KCl and K2SO4 were identified as active inducers of larval settlement with maximum 

inductions occurring after exposures to 10 and 7.5 mM, respectively.  Peak settlement 

response to KCl was higher (>64%) than that achieved with K2SO4 (>41%).  GABA did not 

induce larval settlement and displayed toxic and settlement inhibitive effects at 10-4 and 10-3 

M.  Acetylcholine induced larval settlement (>49%) at 10-4 M with minimal acute toxic 

effects (LC < 10%).  To gain insight into the class of acetylcholine receptors involved, 

atropine was used to block the muscarinic-type receptors.  Atropine treatment alone did not 

inhibit settlement compared to control assays, indicating that muscarinic-type receptors are 

not involved in settlement behavior.  Furthermore, results showed that atropine did not 

significantly decrease acetylcholine induced settlement responses, which suggests an active 

role of the nicotinic-type receptors in the biochemical pathways of mussel settlement.  

Results of this study provide new insights on the mechanism of settlement behavior in P. 

canaliculus, which may have direct application to the growing New Zealand aquaculture 

industry.  

 

Keywords: Larval settlement, Green-lipped mussels, Perna canaliculus, Chemical cues, 

Potassium, GABA, Acetylcholine, Receptors, Muscarinic, Nicotinic. 
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Introduction 

Marine invertebrates have complex life histories and diverse behaviors, which are 

mediated by environmental and biological stimuli (Harder et al. 2002; Wikstrom and Pavia 

2004; Briffa and Williams 2006).  Approximately 80% of marine invertebrates (90,000 

species) produce microscopic larvae that develop in the plankton (Thorson 1964; Costello et 

al. 2010).  Depending on the species, they remain in their larval phases for minutes to months 

(Hadfield and Paul 2001).  During this period, larvae may be swept great distances along 

ocean currents before contacting a suitable substratum for settlement and metamorphosing 

into their adult forms (Pawlik 1992).  

Settlement of marine invertebrates may be defined as movement of larvae from 

pelagic to benthic environments, and subsequent attachment to the substratum (Rodríguez et 

al. 1993).  This transition is modulated mostly by chemical cues of various biological origins 

(McClintock and Baker 2001).  Exogenous cues bind to an assortment of receptors in the 

neural tissues of the larvae, activating neuronal networks (Hay 2008).  Such biochemical 

stimulations lead to behavioral and morphological transformations in the organism.  Although 

there is great interest in identifying natural settlement cues, few compounds have been 

isolated and specifically characterised to date (Swanson et al. 2006).  

Representatives from all seven marine invertebrate Phyla have demonstrated 

particular responses to larval settlement cues.  Exogenous regulation of settlement may be 

mediated by surface-associated compounds and waterborne substances released from 

microbial biofilms (e.g. Ganesan et al. 2010), macroalgae (e.g. Alfaro et al. 2006; Yang et al. 

2007), sediments (e.g. Thiyagarajan 2006), and conspecifics (e.g. Eldbourne and Claire 2010) 

among others.  These naturally occurring compounds often tend to be genus-, species- and 
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even intraspecies-specific in their abilities to induce larval settlement (Rodríguez et al. 1993; 

Williams et al. 2008; Ritson-Williams et al. 2010).   The endogenous biochemical processes 

which occur after cue detection are of much interest to researchers.  At the molecular and 

cellular level, receptors for cue-binding and the metabolites involved in signal transduction 

mechanisms are proving to be related structurally, functionally and evolutionarily to those of 

higher organisms (Murthey et al. 2009).  Depending on the species, settlement can be 

regulated by manipulation of catecholamine, morphogenetic, nitric oxide synthase, regulatory 

and second messenger pathways (Murthey et al. 2009).  The involvements of these processes 

often are investigated using pharmacologically active compounds to induce or inhibit 

settlement behavior.  Compounds include:  those affecting ion-gated channels (e.g. Yu et al. 

2008), amino acid and choline derivatives (e.g. Dobretsov and Qian 2003; García-Lavandeira 

et al. 2005), enzyme inhibitors (e.g. Mesías-Gansbiller 2008), and drugs mimicking or 

affecting endogenous levels of neurotransmitters (e.g. Faimali et al. 2003) and other 

metabolites (e.g. Clare et al. 1995; Dahlström 2000; Lind et al. 2010).  Results from such 

studies frequently demonstrate that neuronal control of settlement is diverse across marine 

invertebrate taxa.  While the nervous systems of invertebrates are considered simple 

compared with higher organisms, researchers are continually discovering a higher level of 

complexity in invertebrates.  Although comparative neurodevelopment in bilaterian 

invertebrates reveals a high degree of conserved molecular architecture from a common 

ancestor (Arendt et al. 2008), many differences exist.  It is clear that various animals across 

phylogeny rely on the same neurotransmitters and modulators for signalling.  However, there 

are cases where the function of a neurotransmitter has switched entirely across evolution 

(reviewed by Marder 2007).  Determining the diversity among taxa in neuronal control of 

invertebrate behaviors, such as larval settlement, is an important step to understand 
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evolutionary developmental biology.  Pharmacological induction of larval settlement in the 

laboratory provides insight into the functional evolution of receptors and metabolites. 

As with exogenous regulators of larval settlement, larval responses to neuroactive 

compounds often are unique to particular invertebrate taxa.  For example, excess K+, a key 

regulator of cell membrane potentials, induces settlement in the bryozoan Bugula stolonifera 

(Wendt and Woollacot 1995), the oyster Pinctada fucata martensii (Yu et al. 2008), and the 

Asian green mussel Perna viridis (Ke et al. 1998), but fails to induce settlement in the blue 

mussel Mytilus edulis (Dobretsov and Qian 2003).  Potassium is a universal regulator of ion 

gradients across cell membranes, and is involved in depolarisation of neurons, causing 

formation of action potentials.  Induction of larval settlement by K+ has been suggested to act 

via depolarisation of chemoreceptors, epithelial-bound excitable cells in the peripheral 

nervous system (PNS) normally responsible for binding naturally-occurring inducers (Leitz 

and Clingman 1990).  Alternatively, exogenously applied K+ may act directly on the central 

nervous system (CNS), or some intermediary site in the PNS by crossing epithelial 

membranes (Carpizo-Ituarte and Hadfield 1998; Hadfield et al. 2000).  While the exact mode 

of action is still unclear, excess K+ in seawater has demonstrated an ability to induce 

settlement behaviour in various marine invertebrate taxa.   

The neurotransmitter and amino acid γ-aminobutyric acid (GABA) induces settlement 

in the sea urchin Echinometra mathaei (Rahmani and Ueharai 2001), the  Mediteranean 

mussel Mytilus galloprovincialis (Garcia-Lavandeira et al. 2005) and some Haliotis spp. (e.g. 

H. rufescens [Morse et al. 1979] and H. asinina [Gapasin and Polohan 2004]). However, 

GABA is ineffective at inducing settlement in H. discus hannai (reviewed by Fusetani 2004) 

and the blue mussel M. edulis (Dobretsov and Qian 2003).  GABA, an amino acid and 

neurotransmitter, is produced by the decarboxylation of glutamic acid.  In vertebrates, GABA 

acts most commonly in the nervous system as an inhibitory neurotransmitter, causing 
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hyperpolarization of post-synaptic membranes through increase in permeability to negatively 

charged chloride ions (Kuffler et al. 1984).  However, in some cases GABA has the ability to 

activate a depolarizing efflux of chloride out of the cell, inducing nerve firing (Kuffler et al. 

1984).  GABA was the first molecular inducer of settlement found for the gastropod Haliotis 

rufescens (Morse et al. 1979), and it was soon discovered that the mode of action involved 

relaxation of cilia movement in the velum appendage used for swimming (Akashige et al. 

1981; Barlow 1990).  It has been suggested that induction of settlement by GABA would be 

mediated by GABA-sensitive chemoreceptors exposed to the external environment, and the 

mechanism responsible would have to be one of excitory depolarization (Baloun and Morse 

1984).   

The neurotransmitter acetylcholine also has shown to be a potent settlement inducer in 

some marine invertebrates, including the Pacific oyster Crassostrea gigas (Beiras and 

Widdows 1995), the pearl oyster Pinctada maxima (Zhao et al. 2003), and the blue mussel M. 

edulis (Dobretsov and Qian 2003).  Conversely, while acetylcholine causes larvae of the 

bryozoan Bugula neritina to cease active swimming, it does not induce attachment to 

substrata (Yu et al. 2007).  Acetylcholine, an ester of acetic acid and choline, is a 

neurotransmitter in the PNS and CNS of many organisms (Martinez-Murillo and Rodrigo 1994), 

and modulates a variety of processes.  Acetylcholine receptors form two primary classes – 

muscarinic- (mAChRs) and nicotinic-type receptors (nAChRs).  mAChRs are G protein-coupled 

receptors composed of a single protein, and are indirectly linked with ion channels through second 

messengers (Gomperts et al. 2009).  nAChRs are pentameric ionotopic receptors that are permeable 

to potassium, sodium, calcium, and sometimes chloride ions (Cooper et al. 1991; Corringer et al. 

2000; Bolsover et al. 2003).  Activation of nAChRs produces a variety of physiological responses 

in animals.  For example, presynaptic neuron activation can facilitate release of neurotransmitters, 

including dopamine, norepinephrine, serotonin, GABA, and glutamate (Decker et al. 1995; Lopez 
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et al. 2001).  Such compounds have been implicated in modulating diverse molluscan functions, 

including ciliary activity (Braubach et al. 2006), cardiac contraction (Sukhanova et al. 2008), 

metamorphosis (Leise et al. 2001), and regulation of swimming behavior (Panchin et al. 1995).  In 

the mammalian CNS, nAChR’s located within presynaptic neuronal cell membranes 

predominately regulate presynaptic neurotransmitter release, and rarely are involved in fast 

direct synaptic transmission of nerve impulses (Clarke and Reuben 1996; Alkondon et al. 

1998; Kaiser and Wonnacott 2000; Reuben and Clarke 2000; Wonnacott et al. 2000; Grady et 

al. 2001).  However, in the molluscan CNS, nAChR’s are more involved in fast synaptic 

cholinergic transmissions, binding to acetylcholine receptors on postsynaptic neurons 

(Kandel et al. 1969; Blankenship et al. 1971; Yeoman et al. 1993; Woodin et al. 2002).  A 

unique characteristic of molluscs is that they possess, in addition to excitory sodium-selective 

nAChRs, inhibitory chloride-selective nAChR’s (Vulfius et al. 1967; Chiarandini and 

Gerschenfield 1967; Chiarandini et al. 1967; Watchel and Kandel 1971; Chemeris et al. 

1982).  It has been suggested that nAChR subtypes in molluscs are comparable in structure to 

those found in vertebrates, although the former display a much higher functional complexity 

(Neirop et al. 2006).  In the gastropod mollusc Lymnaea stagnalis, it was suggested that 

virtually all the neurons in the CNS respond to acetylcholine through nicotinic-type receptors 

(Zeimal and Vulfius 1967; Vulfius et al. 1967).  This may highlight the importance of these 

receptors in molluscan neuronal transmissions.  However, the extent to which nAChR’s are 

involved in the neuroethologies of molluscs is unknown.  While effects of acetylcholine on 

larval settlement have previously been investigated, little attempt has been made to 

distinguish which class of acetylcholine receptors are involved. 

The endemic New Zealand mussel, Perna canaliculus, is a species of considerable 

commercial value.  Although this mussel is extensively cultivated in New Zealand, little is 

known about regulatory factors that govern its larval behavior.  Currently, a major bottle neck 
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in hatchery production of mussel spat (juveniles) to seed the farms is that larval settlement 

often is inefficient (< 30%) and unpredictable (e.g., high mortality and poor health).  Thus, 

there is a need for a better understanding of the cues and mechanisms that induce settlement, 

which may be applied to aquaculture.  After a brief planktonic stage, larvae settle onto 

specific substrates before undergoing metamorphosis (Alfaro and Jeffs 2002; Alfaro et al., 

2004).  Previous investigations have shown that morphological characteristics of the 

substrata, water flow and oxygenation are important for primary settlement site suitability 

(Alfaro and Jeffs 2002; Alfaro et al. 2004; Alfaro 2005, 2006).  In addition, crude non-polar 

solvent extractions of macro-algae, with which the juvenile mussels are known to be 

associated, have shown a significant capacity for inducing larval settlement in this species 

(Alfaro et al. 2006).  Although these previous studies have provided valuable information, the 

biochemistry of settlement behavior in P. canaliculus remains elusive.  To gain insights into 

the biochemical mechanisms of larval settlement in P. canaliculus, this study investigated 

potassium ions, GABA, and acetylcholine as potential settlement inducing cues.  Larvae also 

were treated with the mAChR blocker atropine to investigate involvement of nicotinic-type 

receptors in the settlement process.  

 

Methods and Materials 

 

Larval Culture 

Veliger larvae of Perna canaliculus were obtained from the Sealords hatchery in 

Ruakaka, northern New Zealand, where adult mussels were induced to spawn by thermal 

shock.  Gametes were pooled and mixed from a number of individuals (ca. 200) to ensure 

genetic heterogeneity.  Fertilised eggs were incubated in 1 µm filtered seawater (FSW) at 
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17±1ºC and 35 PSU salinity, until 50% or more had developed into the D-veliger 

developmental stage.  Larvae were reared in 24,000 L tanks under static conditions with 48-

hr water changes.  Water was maintained at 20±1ºC and a mixed diet of Chaetoceros 

calcitrans, Isochrysis galbana, and Pavlova lutheri was introduced in a controlled ration 

allowing ad libitum access to food.  Eyed pediveliger larvae were apparent at around 18–23 

days post-fertilisation and considered competent for settlement.  Competent larvae (ca. 

40,000) were screened by filtering through 175 µm nylon mesh, corresponding to a shell 

diameter of > 215 µm.  Larvae were placed in small polyethylene tubes (50 mm outside 

diameter) with breathable membranes fitted on both ends.  Samples were packed in 

polystyrene containers filled with wet moss and containing an ice pack to keep them cool and 

damp during transport to the Auckland University of Technology (AUT) laboratory, 

Auckland, New Zealand. 

 

Treatment Solutions 

To test the effect of excess K+ on larval settlement, two potassium-containing 

compounds were selected with different anionic compositions (KCl and K2SO4).  This 

ensured that any attribution of inductive effects could be made with increased confidence to 

the cationic component of the compounds.  The two potassium salts, along with GABA, 

acetylcholine chloride and atropine sulfate were each dissolved in 0.45 µm FSW.  Stock 

solutions (10-2 M) of each treatment were prepared immediately prior to all settlement assays.  

Following serial dilution in FSW, treatment solutions were prepared as 10X concentrates.  In 

order to maintain the same ion concentration, the final KCl concentration was double that of 

K2SO4.  Final exposure concentrations were prepared by dilution in FSW (Table 1). 
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Settlement Assays 

Several experiments were conducted to test the various compounds on larval 

settlement.  Thus, different larval batches were tested in the different experiments.  To 

standardize the data across experiments, a new set of controls was used for each batch cohort.  

Upon arrival to AUT, the larvae were transferred into a 2 L beaker with 1 L of 0.45 µm FSW.  

The larvae were left to stand for 30–60 min to separate healthy swimming veligers at the 

correct developmental stage from bottom dwellers that were either dead or had already shed 

their vela.  The water was decanted into another beaker, leaving the undesired larvae behind.   

With constant stirring, the volume of FSW was increased to adjust the larval concentration 

until 20–30 larvae ml-1 could be drawn from the solution.  Settlement assays were performed 

in sterile polystyrene Petri plates (60 mm in diameter, and 14 mm in depth) over 48 hours.  

All experiments were conducted with ten replicates per treatment at 17±1ºC under ambient 

light conditions.  Treatment assays consisted of 8 ml FSW, 1 ml larval solution and 1 ml 

concentrated (10X) treatment solution.  The only exception to this was the preparation of the 

combined acetylcholine and atropine treatment which consisted of 7 ml FSW, 1 ml larval 

solution and 1 ml each of concentrated (10X) acetylcholine chloride and atropine sulfate.  

Control assays consisted of 9 ml FSW and 1 ml larval solution.  After 48 hrs, settlement was 

determined.  Under a dissecting microscope at 20–45X magnification, a 200 µl pipette was 

depressed and brought within close proximity (0.5–1.5 mm) to each larva, and gentle suction 

was applied.  Individuals that maintained firm attachment to the substratum were considered 

settled, and those moving freely with no resistance were considered unsettled.  In many 

cases, settlement could be detected visually by the presence of thin transparent mucous-like 

threads, but settlement always was verified with suction.  Percent settlement was calculated 

as the proportion of settled larvae from the number initially placed in each plate. 
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Mortality Assays 

Mortality was recorded to determine acute toxicity effects.  In most cases, mortality 

checks were conducted on the same individuals as those used in settlement assays.  

Exceptions to this were treatments with K2SO4, which were performed on a different batch 

cohort to those used for the settlement assay due to time limitations for mortality detections.  

Also, where selected treatment concentrations for mortality assays were different from those 

employed in the settlement assays, different individuals were used, but they always came 

from the same batch cohort as those used in the settlement assays.  Since atropine sulfate was 

not tested as a potential settlement inducer, it was omitted from the mortality experiments.  

Mortality was identified under a stereo microscope at 20–45X magnification.  Larvae that 

showed signs of movement of the velum, foot, or gut were considered alive.  Since live larvae 

often were inanimate for periods of more than 15 min, the neutral red vital stain was used to 

corroborate mortality detection (see Platter-Rieger and Frank 1987; Jacobson et al. 1993).  A 

120 ppm solution of neutral red was prepared in FSW and diluted in the experimental 

medium to give a final stain concentration of 20 ppm.  After 30 min, larvae were again 

viewed at 20X magnification under a stereo microscope.  Larvae that did not incorporate the 

stain into their tissues were considered dead.  Percent mortality was calculated based on the 

initial number of larvae within each plate. 

 

Statistics 

Percent settlement data were arcsin transformed prior to parametric statistical analyses. 

In replicates where zero larvae settled, the proportion was given a value of 1/4n before the 

transformation was computed, where n = number of larvae in a single treatment.  Data that 

satisfied homogeneity of variance (Bartlett’s test) and normality (Anderson-Darling test) were 
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analyzed using one-way ANOVAs to test for significant differences among treatment groups, 

followed by Tukey’s post-hoc tests to determine pair-wise comparisons.  Cases where some 

treatment levels resulted in complete inhibition of settlement (0%) across all replicates were 

omitted, and the remaining data were analyzed with a two-sample t-test.  The level of 

significance chosen was 0.05 for all statistical tests.  Data were analyzed using the Minitab 

version 15 statistical software package. 

  Lethal dose concentrations of treatments were estimated to provide acute toxicity 

effects of selected compounds.  Statistical software developed by the US Environmental 

Protection Agency was used to analyze these data (EPA Probit Analysis Program Used for 

Calculating LC/EC Values Version 1.5).  Raw mortality data for each treatment level were 

pooled across replicates to yield the total number of larvae responding to the chemicals. 

 

Results 

 

Larval Settlement  

Excess potassium ions 

Both of the K+ containing salts tested (KCl and K2SO4) induced a significant 

proportion of larvae to settle (Fig. 1A–B).  Settlement responses after exposure to KCl 

revealed a typical dose response curve (Fig. 1A) with significant difference detected among 

concentrations (ANOVA; F4,45 = 13.17; p < 0.001).  Among the concentrations, excess K+ at 

5, 10, and 15 mM increased larval settlement compared to control assays (Tukey test; p < 

0.01).  A settlement peak maximum of 64.5% occurred after treatment with 10 mM KCl, 

showing an almost 380% increase in mean settlement response compared to the control.  

Induction of settlement with excess K+ from K2SO4 revealed a similar dose response curve, 
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but overall lower settlement values compared to those with KCl (Fig. 1B).  Significant 

differences were detected among concentrations (ANOVA; F4,45 = 4.65;  p < 0.01), with 5 and 

7.5 mM K2SO4 showing significant increases over the control.  A 41.6% maximum 

settlement peak occurred at a K+ concentration of 15 mM.   

 

Neurotransmitters 

Treatment with GABA did not induce larval settlement at any of the concentrations 

assayed in this study (Fig. 1C).  Total settlement inhibition was detected after exposure to 

GABA at 10-4 and 10-3 M, and only a GABA concentration of 10-5 M produced a similar 

settlement response as the control (Tukey test; p > 0.05).  Conversely, acetylcholine revealed 

a high capacity for inducing larval settlement, with a similar dose response curve as those 

generated after exposure to KCl and K2SO4 (Fig. 1D).  Significant differences in settlement 

among different acetylcholine concentrations were detected (ANOVA; F3,36 = 23.06; p < 

0.001), and all the concentrations were significantly different to the control (Tukey test; p < 

0.01).  A maximum settlement response of 49.6% was achieved after exposure of larvae to 

10-4 M acetylcholine, which equated to over 450% settlement increase over the control. 

 

Acetylcholine receptor blocker 

Results from the acetylcholine with and without atropine experiment indicated 

significant differences among treatments and the control (ANOVA; F3,35 = 26.41; p < 0.001) 

(Fig. 1E).  Exposure of larvae to 10-5 M atropine resulted in an increase in settlement 

compared to the negative FSW control (Tukey test; p < 0.05), but was lower than the 

settlement with both acetylcholine alone and acetylcholine with atropine (Tukey test; p < 

0.001).  The combined treatment of acetylcholine and atropine showed that the settlement 
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inductive ability of acetylcholine was not diminished by blocking the mAChR’s.  In addition, 

there were no significant differences in settlement responses between acetylcholine alone and 

acetylcholine with the blocker atropine (Tukey test; p > 0.05). 

 

Mortality 

Excess potassium ions 

Results from the larval mortality assays indicate a difference in acute toxic effects 

between the two potassium salts tested (Figure 2A & B).  From the mortality graphs, it 

appears that KCl is more acutely toxic than K2SO4 at lower concentrations, since exposure of 

larvae to 20 mM solutions resulted in approximately 36 and 11% mortality, respectively.  

Treatment concentrations for mortality assays were chosen based on pilot studies to ensure 

that the data fitted the assumptions of statistical tests.  Similarly, estimated lethal 

concentration values indicate that KCl is more toxic than K2SO4, yielding lower LC1, 5, 10, 

and 15 concentration values (Table 2). However, at higher concentrations, KCl is less acutely 

toxic than K2SO4, since exposure of larvae to 40 mM solutions of each compound resulted in 

approximately 51 and 96% mortality, respectively.  Statistical analyses of the data also 

revealed that K2SO4 becomes more toxic than KCl at higher exposure concentrations, with 

estimated LC50 values of 28 and 32 mM, respectively. 

 

Neurotransmitters 

Exposure of larvae to 10-5 M solution of GABA resulted in mortality comparable to 

control assays (Figure 2C).  However, exposure of larvae to 10-4 M GABA increased 

mortality, with over 40% of mussels succumbing to toxic effects.  Estimated lethal 

concentration values show that the first signs of acute toxicity (LC1) are apparent at 5.0 X 10-
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6 M, the most toxic of all compounds tested in this study.  Treatment of larvae with 

acetylcholine (Figure 2D) revealed no significant increase in mortality when mussels were 

exposed to 10-5 and 10-4 M solutions compared to control assays (Tukey test, p < 0.05).  

However, estimated lethal concentration values show that acute toxic effects are apparent 

after a 48-hour exposure of larvae to 10-4 M acetylcholine chloride, which is estimated to kill 

between 5 and 10% of the population (Table 2). 

 

Discussion 
 

 

Adding to the list of species, results of the present study show that excess K+, from 

KCl and K2SO4, is an effective inducer of larval settlement in Perna canaliculus.  Optimal 

concentrations of K+, upon complete dissociation of the compounds, were 10 and 15 mM, 

respectively.  It is uncertain why these differences occurred.  However, the possibility exists 

that interferences from cationic components of the compounds occurred, or may simply 

reflect a difference in larval responses among hatchery batches.  A curious bimodal pattern of 

settlement induction with KCl across various concentrations has been demonstrated for a 

number of marine invertebrates including bivalves, gastropods and polychaetes. For example, 

Yu et al. (2008) found that KCl induced larval settlement of Pinctada fucata martensii at 10, 

20 and 50 mM, but not at 30 mM.  However, such a pattern was not observed in the Asian 

green mussel Perna viridis (Ke et al. 1998), nor in P. canaliculus in the current study.  

Optimal inducing concentrations of K+ were similar in P. canaliculus (10-15 mM) and P. 

viridis (12 mM).  This may indicate similarities in the stimulatory action of K+ and/or the 

receptors involved in signal transmissions of larval settlement in this genus.  Interestingly, the 

blue mussel Mytilus edulis does not respond to K+ induction at any concentration (Dobretsov 

and Qian 2003).   
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In the present study, GABA showed no ability to induce larval settlement of P. 

canaliculus at any of the concentrations assayed.  Similar results has been observed in the 

Pacific oyster Crassostrea gigas (Coon et al. 1985), or the blue mussel M. edulis (Dobretsov 

& Qian 2003).  Conversely, GABA has been found to induce settlement in various other 

molluscan species, including the clams Venerupis pullastra and Ruditapes philipinarum 

(Garcia-Lavandeira et al. 2005), the oysters Pinctada margaritifera (Doroudi and Southgate 

2002) and Ostrea edulis (Garcia-Lavandeira et al. 2005), and the Mediterranean mussel M. 

galloprovincialis (Garcia-Lavandeira et al. 2005).  In this study, GABA was highly toxic to 

larvae.  Conversely, some species that are susceptible to GABA settlement induction do not 

display toxic responses after exposure of larvae to between 10-5 and 10-3 M GABA solutions 

(e.g. Yu et al. 2007, Yu et al. 2008).  While the mechanism of settlement induction by GABA 

may be one of excitory depolarization (Baloun and Morse 1984), perhaps toxic response is 

caused by inhibitory hyperpolarization of neuronal membranes. Alternatively, GABA may 

alter levels of other metabolites resulting in death of the organism. 

In the current study, acetylcholine was an effective settlement inducer of P. 

canaliculus with optimal induction at 10-4 M.  These results are similar to those obtained for 

Crassostrea gigas (Bieras and Widdows 1995), Pinctada maxima (Zhao et al. 2003), and M. 

edulis (Dobretsov and Qian 2003).  It is unlikely that acetylcholine stimulates externally-

bound chemoreceptors, and choline derivatives have been suggested to act directly on 

endogenous receptors, or by increasing levels of other neurotransmitters (Hadfield and Hirata 

1986; Hadfield and Pennington 1990; Bieras and Widdows 1995).  The acetylcholine induced 

response in P. canaliculus was not significantly reduced by blocking mAChR’s with atropine 

sulfate, suggesting nAChR’s were responsible for acetylcholine induction.  Furthermore, 

atropine sulfate treatment alone increased settlement compared to control assays.  It is 

uncertain why settlement was induced by blocking mAChR’s, but this may indicate that 
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antagonism of mAChR’s causes an increase in available endogenous acetylcholine at nAChR 

junctions, leading to higher settlement rate.  Further investigation must be carried out to 

determine such a role.  Nonetheless, our results infer an active involvement of nAChR’s in 

biochemical mechanisms of larval settlement for this species. 

In conclusion, we have conducted the first study to determine effects of artificial 

inducers of larval settlement in P. canaliculus.  Unearthing additional factors for settlement 

site selection and characterizing cellular regulatory processes of settlement behavior is 

underway.  Identification of receptors involved in critical life processes, such as larval 

settlement, provides information that may be useful for determining physiological effects of 

environmental change.  Comparative neuronal control of behavior among taxa also may offer 

new perspectives on evolutionary development.  Furthermore, such information has direct 

implications for the aquaculture industry.  For example, identifying factors that can enhance 

larval rearing and settlement techniques may improve production of hatchery-supplied seed, 

which may reduce the reliability on the unpredictable wild-caught spat.  Based on results of 

this study, we are currently investigating the commercial suitability of using K+ and 

acetylcholine for increasing settlement rates of P. canalicuclus larvae under hatchery 

conditions, and we are performing further work to determine the mode of K+ and 

acetylcholine actions on the biochemistry of this organism. 
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Figure 1. Settlement of P. canaliculus larvae exposed to treatment compounds. (A) KCl; (B) K2SO4; (C) GABA; 
(D) acetylcholine; (E) atropine and acetylcholine (-ve control = FSW, +ve control = 1x10-4 M acetylcholine 
chloride, atropine = 1x10-5 M atropine sulphate, combined = 1x10-4 M acetylcholine chloride + 1x10-5 M 
atropine sulphate). Data are mean ± SE of 10 replicates. Letters above error bars indicate pairwise differences 
(Tukey’s HSD post hoc tests). Asterisks represent data omitted from statistical analyses due to 0% settlement 
being detected across replicates. 
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Figure 2. Mortality of P. canaliculus larvae exposed to treatment compounds. (A) KCl; (B) K2SO4; (C) GABA; 
(D) acetylcholine. Data are mean ± SE of 10 replicates.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Final assay treatment concentrations of trialled settlement inducers  
Treatment  Exposure concentration  
KCl  5.0,  10.0,  15.0,  20.0 mmol L-1  
K2SO4  2.5,  5.0,  7.5,  10.0 mmol L-1   
GABA  10-5,  10-4,  10-3 mol L-1  
ACh  10-5,  10-4,  10-3 mol L-1   
Atropine  10-5 mol L-1   
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Table 2. Estimated lethal concentration values of trialled settlement inducers. 

Treatment  
Lethal Concentration Values (mol L-1) 

1% 5% 10% 15% 50% 
KCl  9.2x10-3 1.3x10-2 1.6x10-2 1.8x10-2 3.2x10-2 
K2SO4 1.7x10-2 2.0x10-2 2.1x10-2 2.2x10-2 2.8x10-2 
GABA  5.0x10-6 1.4x10-5 2.5x10-5 3.6x10-5 1.7x10-4 
Acetylcholine 3.7x10-5 7.8x10-5 1.2x10-4 1.5x10-4 4.7x10-4 

 

 


