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Abstract

Investigation of the onset of thermosolutal convection with chemical reaction is carried out for 

different types of basic temperature and concentration gradients using linear theory and energy 

method. An unconditional non-linear stability with exponential decay of finite amplitude 

perturbations is achieved and the Galerkin technique is utilized to solve the resulting Eigen-value 

problem obtained from linear and non-linear analysis. The numerical scheme is validated with 

existing results and the results are obtained for linear, parabolic, inverted parabolic, piecewise 

linear, oscillatory and step-function profiles of temperature and concentration gradients. The linear 

and non-linear results show the existence of subcritical instability.

1. Introduction                            

In the standard Bénard problem [1] the instability is driven by a temperature difference between 

the upper and lower planes bounding the fluid. If the fluid layer additionally has salt dissolved in 

it then there are potentially two destabilizing sources for the density difference, the temperature 

field and salt field. When there are two effects such as this, the phenomenon of convection that 

arises is termed as double-diffusive convection [2]. Natural Convection where the buoyancy is 

driven by both temperature and some dissolved material is necessary in order to understand the 

development of a number of systems that are influenced due to density variation of fluid. The study 

of thermosolutal convection earlier helped in the understanding of the phenomenon of convection 

that occurs in magma chamber and in sun (where heat and helium diffuses). Later, the study 

attained great importance in a wide range of applications in industry and geophysics such as 

extraction of oil from underground reservoirs, the modelling of packed sphere beds, in polymer 

solutions and lubricants, flows in fuel cells, underground disposal of nuclear wastes, oceanography 

and in manufacturing the different type of articles which are useful in aircraft and automobile 

industry.
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In thermosolutal convection solute may either dissolve in fluid or take form of precipitate and 

hence the concept of chemical reaction generates here i.e. dissolved mineral can react with fluid 

on heating and influence the onset of convection. Wollkind and Frisch [3] studied reactive effects 

on convection in a horizontal layer of dissociating fluid. They used normal mode technique for 

linear analysis and showed that for a non-reactive fluid layer heated from below, slight departure 

occurs on the onset of convection from the classical Bénard problem. This linear perturbation 

problem was extended by Wollkind and Frisch [4] to include a nonlinear stability analysis of a 

horizontal layer of dissociating fluid, heated from above or below. The linear and non-linear 

analysis for a chemically driven convection model is performed by Bdzil and Frisch [5, 6].  Krusin 

and Ross [7] studied the Rayleigh Bénard instability in the binary fluids and later, Gitterman and 

Steinberg [8] studied the convective instabilities in reactive fluid with fast chemical reaction. 

Steinberg and Brand [9] discussed the effect of chemical reaction on the onset of convection in a 

porous medium. They ignored the effect of thermal diffusion on the stability of fluid assuming that 

it is less effective on the onset of convection than that of chemical reaction. The work was extended 

by Pritchard and Richardson [10] to include the effect of fast as well as slow chemical reaction on 

the instability of fluid and analyzed the effect of solutal diffusion on the stability of flow. Pritchard 

and Richardson’s [10] work was further extended by Wang and Tan [11] for Darcy-Brinkman 

model in a sparsely packed porous medium using linear stability theory and they reported the 

behavior of Darcy number, Lewis number and reaction term on the onset of thermosolutal 

convection. Srivastava and Bera [12] used linear and weak non-linear analysis to show the effect 

of chemical reaction on stability of thermosolutal convection of non-Newtonian couple stress fluid. 

Malashetty and Biradar [13] applied the linear and nonlinear stability analysis to analyze the effect 

of chemical reaction on thermosolutal convection in anisotropic porous layer. In [12,13] the normal 

mode technique for the linear stability analysis and to obtain finite amplitude Rayleigh number a 

truncated two term Fourier series method is used. Al-Sulaimi [14] studied the thermosolutal 

convection with reaction in a porous medium of Darcy type using linear and nonlinear method. He 

used Chebyshev tau method to obtain the stability and instability results for the system heated 

below and salted above as well as for the system heated and salted from below. Al-Sulaimi [15] 

extended this work and studied the energy stability of Brinkman model for thermosolutal 

convection with chemical reaction. He showed the effect of Brinkman number, chemical reaction 

on the onset of convection for the two cases when the system is salted below and heated below 
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and for the system salted above and heated below. Recently, Harfash and Meften [16] used linear 

instability analysis, non-linear stability analysis, and weighted energy analysis to show the effect 

of couple stresses and chemical reaction on the onset of thermosolutal convection of reactive fluid. 

Some aspects of stability are discussed by Makinde and coworkers [17-20].

 Graham [21] and Chandra [22] observed from their experiment that in thin layers a form of 

convection occurs at Rayleigh number less than that predicted by linear theory. Sutton [23] noted 

that the likely explanation of this phenomenon was the non-uniformity of temperature gradient in 

such layers. Sparrow et al. [24] deduced the effect of parabolic basic temperature profile on the 

onset of convection. Homsy [25] studied the global stability of time dependent profile using energy 

method and further Currie [26] showed the effect of piecewise linear temperature profile on the 

onset of convection and he observed that convection occurs much faster for this profile as 

compared to the linear profile. Nield [27] used linear stability analysis to examine the stability of 

horizontal fluid layer in case of non-uniform temperature gradient and applied single order 

Galerkin technique to find the stability boundary. He observed that when basic thermal gradient is 

nowhere negative the largest instability occurs in case when basic temperature profile is of the 

form of a Dirac-delta function. Further, the effect of non-uniform temperature gradient on the onset 

of convection in fluid saturated porous media is investigated by Rudraiah et al. [28] and they made 

a comparison between the critical Rayleigh number obtained for isothermal and adiabatic 

boundary and observed that convection occurs early in the case of adiabatic boundary than that of 

isothermal boundary. Effect of non-uniform temperature gradient on the onset of convection driven 

by buoyancy force in couple stress fluid saturated porous medium is discussed by Shivakumara 

[29]. 

In the present work, the linear analysis using normal mode technique and non-linear analysis using 

energy method is carried out to analyze the onset of convection in a fluid layer having chemically 

reacting salt dissolved in it. An unconditional energy decay is obtained in the nonlinear analysis. 

The numerical results for the linear and non-linear theory obtained by Galerkin technique show 

the possibility of existence of subcritical instability for the linear, parabolic, inverted parabolic, 

piecewise linear, oscillatory profile and stepwise function profiles of temperature and 

concentration gradients considered in the present work. The behavior of solute and chemical 

reaction parameters is also analyzed. 
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2. Mathematical formulation of the problem

                             

                               Figure 1 Physical configuration of the problem

Let us consider an incompressible fluid of thickness  bounded by two infinite parallel planes, d

and let  &  be the temperature and concentration differences respectively, 1 2T T T   1 2C C C  

maintained between these two planes. Cartesian axes are taken with -axis along the lower plane x

and -axis is infinitely extended perpendicular to -axis and -axis where -axis is vertically y x z z

upward and gravity  acts in negative z-direction. Under the Boussinesq approximation the g

governing equations for flow are as follows

       (1)0  q

                   
(2)2

i T i Cp k g T k g C
t

            
q q q q +

The transport of heat and solute is described by the advection-diffusion equations

       
(3)     2

T
T T k T
t


   


q

       
(4) 2

0 1 0
ˆ

C
C C k C k S S T T C
t


         

q

where  are the density, velocity, pressure, fluid viscosity, time, , , , , , , , , , ,T C T Cp t T C k k   q
temperature, mass concentration, coefficient of thermal expansion, coefficient of solute expansion, 
thermal diffusivity and solute diffusivity respectively,  is the unit vector. Following  0,0,1ik 
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the work of Gitterman and Steinberg [8], Pritchard and Richardson [10],     0 1 0 eqS S T T C T  

where   are constants and  is the reaction coefficient.0 1 0, ,S S T ˆ 0k 

In the quiescent state, the temperature and concentration distribution is freezed at any instant of 
time using quasi-static approximation (see Currie [26]) which allows us to write the conduction 
solution as 

                   (5)       , , / , ( ) /b b
b b T C

dT dCp p z f z d T f z d C
dz dz

       0q = q

where subscript b denotes the basic state and  are non-dimensional temperature and ( ), ( )T Cf z f z
salt gradients respectively, satisfying

   
1 1

0 0

1 , 1T Cf z dz f z dz  

It is assumed that the instability occurs by way of perturbation to the conduction solution. On 
considering the perturbations to conduction state (5) in the form 

       (6)         , , , ,b b b b bz p p z p z T T z C C z               q q q

where are perturbed velocity, pressure, density, temperature, and  , , , , , ,u v w p     q =

concentration respectively, the conservation equations (1)-(4) take the form (on dropping the 
primes)

          (7)2
i T i Cp k g k g

t
              

q q q q +

       (8)0  q

       
(9)2 b

T
Tk w

t z
   

    
 

q

                                                                     (10)2
1

ˆ ˆb
C

Ck w kS k
t z
    

      
 

q

The system (7) -(10) is non-dimensionalized using suitable scales given by
2

* * * *
2, , , ,T T

T

k kdz dz t t p p
d k d


   q q    

* *
1 1

2 2
,T C

R Rs
    

 

and the dimensionless perturbed system of equations (after dropping the asterisks) is written as

     
(11)   1 12 2 21

Pr i ip R k Rs k
t

          
q q q q +

     (12)0  q
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(13) 12 2( )Tf z R w

t
  

    


q

     
(14) 12 2( )CLe f z Rs w h

t
              

q

where 
 
is Lewis number,  is Prandtl number,  is thermal T

C

kLe
k

 Pr
Tk





3

T

T

d g T
R

k






Rayleigh number, 
 
is Solutal Rayleigh number and , 

3
C

C

d g C
Rs

k




 2

1
ˆ C

C T T

T
h k d S

k Ck








 
are chemical reaction parameters. 

2ˆ

C

k d
k

 

The boundary conditions for the system of equations (11) -(14) are as follows

 at        (15)0dww
dz

     0,1z 

3. Linear stability analysis

Linear analysis is performed by considering the perturbations given in (6) to be infinitesimally 
small and so the quadratic and higher order terms in equations (11) -(14) are neglected [see, 
Chandrasekhar [1]]. The normal mode solution is chosen after removing pressure term from (11) 
in the form , with , as the wave      , , ( ), ( ), ( ) exp x yz z z i a x a y t        q q 2 2

x ya a a 

number of disturbance and  the growth rate. Letting , leads to following system of linear  dD
dz



equations 

     
(16)   1 12 2 2 2 2 2 22 2( ) ( )

Pr
D a W D a W R a Rs a

      

     
(17)  12 2 2( ) ( )TD a R f z W     

     
(18) 12 2 2( ) ( )CLe D a Rs f z W h         

with the boundary conditions (15) take the form

 at                                                                                  (19)0W DW      0,1z 

Equations (16) -(18) together with boundary condition (19) form eigenvalue problem, which is 
solved using Galerkin method. To this end, let us consider the unknown variables as 

                                 (20)
1 1 1

, ,
N N N

i i i i i i
i i i

W A W B C
  

        
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where  are basis functions, chosen in such a way that the boundary conditions are , ,i i iW  

satisfied and  are constants. On Substituting (20) into the stationary form of the system , ,i i iA B C
of equations (16)-(18) and multiplying to the resultant equations by  respectively and , ,j j jW  

performing the integration with respect to z, between  and  and using boundary 0z  1z 
condition (19) provides a system of linear homogeneous algebraic equations as below

1 2 3 0ji i ji i ji iX A X B X C  

                                                                                                           (21)1 2 3 0ji i ji i ji iY A Y B Y C  

1 2 3 0ji i ji i ji iP A P B P C  

The coefficients  to  contains inner product of the basis function, given by1 jiX 3 jiP

2 2 4 2
1 2ji j i j i j iX D W D W a W W a DW DW  

1 22
2 ji j iX R a W  

1 22
3 ji j iX Rs a W 

1
2

1 ( )ji T j iY R f z W 

2
2 ji j i j iY D D a      

     (22)3 0jiY 

1
2

1 ( )ji C j iP Rs f z W 

2 ji j iP h  

2
3 ji j i j i j iP D D a          

Here the inner product is defined as . 
1

0

... ... dz 

The above set of equations, given by (21), contain a non-trivial solution if and only if  
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(23)
1 2 3

1 2 3

1 2 3

0
ji ji ji

ji ji ji

ji ji ji

X X X

Y Y Y

P P P



Now, we choose the following trial functions 
3 2 1

1( 2 )i i i
i iW z z z T   

  

                                                                                                                      1
1( )i i

i iz z T 
  

1
1( )i i

i iz z T 
  

where ’s are modified Chebyshev polynomials. The critical Rayleigh number of linear theory  iT 

 is calculated numerically and the results are presented in section 5. 
0

mincL a
R R a




4. Nonlinear stability analysis

Now, the perturbations in (6) are assumed to be finite and so the non-linear terms in the system 
(11) -(14) are retained. This non-linear system is now solved by energy method, which is well 
described in Straughan [30]. To begin with, we multiply (11) by , (13) by , and (14) by and q  ,
integrate over the periodic cell V (using boundary condition (15) and application of Divergence 
theorem) to obtain the following system of equations

    
(25)1 12 2 2 21

2Pr
d R w Rs w
dt

     q q

    
(26)12 2 21 ( )

2 T
d R f z w
dt

     

    
(27)12 2 22 ( )

2 C
Le d Rs f z w h

dt
          

where  denotes the  norm and  denotes the integration. Using the concept of coupling  2 ( )L V 

parameters (Joseph [31]), energy functional  is constructed (with  as coupling  E t 1 2, 
parameters) as

    
(28)2 2 21 21( )

2Pr 2 2
Le

E t
 

   q

The evolution of energy with respect to time is

    
(29)2 2 21 2( ) 1

2Pr 2 2
LedE t d d d

dt dt dt dt
 

   q

Substituting (25) -(27) in (29), we may write
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(30)( )dE t I D

dt
 

where  contains non-1 1 1 1
2 2 2 2

1 2 2( ) ( )T CI R w Rs w R f z w Rs f z w h           

definite production terms and  consists of positive 2 2 2 2
1 2 2D             q

definite dissipation terms.

Setting

     
(31)1 max

H
E

I
R D



where  is space of admissible solution, then we require  so that  and (30) H 1ER  1
11 0

E

b
R

 
   

 
may be written as

                             (32)1
dE b D
dt

 

Using Poincare’s inequality the dissipation terms  are D

     
(33)

2
2 2 2 2

1 2
2 [ Pr ] 2

2
D Le k E         q

where .1min 1,Pr,k
Le

   
 

The equation (32) using (33) is written as 

2
12dE k b E

dt
  

Integrating above equation, we obtain

 2
1( ) (0)exp 2E t E k b t  

It ensures that energy decays exponentially fast for all values of  and yield unconditional 𝐸(0)
nonlinear stability.

Now, the variational problem (31) gives the nonlinear energy threshold, the associated Euler 

Lagrange’s equations after taking transformation  are obtained using the 
1 2

ˆ ˆ
,  

 
 

calculus of variation and these are written as

     
(34)   

1 1
2 2 1 12 2 2

1 2
1 2

2 i i
T i C i

R k Rs k+ R f z k Rs f z k p     
 

     q
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(35) 

1
2 12 22

1
11

2 0T
R+ w R f z w h  


   

     (36) 
1

2 12 22
2

12

2 2 0C
Rs w Rs f z w h   


     

where p is Lagrange multiplier. Applying the double curl on equation (34) and taking the third 
component of resulting equation, reduces it to the following 

                            (37)   
1 1

2 2 1 14 2 2 2 22 2
1 2

1 2

2 0T C
R Rsw a a R f z a Rs f z a     

 
     

Now we assume, a plane tiling form  with   where      , , , , ,w W U x y      2 2
1 0a U   U

is plane tiling function. Hence (35)-(37) reduces to the following system of equations

                                      (38)     
1 12 22 222 2

1 2
1 2

2 1 ( ) 1 ( ) 0T C
R a Rs aD a W f z f z 

 
       

                                  (39)    
1

2
2 2 2

1
11

2 1 0T
RD a + f z W h


     

     
(40)    

1
2

2 2 2
2

12

2 1 0C
RsD a f z W h 


       

The corresponding boundary conditions are

   at       (41)0W DW      0,1z 

The value of critical Rayleigh number  is obtained by eigenvalue 
1 2

1 2max min ( , , )cE a
R R a

 
 

problem (38)-(40) with boundary condition (41). The system is solved using Galerkin technique 
as described in section 3.

5. Results and discussion section

The numerical calculations are carried out to see the impact of different temperature and 

concentration gradient profiles. To this end, the linear, parabolic, inverted parabolic, piecewise 

linear, oscillatory and stepwise profiles are considered. The critical Rayleigh number for  cLR

linear theory and critical Rayleigh number for non-linear theory are calculated and compared  cER

to see the possibility of existence of subcritical instability. In order to validate the numerical 

scheme, the results are calculated for a model not containing solute ( ). Results 0, 0, 0Rs h   
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are found to be in good agreement with Currie [26] in case of piecewise profile and  0 1 

linear profile  (Figure 2 and Table 1) and with Sparrow et al. [24] for parabolic profile (Table  1 

2).

Figure 2: Validation of the results with Currie [26] for the piecewise profile and linear  0 1 

profile  . 1 

Table 1: Comparison of present study with Currie [26]

Table 2: Comparison of present study for parabolic profile

5.1 Linear temperature and concentration profiles

For the linear temperature and concentration profiles the gradient functions are

( ) ( ) 1T Cf z f z 

From the numerical calculations, it is observed that the increase in the values of solute Rayleigh 
number delays the onset of convection (Figure 3 and Table 3). The stability boundary obtained by 
non-linear theory is found to be unaffected by the solute Rayleigh number and reaction parameters. 

Currie [26] Present study


cLR  cLR cER

Piecewise Profile 0.72 1340 0.70 1347.89 1339.07

Linear Profile 1 1707.8 1 1707.76 1707.76

Sparrow et al. [24] Present study

cLa cLR cLa cLR
3.13      1694.953 3.13                            1694.9936
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When  the results of linear and non-linear analyses coincide, however, existence of 0Rs 
subcritical region of instability is noted in the presence of solute Rayleigh number. It is also 
observed that the reaction parameters  and  have counter-effect on the onset of convection. h 
Increase in value of  for fixed  delays the onset of convection while increase in value of  for h  
fixed  hastens the onset of convection. An increase in  value promotes the dissolution reaction h h
to absorb some of the heat energy causing the surrounding environment to feel cold. The net result 
is that a larger temperature gradient is required for the onset of convection and hence system is 
stabilized. For a fixed , increase in the value of  corresponds to a faster rate of chemical reaction h 
that results in negligible diffusion of salt component and provides an early onset of convection.
When both  and , varies at the same rate the two opposing forces try to counter balance the h 
effect, however, due to larger solubility the onset of convection is delayed slightly. Thus the value 
of the critical Rayleigh number  obtained at  is above the value of  at . It cLR 1h   cLR 0h  

is not always necessary that linear instability threshold coincide with the energy threshold but 
when the system is symmetric then linear instability theory always represents accurately the onset 
of convection. In Figure 3, subcritical instability exists i.e. linear instability theory is unable to 
capture the physics for the onset because of the two sources of anti-symmetry, the terms of  Rs
and the terms of .h

Figure 3: Variation of critical Rayleigh numbers  (linear analysis) and ( nonlinear analysis) cLR cER

with solute Rayleigh number  for linear model . Solid lines ( ) are results Rs  ( ) 1T Cf z f z    ―

for linear analysis and dashed line (---) is result of nonlinear analysis. For linear analysis, curve 
(a) is for , curve (b) is for , curve (c) is for , and curve (d) is for 0h   1h   1, 12h  

. From the nonlinear analysis, curve (e) is drawn for . It is also noted that the 12, 1h   0h  
curve (e) is unchanged for varying  and . This can be seen in Table 3.h 
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Table 3: Variation of critical Rayleigh number  with solute Rayleigh number  and  ,cL cER R Rs

chemical reaction parameters  for the linear profile. ,h 

 
1

2Rs RcL cLa cER cEa 1 2

0 1707.764 3.12 1707.764 3.12 1 --
10 1807.763 3.12 1707.764 3.12 1 1
20 2107.765 3.12 1707.764 3.12 1 1
30 2607.757 3.12 1707.764 3.12 1 1
40 3307.757 3.12 1707.764 3.12 1 1
50 4207.754 3.12 1707.764 3.12 1 1
60 5307.764 3.12 1707.764 3.12 1 1
70 6607.755 3.12 1707.764 3.12 1 1
80 8107.76 3.12 1707.764 3.12 1 1
90 9807.753 3.12 1707.764 3.12 1 1

0h  

100 11707.76 3.12 1707.764 3.12 1 1
0 1707.764 3.12 1707.764 3.12 1 --
10 1823.572 3.13 1707.764 3.12 1 0.83
20 2133.054 3.13 1707.764 3.12 1 0.90
30 2638.713 3.13 1707.764 3.12 1 0.93
40 3342.146 3.14 1707.764 3.12 1 0.95
50 4244.314 3.14 1707.764 3.12 1 0.96
60 5345.73 3.14 1707.764 3.12 1 0.97
70 6679.335 3.14 1707.764 3.12 1 0.97
80 8147.373 3.14 1707.764 3.12 1 0.97
90 9847.863 3.14 1707.764 3.12 1 0.98

1h  

100 11748.22 3.14 1707.764 3.12 1 0.98
0 1707.764 3.12 1707.764 3.12 1 --
10 1783.187 3.11 1707.764 3.12 1 0.83
20 1983.776 3.07 1707.764 3.12 1 0.91
30 2309.043 3.00 1707.764 3.12 1 0.93
40 2757.111 2.92 1707.764 3.12 1 0.95
50 3325.102 2.81 1707.764 3.12 1 0.96
60 4009.448 2.70 1707.764 3.12 1 0.97
70 4806.496 2.58 1707.764 3.12 1 0.97
80 5712.881 2.47 1707.764 3.12 1 0.97
90 6725.689 2.35 1707.764 3.12 1 0.98

1, 12h  

100 7842.661 2.25 1707.764 3.12 1 0.98
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5.2 Parabolic and inverted parabolic temperature and concentration profiles

For the parabolic temperature and concentration profiles, the gradient functions are

( ) ( ) 2T Cf z f z z 

 and for the inverted parabolic temperature and concentration profiles the gradient functions are

 ( ) ( ) 2 1T Cf z f z z  

We begin the discussion by noting that the results of linear and non-linear analysis do not coincide 
even for the case when solute is absent. In (Figure 4a, Table 4), it is found from numerical 
calculation that for both parabolic and inverted parabolic profile the onset of convection occurs at 
same values of critical Rayleigh number. It is also noted that the onset of convection for these 
profiles occur at slightly lower values of Rayleigh number when compared with linear profile. The 
increase in the values of solute Rayleigh number  delays the onset of convection, that is, the Rs
critical values of Rayleigh number increases with increase in  values. However, it was Rs
interesting to note that stability region obtained due to finite perturbation decreases with the 
increase in  values for these profiles. Moreover, the subcritical instability region increases with Rs
the increase in Rayleigh number of solute. In Figure 4a, the stability boundary obtained by 
nonlinear analysis is plotted only with .The results of other values of  and  are so 0h   h 
close to the  that they seemed overlapped.To visualize the difference in results of energy 0h  
theory the Figure 4b is presented.The stability boundaries when  increases, are influenced by Rs
the chemical reaction parameters. The stability region increases in the presence of chemical 
reaction. Due to the closeness in stability boundaries the plots in the following subsections are 
presented by considering stability boundaries at .0h  
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Figure 4a: Variation of critical Rayleigh numbers  with solute Rayleigh number  for  ,cL cER R Rs
the case of parabolic profile. Solid lines ( ) are results for linear analysis and dashed line (---) is ―
result of nonlinear analysis. For linear analysis, curve (a) is for , curve (b) is for , 0h   1h  
curve (c) is for , and curve (d) is for . From the nonlinear analysis, curve 1, 12h   12, 1h  
(e) is drawn for . 0h  

                                       

Figure 4b: Variation of critical Rayleigh number  with solute Rayleigh number  using cER Rs
nonlinear analysis for the case of parabolic profile with (a) , (b) , (c) 0h   1h  

, (d) . It is observed that stability threshold increases with reaction 1, 12h   12, 1h  
parameters  and decreases with solute Rayleigh number .,h  Rs
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Table 4: Variation of critical Rayleigh numbers  with solute Rayleigh number  and  ,cL cER R Rs

chemical reaction parameters   for parabolic profile (or inverted parabolic profile). ,h 

 
1

2Rs cLR cLa cER cEa 1 2

0 1694.994 3.13 1676.681 3.13 0.96 --
10 1794.988 3.13 1675.83 3.13 0.96 0.96
20 2094.994 3.13 1673.293 3.13 0.96 0.96
30 2594.996 3.13 1668.943 3.14 0.96 0.96
40 3294.99 3.13 1662.902 3.13 0.96 0.96
50 4194.984 3.13 1655.115 3.14 0.96 0.96
60 5294.993 3.13 1645.6 3.14 0.97 0.97
70 6594.983 3.13 1634.31 3.15 0.97 0.97
80 8094.979 3.13 1621.262 3.15 0.97 0.97
90 9794.982 3.13 1606.414 3.16 0.97 0.97

0h  

100 11694.99 3.13 1589.776 3.17 0.97 0.97
0 1694.994 3.13 1676.681 3.13 0.96 --
10 1810.613 3.14 1675.953 3.13 0.96 0.80
20 2119.958 3.14 1673.546 3.13 0.96 0.88
30 2625.527 3.15 1669.458 3.14 0.96 0.90
40 3328.898 3.15 1663.669 3.14 0.96 0.92
50 4231.021 3.15 1656.181 3.14 0.96 0.93
60 5332.402 3.15 1646.972 3.14 0.97 0.93
70 6633.353 3.15 1636.049 3.15 0.97 0.94
80 8134.002 3.15 1623.389 3.15 0.97 0.94
90 9834.491 3.15 1608.948 3.15 0.97 0.94

1h  

100 11734.85 3.15 1592.832 3.15 0.97 0.95
0 1694.994 3.12 1676.681 3.13 0.96 --
10 1770.508 3.12 1676.084 3.13 0.96 0.80
20 1971.609 3.08 1674.119 3.13 0.96 0.87
30 2297.764 3.01 1670.774 3.13 0.96 0.90
40 2747.07 2.92 1666.027 3.14 0.96 0.91
50 3316.516 2.82 1659.902 3.14 0.96 0.92
60 4002.536 2.70 1652.374 3.14 0.96 0.93
70 4801.409 2.58 1643.427 3.15 0.96 0.94
80 5710.628 2.47 1633.065 3.15 0.96 0.94
90 6724.607 2.35 1621.294 3.16 0.96 0.94

1, 12h  

100 7843.777 2.25 1608.066 3.16 0.97 0.94
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5.3 Piecewise linear temperature and concentration profiles

For the piecewise linear temperature and concentration profiles, the temperature and solute 
gradients are 

1 , 0 ,
( ) ( )

0, 1
T C

z
f z f z

z






    
  

where  is the thermal or concentration depth parameter ranging from 0 to 1.

It is observed from Figure 5a that as  increases from 0 to 1 the values of critical Rayleigh numbers 

 first decreases to a minimum value and then starts increasing. The minimum value is  ,cL cER R

obtained at  which agrees closely to the value  obtained by Currie [22] for the 0.7  0.72 

model of sudden heating from below. At , the critical values of Rayleigh numbers 0.7 

 are lower than at , which means that the onset of convection is early in piecewise  ,cL cER R 1 

profile as compared to linear profile and the region of stability has decreased. The effect of increase 
in the values of solute Rayleigh number  on onset of convection is delayed (Table 5 and Figure Rs
5b) however, the region of stability is decreasing and region of subcritical instability is growing. 

Figure 5a: Variation of critical Rayleigh numbers  with depth parameter ( ) for the  ,cL cER R 

case of piecewise profile. Solid lines are results of linear analysis and dashed lines are results of 
nonlinear analysis. For linear analysis, curve (a) is for , curve is for 1600, 1, 12Rs h    ( )b

, From the nonlinear analysis, curve (c) is for and 3600, 1, 12Rs h    1600, 1, 12Rs h   
curve (d) is for .3600, 1, 12Rs h   
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Table 5: Variation of critical Rayleigh numbers  with solute Rayleigh number  and  ,cL cER R Rs

chemical reaction parameters  in case of piecewise linear profile at critical value of thermal  ,h 

or concentration depth .0.7c 

 
1

2Rs cLR cLa cER cEa 1 2

0 1347.896 3.12 1339.07 3.12 0.78 --
10 1447.894 3.12 1338.557 3.12 0.78 0.78
20 1747.892 3.12 1337.014 3.12 0.78 0.78
30 2247.888 3.12 1334.441 3.13 0.78 0.78
40 2947.893 3.12 1330.82 3.13 0.78 0.78
50 3847.895 3.12 1326.14 3.13 0.78 0.78
60 4947.884 3.12 1320.385 3.13 0.78 0.78
70 6247.891 3.12 1313.526 3.14 0.78 0.78
80 7747.89 3.12 1305.536 3.14 0.78 0.78
90 9447.879 3.12 1296.382 3.14 0.78 0.78

0h  

100 11347.9 3.12 1286.001 3.15 0.78 0.78
0 1347.896 3.12 1339.07 3.12 0.78 --
10 1461.441 3.13 1338.652 3.12 0.78 0.66
20 1769.052 3.14 1337.248 3.12 0.78 0.71
30 2273.306 3.14 1334.828 3.13 0.78 0.73
40 2975.779 3.14 1331.374 3.13 0.78 0.74
50 3877.266 3.14 1326.89 3.13 0.78 0.75
60 4978.234 3.14 1321.308 3.13 0.78 0.76
70 6278.867 3.14 1314.701 3.14 0.78 0.76
80 7779.311 3.14 1306.953 3.14 0.78 0.76
90 9479.632 3.14 1298.017 3.15 0.78 0.76

1h  

100 11594.21 3.14 1287.92 3.15 0.78 0.77
0 1347.896 3.12 1339.07 3.12 0.78 --
10 1422.052 3.11 1338.718 3.12 0.78 0.65
20 1621.818 3.06 1337.54 3.12 0.78 0.71
30 1946.336 2.98 1335.508 3.14 0.78 0.73
40 2393.098 2.87 1332.615 3.14 0.78 0.73
50 2958.457 2.75 1328.836 3.14 0.78 0.74
60 3638.273 2.61 1324.196 3.14 0.78 0.75
70 4428.596 2.48 1319.346 3.14 0.78 0.75
80 5326.095 2.35 1312.142 3.14 0.78 0.76
90 6328.155 2.24 1304.741 3.15 0.78 0.76

1, 12h  

100 7432.819 2.13 1296.324 3.15 0.78 0.76
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Figure 5b: Variation of critical Rayleigh numbers  with solute Rayleigh number  for  ,cL cER R Rs
the case of piecewisewise linear profile. Solid lines ( ) are results of linear analysis and dashed ―
line (---) is result of nonlinear analysis. For linear analysis, curve (a) is for , curve (b) is 0h  
for , curve (c) is for , and curve (d) is for . From the nonlinear 1h   1, 12h   12, 1h  
analysis, curve (e) is drawn for . 0h  

5.4 Oscillatory profiles for temperature and concentration gradients

For the oscillatory temperature and concentration profiles, the gradients functions are 

      sin
2T Cf z f z z  

In the Figure 6 and Table 6, the variation of critical Rayleigh numbers  against solute  ,cL cER R
Rayleigh number  for the different values of chemical reaction parameters  and  are Rs h 
presented. It is observed that the stabilizing effect of solute Rayleigh number  and behavior of Rs
chemical reaction parameters  on the onset of convection continues to hold on the same lines ,h 
as in the other assumed temperature and concentration profiles. The oscillatory profile is observed 
to be more unstable than the linear, parabolic, inverted parabolic, and piecewise linear profiles as 
the critical value of Rayleigh number  is found to be less for oscillatory profile when compared cLR
to  these profiles. It is also observed that the subcritical region of instability increases with increase 
in  parameter. As like the other assumed profiles of temperature and concentration gradients, Rs
an increase in the  values (for fixed values of ) delays the onset of convection however, an h 
increase in  values ( for fixed values of ) hastens the onset of convection.  h
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Figure 6: Variation of critical Rayleigh numbers  with solute Rayleigh number   ,cL cER R Rs
for the case of oscillatory profiles of temperature and concentration gradients. Solid lines ( ) ―
are results of linear analysis and dashed line (---) is result of nonlinear analysis. For linear 
analysis, curve (a) is for , curve (b) is for , curve (c) is for , and 0h   1h   1, 12h  
curve (d) is for . From the nonlinear analysis, curve (e) is drawn for .  12, 1h   0h  
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Table 6: Variation of critical Rayleigh numbers  with solute Rayleigh number  for  ,cL cER R Rs

chemical reaction parameters  in case of oscillatory profiles of temperature and  ,h 
concentration gradients. 

 
1

2Rs cLR cLa cER cEa 1 2

0 1237.561 3.11 1235.8839 3.11 0.72 --
10 1337.558 3.11 1235.7771 3.11 0.72 0.72
20 1637.561 3.11 1235.4566 3.11 0.72 0.72
30 2137.561 3.11 1234.9223 3.11 0.72 0.72
40 2837.56 3.11 1234.1741 3.11 0.72 0.72
50 3737.618 3.11 1233.2116 3.11 0.72 0.72
60 4837.473 3.11 1232.0345 3.11 0.72 0.72
70 6137.561 3.11 1231.3125 3.11 0.72 0.72
80 7637.594 3.11 1230.3345 3.11 0.72 0.72
90 9337.559 3.11 1227.2131 3.12 0.72 0.72

0h  

100 11237.56 3.11 1225.1710 3.12 0.72 0.72
0 1237.561 3.11 1235.8812 3.12 0.72 --
10 1350.446 3.12 1235.8148 3.12 0.72 0.66
20 1657.499 3.13 1235.5415 3.12 0.72 0.68
30 2161.365 3.13 1235.0603 3.13 0.72 0.70
40 2863.558 3.13 1234.3121 3.13 0.72 0.70
50 3764.935 3.13 1233.4578 3.13 0.72 0.70
60 4865.62 3.13 1232.3439 3.13 0.72 0.71
70 6166.255 3.14 1230.9696 3.14 0.72 0.71
80 7666.696 3.14 1229.4479 3.14 0.72 0.71
90 9366.908 3.14 1227.7127 3.15 0.72 0.71

1h  

100 11267.11 3.14 1225.7586 3.15 0.72 0.71
0 1237.561 3.11 1235.8812 3.11 0.72 --
10 1311.173 3.10 1235.4190 3.11 0.72 0.65
20 1510.113 3.05 1235.5782 3.11 0.72 0.66
30 1833.407 2.96 1235.1461 3.11 0.72 0.68
40 2278.32 2.85 1234.5241 3.11 0.72 0.68
50 2840.965 2.78 1233.6991 3.11 0.72 0.69
60 3517.009 2.65 1232.7107 3.11 0.72 0.70
70 4302.45 2.51 1231.5054 3.11 0.72 0.71
80 5194.021 2.37 1230.0869 3.11 0.72 0.71
90 6189.266 2.19 1228.5363 3.12 0.72 0.71

1, 12h  

100 7286.368 2.09 1226.7869 3.12 0.72 0.71
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5.5   Step function profile

The step profiles occurs when there is superposition of two layers and basic temperature (or 
concentration) drops suddenly by an amount of  (or ) at  given byT C z 

( ) ( ) ( - )T Cf z f z z  

where  is Dirac delta function and  is thermal or concentration depth parameter varying from  
0 to 1.

The variation of  from 0 to 1 was made and critical Rayleigh numbers are calculated and it is 
found that the system is most unstable when . Numerical values are presented in Table 7 0.5 
and Figure 7 for fixed value of  and increasing solute Rayleigh number  which confirms 0.5  Rs
the early onset of convection as compared to the profiles discussed earlier. The result is also true 
for fixed  and varying chemical reaction parameters. Stabilty region reduces with increase inRs

 values and this behaviour is found to be consistent in all the profiles of temperature and Rs
concentration gradients.

In Figure 8(a-d), the comparison of piecewise and stepwise profile is made for increasing value of 
 and for different values of solute Rayleigh number  and chemical reaction parameters .  Rs ,h 

It is evident from all figures that as  varies from 0 to 1 the critical Rayleigh number first decreases 
to a minimum value and then starts increasing. In all cases, the minimum value of Rayleigh number 
is attained at  for stepwise profile and at  for the piecewise profile. As , the 0.5  0.7  1 
critical Rayleigh number attains a finite value for piecewise profile while it tends to infinite for 
stepwise profile. For the piecewise profile as  becomes 1, the profile becomes linear and results 
match with the results of linear profile model. For the stepwise profile as  becomes 1, the two 
superposed layers become a single layer with constant temperature and so the system is always 
stable leading to the critical Rayleigh number values tending to infinity. 
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Figure 7: Variation of critical Rayleigh numbers with solute Rayleigh number  for  ,cL cER R Rs
the case of stepwise profile. Solid lines ( ) are results of linear analysis and dashed line (---) is ―
result of nonlinear analysis. For linear analysis, curve (a) is for , curve (b) is for , 0h   1h  
curve (c) is for , and curve (d) is for . From the nonlinear analysis, curve 1, 12h   12, 1h  
(e) is drawn for . 0h  

      
        (a)                          (b)

         
(c)                                                          (d)

Figure 8: Comparison of Piecewise and stepwise profiles with variation in depth parameter ( ) 
at and (a) , (b) , (c) , (d) 1,h  2500, 1Rs   3600, 1Rs   2500, 12Rs   3600, 12Rs  

.
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Table 7: Variation of critical Rayleigh numbers  with solute Rayleigh number  and  ,cL cER R Rs

chemical reaction parameters  in case of step profile functions at critical value of thermal or  ,h 

concentration depth .0.5c 

 
1

2Rs aLR cLa cER cEa 1 2

0 739.9706 3.12 709.6416 3.15 0.40       --
10 839.9679 3.12 706.4007 3.16 0.40 0.40
20 1139.967 3.12 696.6274 3.17 0.40 0.40
30 1639.967 3.12 680.2446 3.19 0.40 0.40
40 2339.966 3.12 657.0814 3.21 0.40 0.40
50 3239.966 3.12 626.8964 3.25 0.40 0.40
60 4339.964 3.12 589.3533 3.30 0.40 0.40
70 5639.965 3.12 543.967 3.36 0.40 0.40
80 7139.963 3.12 490.0733 3.44 0.40 0.40
90 8839.967 3.12 426.7612 3.53 0.40 0.40

0h  

100 10739.96 3.12 352.7335 3.65 0.40 0.40
0 739.9706 3.12 709.6416      3.15 0.40     --
10 848.9823 3.13 706.842 3.16 0.40 0.35
20 1153.098 3.14 697.6254 3.17 0.40 0.37
30 1655.033 3.14 681.8731 3.19 0.40 0.38
40 2356.025 3.14 658.8308 3.22 0.40 0.40
50 3256.574 3.14 629.3977 3.25 0.40 0.40
60 4356.911 3.14 592.6985 3.30 0.40 0.40
70 5657.116 3.15 548.2622 3.37 0.40 0.40
80 7157.262 3.15 495.4408 3.44 0.40 0.40
90 8857.37 3.15 425.0566 3.54 0.40 0.40

1h  

100 10757.44 3.15 360.6847 3.65 0.40 0.40
0 739.9706 3.12 709.3913 3.15 0.40     --
10 811.6687 3.09 707.1345 3.16 0.40 0.34
20 1009.994 3.00 698.9203 3.16 0.40 0.36
30 1332.557 2.86 685.8166 3.19 0.40 0.38
40 1774.617 2.69 664.7889 3.21 0.40 0.38
50 2330.63 2.51 638.6437 3.24 0.40 0.38
60 2995.69 2.34 605.5094 3.29 0.40 0.39
70 3766.191 2.19 564.4806 3.34 0.40 0.39
80 4639.694 2.05 517.5443 3.42 0.40 0.39
90 5614.67 1.94 462.7532 3.47 0.40 0.39

1, 12h  

100 6690.095 1.83 399.2244 3.62 0.40 0.40
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The neutral stability curves are drawn for linear, parabolic, piecewise linear profile, oscillatory 
profile, and stepwise profiles, of temperature and concentration gradients using linear analysis 
[Figure 9(a), Figure 10(a)] and nonlinear stability analysis [Figure 9(b), Figure 10(b)]. The critical 
values of Rayleigh number  obtained using linear theory correspond to the onset of convection cLR
and from Figure 9(a) and 10(a), it is seen that convection occurs for stepwise profile at much lower 
values of critical Rayleigh number when compared to the other assumed profiles of temperature 
and concentration gradients. The critical values of Rayleigh number  obtained by nonlinear cER
analysis provide the stability threshold and from Figure 9(b) and 10(b) it is observed that linear 
profile is much stable in compared to the other considered profiles of temperature and 
concentration gradients . It is also observed that with the increase in  values the onset of h
convection is delayed, however, the stability region is marginally shifted which results in increase 
in region of subcritical instability.

                                                                                     
                         (a)                                                                             (b)

Figure 9: Neutral stability curves for fixed value of , (a) linear theory, and 3600, 1, 1Rs h   
(b) nonlinear stability analysis.

                                                       
            (a)                                                                            (b)

Figure 10: Neutral stability curves for fixed value of , (a) linear theory, 3600, 12, 1Rs h   
and  (b) nonlinear stability analysis.     
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6. Conclusions

In this work, the effect of different temperature and concentration profiles on the stability of layer 
of fluid with chemical reaction is analyzed. It is observed that the parabolic and inverted parabolic 
profiles have same effect on the stability of system, and the onset of convection for both profiles 
occur at a slightly lower values as compared to the linear profile. It is found that the stepwise 
profile is most unstable followed by the oscillatory profile being the second most unstable. The 
solute Rayleigh number  has stabilizing effect on the onset of convection. The effect of Rs
chemical reaction parameter  is stabilizing while the parameter  is destabilizing. For all h 
considered profiles, the region of subcritical instability exists.
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