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Effect of Nonzero Write Field Rise Time in 
Digital Magnetic Recording 

J. FLUITMAN 

Abstract-A  general method is  given to predict  write  field 
rise time  effects on isolated pulses in digital magnetic  record- 
ing. The  method is based  on the use  of a  graph,  which  can  be 
calculated  once and  for all, from which the  position  and  the 
form of a  transition,  written  under several conditions,  can  be 
derived.  Emphasis is laid on pulse shift  effects,  and it is shown 
that  the results  obtained give good  estimates,  in  spite of the 
approximations  used. 

INTRODUCTION 

Although  a  considerable amount  of  literature has  been de- 
voted to  the digital  recording  process,  only  minor attention 
has  been given to explicit  treatments  of  write field rise time ef- 
fects.  One treatment has been given by Lee and  Truman [ 11, 
along the lines suggested by Ku [2] , but  they only  consider 
the case of writing  on  a  medium  which is initially remanent at  
-M, and the head  field  switching  from negative to positive. 
Other investigations  consider  nonzero  write  field rise times at 
best in  an  implicit way, in computer  simulations  of  the  record- 
ing  write process [ 3 ] ,  [4] .  From these  treatments it cannot 
become clear what  exactly is the  contribution  of  the  nonzero 
rise time  to  the results. 

It is the  purpose of the  present  work to develop a  method 
by which rise time  effects can be  studied  explicitly  in  their de- 
pendence on  the magnetic  properties  of  the  medium,  the  initial 
remanent  state  of  the  medium,  the  velocity of the  medium rel- 
ative to the  head,  etc. An important assumption  in our  work 
(which will be  discussed later  on) is the absence of recording 
demagnetization.  This  approximation is necessary to make the 
problem  tractable,  although it can be expected  that  recording 
demagnetization will interfere  with rise time  effects.  On the 
other  hand,  a  separate  study  of pulse shift  and pulse widening, 
caused by  nonzero rise times,  can give an insight into  the  con- 
ditions  under  which  such  effects  can  become  dominant. For 
the sake of clarity we will concentrate  on pulse shift  effects. 
I t  will be  clear at  the  end  that pulse widening  effects can be 
treated correspondingly. 

A general outline  of  the  problem  can  be given with  the  help 
of Figs. 1 ,2 ,  and 3. In Fig. 1 the recording  head gap  region, to- 
gether  with the  recording  medium is shown  schematically.  The 
gap length is 2g, the  head/medium  separation is y. The me- 
dium moves with  a  velocity v relative to  the head  in the posi- 
tive x-direction. We will use a  coordinate  xs,  fixed to the  head, 
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and  a  coordinate x,, fixed to  the medium,  in  such  a  way that 
x, = x, - vt. 

Fig. 2 shows the write  field,  switching  linearly from negative 
to positive. Contrary to convention  the positive direction of 
the  time axis has  been  drawn  from  right to left (which  proved 
to  be convenient in drawing  this  illustration).  The same holds 
for  the x, axis. A particle of  the layer,  say x, 1 ,  will travel 
along the head gap region,  obeying x, = x, - v 1  t (v = V I  for 
this  example),  which can  be represented  by  a  straight  line  in 
the  ground plane of the diagram. It is easy now to get  an im- 
pression  of the magnetic  fields  experienced by  the particle xm 
during  the passage. In general, a  period of negative fields is 
followed  by  a  period of  positive fields  and, as illustrated  in 
Fig. 3 ,  the  extreme field values Hmin and Hm, are sufficient 
to determine  the  final  state  of  remanence of the particle,  once 
the initial  state is given. In  this  way the final state of rema- 

! I  --- 
I O  1 2g r 
Fig. 1. Recording  head gap region. 

Fig. 2. Head  field as a  function of xs and t during  a  linear  transition. 
The positive direction of both  the xs and t axes  point to  the  left. 
Examples of “field  histories” are given for  a  particle  with  coordi- 
nate xm moving with  a  velocity “ 1  and  a  particle  with  coordinate 
X, moving with  a  velocity 02 relative to  the head. “1 andv2 can 
be kterpreted as real or as reduced velocities (see  text). 
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Fig, 3. A field history, as depicted in the inset, can lead to different 
final states of remanence  depending on the  initial states (trajectories 
1-2-3-4 and 1’-2‘-3’-4’). 

nence  of all points  of  the  medium can be tracked  and the tran- 
sition  can  be  constructed. It is clear that  the  initial  state of 
remanence  is of great importance  and  nonlinear pulse  crowding 
effects  may  result  when  information is written  in a  randomly 
premagnetized  medium. 

STARTING  POINTS 

We will first  summarize the basic assumptions  underlying 
our analysis,  and call attention to  a  few  points  which  can  be of 
help later  on. 

1) Magnetization of the  medium  only occurs  along the 
x-direction.  Only  the  x-component  of  the  head  field is 
considered. 

2) The  layer  thickness  is small enough to  guarantee that 

3) The  effect  of  recording  demagnetization will be  ignored. 
4) Initially the  head field will  have the  form 

the head  field i s  uniform over the thickness. 

where x, is the  coordinate relative to  the head (Fig. l), x112 is 
half the 50% width  of  the  head  field,  and C is a constant  of 
proportionality.  The  maximum  head  field Htop is found  for 
x, = 0 

5) As a  first  approximation  the  time  dependence of the 
head  field will be  assumed  linear  during  switching.  If the  time 
dependent  head field  is denoted as H*(x,,  t),  then we  have 
H*(x,, t )  = H(x,)f(t)  with 

f ( t )  =-1, for t<-T/2  

f(t) = t / T ,  for - T / ,  < t d T/z 

f( t) = 1, for t > T / z  . (2) 

The  switching  time is T .  
6) Besides an  x-coordinate,  fixed to the recording  head  and 

denoted by x,, we  consider an x-coordinate  fixed to the me- 
dium,  denoted by x,, in such  a  way that 

x, = x, - v t  ( 3 )  

where v is the velocity of  the  medium relative to  the head. 

7) In  the following we take all field  strengths  normalized 
to  the value of Eltop, all x-coordinate values normalized to 
x112, and all time valies normalized to T / 2 .  Equations (l), (2), 
and (3) then  transform  into 

1 
H(x,) = - 

1 +x,” 

f ( t )  = - I ,  f o r t < - 1  

f(t) = t, for - 1 < t < 1 

f(t) = 1, for t > 1 

x, =x, - act 
where a = v T / ( 2 x ~ ~ )  can be regarded as the normalized  me- 
dium/head  velocity. With these  normalized  quantities  in  mind 
we can look to  Fig. 2 in a  quite  different  way.  The  write  field 
transition  now  has  a  futed universal form,  independent of the 
rise time  and  the  head  field  parameters.  Instead,  a rise time 
variation  can  be  experienced as a  variation of the  normalized 
medium/head  velocity a. In  fact, we could have  suggested 
right  from the beginning to  study rise time  effects  by  taking  a 
standard  head  field reversal and vary the  medium/head veloc- 
ity v .  

8) The  polarity of the head  field reversal  is chosen to be 
from negative to positive. With this  polarity  any  particle of 
the medium  experiences  a  period  of negative fields followed 
by a  period of positive fields. The  peak values of the fields 
will be  denoted by H,in and H,, and will  be  experienced by 
the particle x, in  this  order. 

9) The  final  state  of  remanence  of  each  particle  of  the  me- 
dium is completely  determined by H,in and H,, and  the 
initial  state of remanence  of  that particle. In  our derivation 
we focus  on  two cases, namely, that  before  writing all of  the 
medium is in  a state of negative remanence -&I,., or  in a state 
of  positive remanence  +Mr. 

10) The  position of a  transition will be  defined by the  co- 
ordinate x, of the particle  which is left  in a remanent  state 
M = 0.  Such  a  particle  has  a  characteristic  track in  the  hystere- 
sis loop (Fig. 3) ending  exactly  in  the origin (M = 0). 

11) The pulse shift  xd will be  defined as the  position of the 
transition relative to  the position of the  transition,  written 
with T = 0 at t = 0, which  has the coordinate x, = d m ,  
so we  have 

H,., is the remanence coercive force. 
12) If the initial  state of remanence of the  medium is -A&, 

then  the  medium particle  which  has  experienced H,, = Hrc 
will determine  the  pulse  shift,  independent of the  magnitude 
of H,in, This case  has been  considered by Lee and 
Truman [ 1 ] . 

13) If  the initial  state  of  remanence of  the medium  is +Mr,  
then  there will be  a  set of (H,in, Hma) combinations  which 
lead to a  final  remanence M = 0. The  functional  relationship 
which exists  between H,in and H,, will be  denoted implic- 
itly  by R(H,i,, H,,) = 0. The  functional  form of R is de- 
pendent  on  the hysteresis  characteristics  and  can be deter- 
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mined  from  experimentally  taken  hysteresis  loops or derived that R = 0 can  be described  with the help of a set  of linear 
from a  suitable  model. The particle  of the  layer which  expe-  expressions: 
riences  an Hmin and  an H,, in sequence,  leading to R = 0, 
determines  the pulse shift in this case. H,, - Hc = 0, when Hmin < - H, 

ANALYTICAL APPROACH 
-Hs < Hmin   < -Hc  

Hc Hmin + H, H,, = 0 ,  when { 
H,~/H, < Hmax < HC 

Hmin and H,, are  determined  by (aH*/at),, = 0. Since 
H * = H (x,) f ( t )  and x, = x, - at it follows: Hmin +Hc = 0, when 0 < Hm, < H~/H,.  (9) 

1 d H  l d f  
H dx, f dt 

a--=--- 

which  can  be solved after  introduction of (1') and (2') and us- 
ing (3'). The calculation then, is somewhat  complicated by the 
fact  that it can only  be  carried out  in  parts since the  function 
f is differentiable  only in parts. However the  calculation is 
straight  forward and leads to  the following  results, valid for 
a> 1: 

In  this  model Hrc = Hc and a  parameter H,, the  saturation 
field,  has  been introduced.  The  elaboration of this case, that 
is the calculation from (6) and (7) of the particle  coordinate 
x, satisfying (9) for  any value of a, is rather  lengthy  and 
complicated  by  the  fact  that (9) is, again,  given in  the  form of 
piecemeal  differentiable  expressions. A general representation 
of the  solution,  in a form  comparable to (8), will be  omitted 
since this  appears to be  a  lengthy  and  nontransparant  enumera- 

x, <-a ;Hmin = - 1/( 1 + (X, - a)') ;Hm, - - 1  

- I Y < X ,  < - d m ; H m i n  = - l / ( l +  (X, - a)2) ;Hm, = 1/(1 + (X, +a)') 

-dm<. ,  < d m  ;Hmin ( - d m -  x m ) / 2 Q ; H , ,  = ( d m -  x,)/2a 

d i F T < X , < f f  ;Hmin =-l/(l + (X, - ;Hm, = 1/(1 + (x, 

Q<X, ; Hmin = - 1 ;Hm, = 1/(1+ (x, +a)') 

and,  for a < 1 : 

Note,  that  a(=vT/2x,12) is directly  proportional to the rise 
time T ,  so that  we have expressed H m i n  and H,, in  terms  of 
X, and T.  

The pulse  shift  can  be  calculated as a function  of  (thus of 
T )  for  the case of initial  remanence -Mr. Therefore,  the value 
of x, must be Calculated from H,, = Hrc, given the value of 
a. Using expressions (6) and (7) the  calculation, again, is 
straightforward  and leads to the following  formulae: 

1 
Xd = -- w c  - d-7, 

4 a H r c   H r c  

when 4 (1 - d w )  < Hrc < (1 + d w )  
which  only  has  a  meaning  for CY > 1 

Xd = -a, in dl other cases. (8) 

We have depicted  two characteristic cases in Fig. 4(b).  Note 
that  in  the limit  of large  rise times xd -aHrc (or xd 
- (vT/2) (Hrc/Htop), in  nonreduced  quantities),  which  can also 
be derived directly  from  simple  arguments. 

The  second  case,  with  initial  remanence +Mr,  can only be 
treated  if R (Hminr  Hmz) = 0 is given in an  analytical  form, 
which,  in  addition,  must  be simple enough to lead to  solvable 
equations.  This  requirement  has  lead us to the hysteresis 
model  of Fig. 4(a), which  has  been constructed  in such  a  way 

tion of expressions and  conditions.  Instead  we give,  as an ex- 
ample,  a  characteristic  result  (for the case Htop = H, = 2 H c ) :  

Xd =-a, when a < % 
X d = - l + h - d m ,  w h e n + < a < $ &  

Xd = - I +  4 d2, w h e n j d 2 < a < J 2  

when 4 2  < a. 

( 4  (b) 
Fig. 4. (a)  Hysteresis  model,  in which  the minor loops are  composed 

of  parallel  straight  lines  bending at  the  dotted line  which connects 
the  lower  right  corner  of  the  major loop with  the  point  with coordi- 
nate H ~ / H  on the H axis.  This model leads to  expression (9) in  the 
text.  (b)%ulse  shiftlrise  time curves  derived  analytically  for the 
case  of  initial  negative  remanence (denoted by -) and  initial positive 
remanence  (denoted by +) for  two values ofHC/Htop.~ Use is made 
of  the  hysteresis  model of Fig. 4(a)  with  the  conmtlon H, = 2Hc 
W c  = Hrc).  
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In Fig. 4(b) we have depicted this result  (together  with  the 
case Htop = 312 H, = 3H,) .  It can be shown that,  in  the  limit 
of large rise times, ;he results  approach xd aH,,, in agree- 
ment  with  expectation. 

GRAPHICAL APPROACH 

Since Hmin and Hma, both are  functions  of x, anda,  we 
can  make  a diagram of Hmin against Hmax and  represent  any 
particle x, , at  any value of a, by a  dot  in  the diagram.  In  this 
way we can fill the diagram as has  been done  in  Fig 5 .  As a 
matter  of  fact, we have calculated Hmin, Hmax values for  fixed 
values of x, letting CY vary  within  a  certain range and,  on  the 
other  hand,  for fixed values of a, letting x, vary. In this  way 
iso-xm curves  (upper left  to lower right in  the  diagram) and 
iso-a curves  (lower left to  upper  right)  can be found.  The iso-a 
curves  can be symbolized  by  means  of  implicit  functional  rela- 
tions S, (Hmin, HmZ) = 0. The form of S depends  on the 
value of a and  the relation  describes  the set of Hmin, Hma- 
values which,  together,  form  an  iso-a  curve  in  the diagram. 
The derivation of  the pulse shiftlrise  time  behavior  now  pro- 
ceeds as follows. 

1) For  the initial state -Mr,  a  particle x, has to  be found, 
which  has  experienced H,, = H,,, for any given value 

- k i n  

221 

of a. This  means that  the  intersection  of  the curve 
S, (Hmin, Hm,) = 0, for  any given value of a, with  the  straight 
line H,, = H,, must be read from  the diagram. For  instance, 
if H,, = 0.45  (straight  line  in Fig. 5) and a = 0.9 a value of 
x, 0.18 is found  (after  interpolation  between  the  two x, 
values  which  are  nearest by). 

2) For  the initial state +M, the procedure is exactly  the 
same, now  the  intersection  of Sa (Hmin, HmZ) with the curve 
R (Hmin, HmZ) = 0 has to  be found. In Fig. 5 we have drawn 
the curve R = 0, which  has  been  derived  from the hysteresis 
loop  of an unoriented  yFe203  layer. 

The  results of  a graphical  analysis for  this medium is pre- 
sented  in  Fig. 6 (drawn  curves)  together with,  among  others, 
the  result of  our analytical  solution  (with Hc = 0.5 in  reduced 
form,  comparable to  H,, = 0.45 for  the  yFe203 example). As 
can  be  seen, both results  are in close  agreement  although the 
hysteresis  characteristics  are  quite  different for  the  two cases. 

A great  advantage of  our  method is that use can be made 
of  a single graph  which  has  been  calculated  once and  for all, 
which  can be used for  a  number  of applications.  The  proce- 
dure  works  for any hysteresis form  and  for any  initial and final 
state of  remanence.  Therefore not  only pulse  shifts can be de- 
rived in  this  way, but also  pulse  widths and even complete 
pulse forms, if one wishes. To derive  the  pulsewidth  for  in- 

Fig. 5. Diagram, from which  can  be  read  for any particle x,, at  any value of ,, the  values ofH,in/Htop andH,a,/~top. 
The diagram is a  graphical  representation  of  the  results (6) and (7). “Characteristic  curves” Hmax = H,, (reduced 
quantities)  and R (Hmin, Hmax) = 0 are  drawn  for  a  typical  case  of  recording  in  an  unoriented  7Fe2O3  layer. 
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Fig. 6 .  Pulse  shiftlrise  time curves  resulting from a  graphical  analysis 
for  a  typical case of  recording in  an  unoriented  7Fe2O3  layer  (drawn 
curves).  The circles and  triangles are the  results  of  computations 
using the Karlquist  expression (10) and puttingxllz = J m ( A , A :  

y lg  = 0.5, *0 :  ylg = 1, vv: ylg = 2). The  dashed curve is  the  analytical 
result  already  presented  in  Fig. 4(b) (H,/Htop = 0.5, the curve is 
shifted alittle  bit for clarity).  The  upper curve is for initialrernanence 
+M,, the  lower curve for -Mr.  

stance,  one  must look for  those  particles x, which end  in a 
find state of remanence M = +Mpew. and M -Mp,w,, Mp,w. 
being short  for  the  remanent  state  which one  has  selected as 
characteristic  for  the  pulsewidth,  for  instance &Ipsw, might  be 
7 Mr. Now  one  must calculate  or  measure  “characteristic 1 

curves”  (like H,, = Hrc or R(H,in, Hm,) = 0)  which are 
representative for  those  sets of (Hmin, Hmz) combinations 
which  lead to final  states  of  remanence +Mp,w, and -Mp.w., 
respectively,  starting from  initial  states  of +Mr and-Mr.  The 
characteristic  functions  can  be  drawn  in  the  graph  and  for  any 
a, and  for both +M, and - M, as starting values, one can find  a 
particle x,+ which ends  at +Mp.w. and x,- which ends  at 
-Mp.w.. /x,+ - x,-I then is the pulsewidth. 

A little  complication  of  our  method seems to be that  the 
procedure  only  works at  the  interior of the diagram and  not  at 
the edges, when Hmin =-  1 and H,, = H,, for  instance  (the 
starting  point  of the “characteristic curves” in Fig. 5 ) .  A single 
(Hmin, Hm,) pair on  the  left edge (as is also true  for  the  up- 
per edge with H,, = 1) is not generated by a single pair  of 
( x m ,  a) values but  by a set of (X,, a) pairs  instead.  And, of 
course  these  pairs,  which  ultimately give a  part  of  the  pulse 
shift/rise  time  curve,  cannot be read  from the diagram, hidden 
as they are  under  the  point  with H,in = - 1. However, formu- 
lae (6) and (7) tell that  for H,in =-I, H m ,  = 1/(1 f 
(X, + a)2)  so that  when H,, is taken  equal to H,,, the rela- 
tion  between x, and a is determined  by 

1 
= H,, . 

1 + (x ,  + (u)2 

This gives x, + a = .\/- and  thus xd =-CY. So we can 
conclude  that all pulse  shiftlrise  time  curves  start likewise as 
xd = - a, for  both  the  initial  state  of remanence +M, and -Mr. 
Also it can  be  seen from (7) that  the  point  of divergence of the 
drawn  curves for  initial remanence + M, and - M,? in Fig. 6 ,  is 
determined by the  boundary  condition x, = a for which 
H,in = - 1 stops to be valid. Introducing x, = a into X, + = 
d H 3 ,  we find a b  = 4 H Y  as the  boundary value 

I . -  
for CY, so for a < a b  xd =-CY for  any  initial  remanent  state.  In 
some cases a b  may be  larger than $ 4 H T .  If  the line 
Hm, = H,, and  the curve R = 0 do not diverge right at  the 
starting  point  at  the  left edge ((9) provides  an  example), but 
coincide,  partly, at  the interior of the diagram, then a b  is equal 

Fig. 7. a b  as a  function  of a b  is the  boundary value  of a, 
below  which the  pulseshift does,  in  general, not  depend  on  the ini- 
tial  remanence.  Filled  circles  are  analytic  results.  Open  triangles, 
open  circles and crosses  are  results calcdated  with  the  help  of  the 
Karlquist  expression (10) @ I g  = 2, 1, and 0.5, respectively). 

to the value of a under  the  point of divergence  of H,, = H,, 
and R = 0 in  the diagram. 

The  relation ab = 4H- is depicted  in Fig. 7. As can 
be  seen a b  = 0 for H,, = 1. This is a  worst case situation  with 
respect to pulse shift effects. H,, = 1, expressed  in  nonreduced 
quantities,  means Htop = H,, (which  can  only  make sense for a 
square  hysteresis loop),  and reflects  a rather  extreme  situation. 
In practice H,, 0.5 givingab x 0.5. 

COMMENTS AND CONCLUSIONS 

The convenience of the graphical method relies for  the 
greater  part on  the possibility to express the time  dependent 
head field in terms of the  reduced  quantities x, and t with no 
other parameters left  in  the expression (l’), (2‘). This is no 
longer possible when  the Karlquist  expression 

H tan-’ (g  + x,)/y + tan-’ (g - xs) /y  

Htop 2 tan-’ g/y 
-- - 

i s  used for  the  head field. In  this case the  quantities x, and y 
cannot  be  reduced  in such  a  way that only  a  reduced quantity 
X, remains.  (In  expression (1) the  dependence  of  the  head 
field  on y is incorporated  in  the  supposed  dependence  of 
x1/2 on y . )  If one  wants to follow the procedure  outlined in 
the preceding  section,  one  would  be  forced to  calculate graphs 
like that  of Fig. 5 for  any value o f y  which is under considera- 
tion,  and  this seems not to be very  attractive. 

On  the  other  hand,  the significance of results  obtained, with 
a  head  field  in the simple form (1) depends  on  the accuracy 
with  which  results obtained  with a  head  field  in the  form (IO), 
for  example, can be approached. We have examined  this by re- 
calculating the results of  Figs. 6 and 7, starting  from  the expres- 
sion (IO) instead of (I), for  a  few  characteristic cases (y /g  = 
0.5, 1.0, and 2, respectively).  Thereby we  have approximated 
the half 50% width  of  the Karlquist  field by xllZ = ~ ’ y v .  
This  choice is acceptable for both y >>g and y <<g (contrary 
to  the “choice” of x l lZ  = d y T ,  which is  suggested by the 
form of (IO) in  the  limiting case y >>g, see [ 13 formulas (3) 
and (4)). As can be seen from  the figures the results for  the 
simple field  form (1) are in  good  agreement  with  those  for  the 
Karlquist  field and as far as there  are  deviations they  tend  to 
reduce  the rise time  effects. The  latter is obviously  due to  the 
fact that  our approximating  head  field (1) underestimates  the 
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field  strength values in  the  most  important region (50% width 
region). 

Our conclusion is that rise time  problems  can be approached 
to a  good degree of  accuracy  with the  help of diagram 5 and, 
without  further  proof, we believe this to  be true also for head 
fields other  than (10) (finite  pole  tip  head  fields,  for  instance) 
if a  proper  choice is made  for x112. 

If  an  exponential rise time is considered  instead of  a linear 
one, diagram 5 is no longer valid and has to be  recalculated. 
This again can be done once and  for all, since an  exponential 
rise time  can  also  be given in  a  simple  reduced  form. We have 
not worked out  this case, but  the procedure is exactly the 
same. 

It is  difficult to  make  a  direct  estimate of the accuracy  of 
our results  with  respect to  recording  demagnetization.  There- 
fore we have compared  the results of Fig. 6 with  results  ob- 
tained from  a dynamic  self-consistent computer simulation of 
the  write process  (see,  for  example, [4] ) .  Typical  results  are 
depicted  in Fig. 8. As can be seen,  recording  demagnetization 
on  the scale of  our calculations  (valid  for  “thick” yFe203 
layers)  seems to affect  our results  only  in an additive  way, 
which  means that  the  mutual accuracy is not  affected seriously. 

As an  example we may  choose (Yb 0.5 (for Hr, % 0.5, see 
Fig. 7).  In  this case Tb wxl/2/v, in  nonreduced  quantities, 
where Tb is the  critical value of T,  below  which the pulse 
shift  does  not  depend  on  the  initial  state  of  remanence. If 
xl12 = 2.5 pm, v = 50 m/sec,  for  example, it follows that Tb = 
50 nsec. (Note  that pulse  shift  effects can be reduced by an 
increase of xt12 .) 

Pulse widening  can be studied  along  the same lines  following 
the procedure  outlined  in the preceding  section. A general 
property  of the pulse wideninglrise  time  behavior is that  the 
pulsewidth  does not  depend  on  the rise time  for values of 
(Y 5 1 and increases  with  increasing values of (Y 2 1. The  in- 
crease is about 10% for (Y = 2 for  the case of  a  unoriented 
yFe203 layer.  Recording  demagnetization  reduces  this  percen- 
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Fig. 8. Results for the pulse shiftlrise time behavior as computed with 
a dynamic self-consistent computer simulation. Results are for un- 
oriented 7FezO3 layers  with  thickness 0 Mm (o), 1 Mm (X), and 
2 Prn (0). 

tual  increase. For small values of (Y((Y 5 1) the pulseform  de- 
pends largely on  the  contour  of  the head  field  which is differ- 
ent  for  the fields (1) and (IO). 

Our  final  conclusion is that  the analysis of rise time  effects 
along the lines  presented  in  the  preceding  pargraphs  lead to ac- 
curate  estimates and can be used to predict  the  circumstances 
under  which  such  effects  may  occur. In general, rise time  ef- 
fects  can be avoided  if it. is possible to choose T < Tb, with 
Tb = (2X1/2/V) ab. 
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