
EFFECT OF NUMBER REPRESENTATION ON THE ACHIEVABLE MINIMUM NUMBER OF
OPERATIONS IN MULTIPLE CONSTANT MULTIPLICATIONS

Levent Aksoy, Ece Olcay Gunes

Istanbul Technical University
Istanbul, Turkey

{aksoyl, ece.gunes}@itu.edu.tr

Eduardo Costa

Universidade Catolica de Pelotas
Pelotas-RS, Brazil

ecosta@ucpel.tche.br

Paulo Flores, José Monteiro

INESC-ID/IST, TU Lisbon
Lisbon, Portugal

{pff, jcm}@inesc-id.pt

ABSTRACT

In this work, we analyze the effect of representing con-
stants under binary, CSD, and MSD representations on the
minimum number of operations required in a multiple con-
stant multiplications problem. To this end, we resort to a
recently proposed algorithm that computes the exact mini-
mum solution. To extend the applicability of this algorithm
to much larger instances, we propose problem reduction and
model simplification techniques that significantly reduce the
search space. We have conducted experiments on a rich set
of instances including randomly generated and FIR filter in-
stances. The results show that, contrary to common belief,
the binary representation clearly yields better solutions than
CSD, and even provides slightly better solutions than MSD.
Moreover, the superiority of the binary solutions increases as
the number and bit-width of the constants increase.

Index Terms— Multiple Constant Multiplication (MCM),
Common Subexpression Elimination (CSE), Canonical Signed
Digit (CSD), Minimal Signed Digit (MSD).

1. INTRODUCTION

Linear systems such as finite impulse response (FIR) filters
and discrete signal processing transforms are widely used in
a number of applications, e.g., audio and video processing and
wireless communication. The computations in these systems
include multiple constant multiplications (MCM) that lead to
excessive area, delay, and power consumption in hardware
even if implemented in a full custom integrated circuit. The
proposed methods have focused on the minimization of area
by replacing the multiplication operations with constants by
addition, subtraction, and shifting operations. Since shifts are
free in terms of hardware, the MCM problem can be defined
as the minimization of the number of addition/subtraction op-
erations to implement the constant multiplications.

The proposed algorithms for the optimization of the num-
ber of operations in MCM can be categorized in two classes:
common subexpression elimination (CSE) and graph-based
techniques. In CSE algorithms, constants are represented in a
number representation, namely, binary, canonical signed digit

(CSD), and minimal signed digit (MSD). Both CSD and MSD
representations use a signed digit system with the digit set
{−1, 0, 1}, where 1 denotes −1, and have the property that
the number of non-zero digits is minimum. The CSD repre-
sentation provides a unique representation for every constant,
since two non-zero digits are not adjacent. This representa-
tion is generally used in multiplierless implementations due
to the number of non-zero digits being reduced by 33% on
average when compared with the binary representation [1]. A
constant can have several MSD representations, because non-
zero digits can be consecutive in MSD. For example, sup-
pose the constant 23 in six bits. The representation of 23 in
binary, 010111, includes 4 non-zero digits. The constant is
represented as 101001 in CSD and both 101001 and 011001
represent 23 in MSD with 3 non-zero digits. CSE algorithms
generally find the most common non-zero digit combinations
while optimizing the number of operations. In [2], a two-term
subexpression elimination technique is presented under CSD
representation. The algorithm of [3] applies two-term com-
mon subexpression elimination iteratively while generating
two-term divisors. Also, the use of different selection criteria
for the common subexpressions in CSE algorithms are de-
scribed in [4] and [5]. In [6], it is shown that using MSD rep-
resentation yields better solutions than CSD in MCM prob-
lems, since it has the same minimum number of non-zero dig-
its as CSD, but provides multiple alternative representations
for a constant. However, all these algorithms are heuristics,
i.e., provide no indication how far from the minimum their so-
lutions are. An exact CSE algorithm that considers the max-
imum sharing of partial terms is introduced in [7]. In this
algorithm, all the possible implementations of constants are
found, represented as a Boolean network and then converted
to a 0-1 integer linear programming (ILP) problem. The cost
function to be minimized is the linear function of optimization
variables that represent partial terms. Finally, an exact solu-
tion is found by a generic satisfiability (SAT)-based 0-1 ILP
solver. In graph-based methods, constants are implemented
without a restriction to any particular number representation.
In [8, 9], two prominent heuristics are introduced for multiple
constants. The reader is referred to [9] for more information
on graph-based methods.



In CSE algorithms, CSD representation is usually pre-
ferred over binary and MSD, because the representation of
a constant with more non-zero digits in binary and alterna-
tive representations of a constant provided by MSD increase
significantly the complexity of an algorithm. The complex-
ity analysis of the 0-1 ILP problem constructed by the exact
algorithm is done in [7] considering the worst case and it is
shown that problem size grows exponentially with the num-
ber of non-zero digits. Moreover, binary representation offers
less flexibility on the implementation of a constant, i.e., only
additions. Although it offers more non-zero digits than CSD
and uses only positive sign, we argue that in an exact approach
considering multiple constants, the use of binary representa-
tion increases the possibility of partial term sharing yielding
better solutions than CSD.

The contributions of this paper are twofold: first, we intro-
duce model simplification and problem reduction techniques
to the previously proposed exact CSE algorithm [7] to deal
with larger size 0-1 ILP problems and second, we compare the
use of different number representations in MCM under a rich
set of instances based on exact solutions rather than evalua-
tions based on solutions of heuristic algorithms. In this paper,
we show that binary representation is superior than commonly
preferred CSD representation and is better than MSD as the
number of constants is increased.

The rest of the paper is organized as follows. In Sec-
tion 2, the proposed exact algorithm is introduced and the
improvements to the previously proposed exact algorithm are
described in Section 3. Experimental results are given in Sec-
tion 4. Finally, the paper concludes in Section 5.

2. THE EXACT ALGORITHM

In this section, initially, we give the problem definition and
then present the exact CSE algorithm that can handle multiple
constants in binary, CSD, and MSD representations as it deals
with the multiplierless implementation of a digital FIR filter.

2.1. Problem Definition

In the optimization of the number of operations in digital filter
synthesis, filter coefficients and partial terms are considered
as odd numbers, since shifts can be implemented with only
wires in hardware. So, an operation represents an addition or
a subtraction with two odd inputs, I1 and I2, input shifts, S1

and S2, and an output, O, given as O = I1 ¿ S1 ± I2 ¿ S2,
where S1 = 0, S2 > 0 or S1 > 0, S2 = 0, i.e., without loss
of generality one of the shifts at the input is zero and the other
is greater than zero. A partial term is an odd constant that is
neither a coefficient nor a filter input and is determined as an
input of an operation that implements a coefficient. Thus, the
problem of the optimization of the number of operations can
be defined as finding the minimum number of partial terms
to be added to a set that contains filter coefficients and filter

input such that each coefficient and partial term in the set can
be implemented with the set elements using only one opera-
tion. So, the minimum number of operations is the sum of
the number of odd coefficients and the minimum number of
required partial terms.

2.2. Partial Term Generation

In this work, the optimization of the number of operations is
defined as a binate covering problem, a special case of a 0-1
ILP problem where every constraint is interpreted as a propo-
sitional clause. In the preprocessing phase of the algorithm,
after the filter coefficients are made positive and odd, they are
stored without repetition in a set called Cset. They are labeled
as filter coefficients and unimplemented. If the filter input,
i.e., 1, does not exist in Cset, it is also inserted into Cset and
labeled as implemented. The part of the algorithm where the
partial terms are found for each element in Cset is as follows:

1. Take an unimplemented element from Cset, Cseti. Form
an empty set of arrays called Pseti associated with
Cseti. Pseti will contain all partial terms that are re-
quired to implement Cseti.

2. Find an operation that implements Cseti;

(a) Find the non-repeated inputs of the operation that
are neither a filter coefficient nor a filter input and
store them in an empty array called Iarray. Note
that Iarray may contain a single partial term or a
pair of partial terms.

(b) If Iarray is empty, then make Pseti empty and
go to Step 5. In this case, Cseti can be imple-
mented with an operation whose inputs are filter
coefficients or filter inputs and this is the mini-
mum implementation.

(c) If Iarray is not empty, then check for each array
of Pseti, Pseti(k), if Pseti(k) ⊆ Iarray. If
Iarray is included in Pseti, then go to Step 3.

(d) If Iarray is not empty, then check for each array
of Pseti, Pseti(k), if Iarray ⊂ Pseti(k). If
Iarray dominates Pseti(k), then delete Pseti(k).

(e) Add Iarray to Pseti.

3. Repeat Step 2 until all possible implementations of Cseti
are considered.

4. Add all partial terms in Pseti to Cset, if they are not in
Cset and label them as unimplemented.

5. Label Cseti as implemented and repeat Step 1 until all
elements in Cset are labeled as implemented.

Observe that in the first iteration of the algorithm, Cset
contains the filter coefficients and in later iterations, it con-
tains also the partial terms.



2.3. Conversion to 0-1 ILP Problem

After all the partial terms required to implement each coef-
ficient and partial term are found, the optimization problem
is converted into a combinational network. The network in-
cludes only AND and OR gates. An OR gate, representing
a coefficient or a partial term, combines all the partial terms
that can be used for the synthesis of the associated coefficient
or partial term. An AND gate, representing a pair of partial
terms, combines two partial terms. The primary inputs of the
network are filter coefficients and partial terms that can be
implemented with a single operation whose inputs are filter
coefficients or filter inputs.

The network is converted into a 0-1 ILP problem, after ad-
ditional hardware (a 2-input AND gate for each partial term)
with the optimization variables is added to the network. The
optimization variables that represent the filter coefficients are
assigned to 1 and the conjunctive normal form (CNF) formu-
las of each gate in the network are found. Each clause in CNF
formulas is expressed as a linear inequality. A cost function,
i.e, the linear function of the optimization variables that rep-
resent the partial terms, is constructed. Finally, the problem is
given to the SAT-based 0-1 ILP solver, MiniSat+ [10], to ob-
tain an exact solution. In the construction of the network and
the translation of the network into CNF, the issues described
in [11] that speed-up the 0-1 ILP solver were also considered.

In the post-processing phase of the algorithm, after the
minimum solution including filter coefficients and required
partial terms is obtained, the filter coefficients and partial terms
are synthesized from inputs to outputs. In the selection of an
operation for each coefficient and partial term among possi-
ble implementations whose inputs are in the found solution or
filter inputs, the minimization of the maximum number of op-
erations in series, i.e., the delay generally called adder-step, is
considered. Thus, the minimum delay synthesis of the found
minimum area solution is realized.

3. MODIFICATIONS TO THE PREVIOUSLY
PROPOSED EXACT ALGORITHM

In CSE algorithms, the operations that implement a constant
are determined as the decompositions of the non-zero digits
of the constant (Step 2 of the algorithm given in Section 2.2).
As an example, consider 51 (1010101 in CSD) as a filter coef-
ficient. The operations that implement 51 are given in Fig. 1.
Observe that the implementation of 64-13 is the same as the
implementation of 52-1, since these operations have the same
odd inputs. Therefore, 52-1 is not listed in Fig. 1. Similarly,
the duplications of implementations are not presented in this
figure, e.g., 63-12 is equal to -12+63.

In the exact algorithm of [7], after all possible operations
for each filter coefficient and partial term are found as illus-
trated in Fig. 1, the Boolean network is constructed using
AND and OR gates. In this network, an AND gate represents

With 1 non-zero digit combinations With 2 non-zero digits combinations

51=1000000+0010101=1¿6 - 13¿0 51=1010000+0000101=3¿4 + 3¿0
51=0010000+1000101=-1¿4 + 67¿0 51=1000100+0010001=17¿2 - 17¿0
51=0000100+1010001=1¿2 + 47¿0 51=1000001+0010100=63¿0 - 3¿2

Fig. 1. Implementations of 51 in CSD.

an operation and an OR gate associated with a filter coeffi-
cient or a partial term combines all operations that implement
the related constant. Since an operation implements only one
constant, it is different from operations that implement other
constants even if they include the same odd inputs. While
the primary inputs of the network are the filter inputs or their
shifted versions, the primary outputs of the network are the
outputs of OR gates that represent the filter coefficients. The
network constructed by the algorithm of [7] for the coefficient
51 in CSD is given in Fig. 2 with the elimination of 1-input
OR gates for the partial terms 3, 17, and 63.

�

�

�

�

�

�

��

��

���

���

���

����

�

���

�
����

���

�
����

� ���

����

��

����

�

�

���

��
� ���

��

��

���

�

��

�������
��

��

���

�

Fig. 2. The network constructed by the algorithm of [7] for
the coefficient 51 in CSD.

As model simplification techniques, we consider the mini-
mization of the number of partial terms required to synthesize
the filter coefficients. So, in our algorithm, the partial terms
are obtained from the operations that implement a constant.
Also, since the variables that represent filter input and coeffi-
cients are assigned to 1 in the 0-1 ILP problem, the implica-
tions of these assignments are considered while determining
the partial terms for a constant. So, if a constant can be im-
plemented with an operation whose inputs are filter inputs or
filter coefficients, this constant is determined as the primary
input of the network. Otherwise, a pair of partial terms that
is required to implement a filter coefficient or a partial term
is represented with an AND gate and a single partial term is
represented as the output of an OR gate associated with the
partial term. As can be seen from Fig. 1, since 1 represents the
filter input, the implementation of 51 requires 3,13,17,47,67
as single partial terms and 3 and 63 as a pair of partial terms.
The network constructed by our algorithm for the coefficient



51 in CSD is given in Fig. 3. Observe that both networks
given in Fig. 2 and 3 represent the same binate covering prob-
lem defined for the minimization of the number of operations.

�
��

��

��

�

��

��

��

��

�
��

Fig. 3. The network constructed by our algorithm for the co-
efficient 51 in CSD.

As problem reduction techniques, we apply the dominance
rule for each constant to reduce the number of inputs of an
OR gate. For example, consider the network given in Fig. 3.
Since the single partial term 3 dominates the pair of partial
terms 3 and 63, the AND gate that represents this pair is re-
dundant and can be removed from the network (Step 2d of the
algorithm given in Section 2.2). Also, when a pair of partial
term is required to implement more than one constant, it is
shared in the network reducing the number of constraints and
variables in the 0-1 ILP problem. As can be easily observed
with the comparison of the networks given in Fig. 2 and 3, the
proposed techniques reduce the 0-1 ILP problem size, conse-
quently the CPU time required by the 0-1 ILP solver to find
an exact solution as presented in Table 3.

4. EXPERIMENTAL RESULTS

In this section, results of the exact algorithm on randomly
generated and real-sized FIR filter instances under binary, CSD,
and MSD representations are presented and compared.

As the first experiment set, randomly generated instances
that include between 10 and 120 constants were used. There
are 30 instances for each number of constants and constants
are defined in 10, 12, and 14 bit-widths. In Fig. 4, the use
of binary representation on minimum number of operations is
compared with CSD representation.

As can be observed from Fig. 4, using binary representa-
tion yields better results than CSD on average. Also, as the
number and range of the constants increase, the difference of
the number of operations on average between CSD and binary
representations tends to increase. While the difference of the
average number of operations under 10 bit-widths on problem
instances with 120 constants between CSD and binary is 1.1,
this value on problem instances with 120 constants under 14
bit-widths is 3.9. In Fig. 5, we compare the exact solutions
obtained using binary representation with MSD.

As can be seen in Fig. 5, the exact solutions obtained un-
der binary and MSD are quite similar. However, as the num-
ber and range of constants are increased, using binary repre-
sentation achieves better solutions than MSD. For example,

10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

100

110

120

130

Constants in 10, 12, and 14 bits

Number of constants

A
ve

ra
ge

 n
um

be
r 

of
 o

pe
ra

tio
ns

Binary under 10 bit−widths
CSD under 10 bit−widths
Binary under 12 bit−widths
CSD under 12 bit−widths
Binary under 14 bit−widths
CSD under 14 bit−widths

Fig. 4. Comparison of the use of binary and CSD representa-
tions on randomly generated instances.

while the difference of the average number of operations un-
der 10 bit-widths on problem instances with 120 constants be-
tween MSD and binary is 0.6, this value on problem instances
with 120 constants under 14 bit-widths reaches to 1.1.

In this experiment, we observe that as opposed to common
usage, CSD representation does not tend to give the minimum
number of operation solutions in MCM. Because, using a sin-
gle representation of a constant with the minimum number
of non-zero digits and both positive and negative signs may
produce partial terms that are less common in the implemen-
tations of constants. This drawback can be overcome using
MSD that considers alternative representations of a constant
with the minimum number of non-zero digits. However, we
observe that binary representation achieves more promising
solutions than CSD, since using a unique representation of a
constant with more non-zero digits and only positive sign in-
creases the partial term sharing. Also, we note that the use
of binary representation becomes more effective on finding
the minimum number of operation solutions, as the number
and range of constants increase. But, the main disadvantage
of using binary representation is that the design can be ob-
tained in a greater delay than the design obtained using CSD
or MSD. The average adder-step of exact solutions obtained
on randomly generated instances in 14 bit-widths under bi-
nary, CSD, and MSD is presented in Fig. 6. We note that
while the average number of adder-step of solutions obtained
under binary representation on problem instances with 120
constants is 6.1, this value is 4.6 for both CSD and MSD.

As the second experiment set, FIR filters where the co-
efficients were computed with the Remez algorithm in MAT-
LAB were used. The filter specifications are given in Table 1
where pass and stop are normalized frequencies that define
the passband and stopband respectively; #tap is the number
of coefficients; and width is the bit-width of the coefficients.



10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

100

110

120

130

Constants in 10, 12, and 14 bits

Number of constants

A
ve

ra
ge

 n
um

be
r 

of
 o

pe
ra

tio
ns

Binary under 10 bit−widths
MSD under 10 bit−widths
Binary under 12 bit−widths
MSD under 12 bit−widths
Binary under 14 bit−widths
MSD under 14 bit−widths

Fig. 5. Comparison of the use of binary and MSD representa-
tions on randomly generated instances.

Table 1. Filter specifications.
Filter pass stop #tap width

1 0.10 0.15 200 16
2 0.10 0.15 240 16
3 0.10 0.25 180 16
4 0.10 0.25 200 16
5 0.10 0.20 240 16
6 0.10 0.20 300 16
7 0.15 0.25 200 16
8 0.15 0.25 240 16
9 0.20 0.25 240 16
10 0.20 0.25 300 16

The 0-1 ILP problem sizes of filter instances and solu-
tions obtained by the exact algorithm under binary, CSD, and
MSD representations are given in Table 2. In this table, vars,
cons, and optv stand for the number of variables, constraints,
and optimization variables respectively. Also, adder denotes
the number of operations and step denotes the maximum of
number of operations in series needed to synthesize the filter
coefficients. CPU is the CPU time in seconds that is used by
MiniSat+ to compute the exact solutions on a PC with Intel
Xeon at 3.16GHz with 8GB of main memory. Since the CPU
time required to construct the network in the preprocessing
phase and to find a solution with minimum delay in the post-
processing phase are also negligible, CPU only indicates the
CPU time of MiniSat+.

In this experiment, we observe that the size of 0-1 ILP
problems under binary representation is generally larger than
the size of problems defined under CSD and MSD. This is
because the binary representation of a constant includes more
non-zero digits. As can be seen from Table 2, this property
helps to obtain FIR filter designs with less number of opera-
tions than CSD and MSD on every instances. Using binary
representation leads solutions less than 2 and 1 operation on
average with respect to CSD and MSD respectively. But, the

10 20 30 40 50 60 70 80 90 100 110 120
1

2

3

4

5

6

Constants in 14 bits

Number of constants

A
ve

ra
ge

 n
um

be
r 

of
 a

dd
er

−
st

ep

Binary
CSD
MSD

Fig. 6. Comparison of adder-step of solutions obtained under
binary, CSD, and MSD representations.

delay of the filter designs is increased compared to the so-
lutions obtained under CSD and MSD. Also, we note that
since the CSD representation of a constant includes the mini-
mum number of non-zero digits yielding 0-1 ILP problems in
a smaller size, exact solutions can be found in less amount of
CPU time than binary and MSD representations.

In Table 3, we compare the use of proposed model simpli-
fication and problem reduction techniques with the previously
proposed exact algorithm [7] in terms of 0-1 ILP problem
sizes and CPU time required to find the minimum solution
on FIR filters given in Table 1 under binary representation.

In this experiment, we observe that a 0-1 ILP problem
that represents an MCM problem can be obtained in a smaller
problem size, when the proposed model simplification and
problem reduction techniques are applied. On these filter in-
stances, while the number of variables and constraints is re-
duced by almost 90%, the number of optimization variables is
reduced by 45%. Also, the reduction of problem size enables
the 0-1 ILP solver to obtain exact solutions with a very low
computational effort.

5. CONCLUSIONS

In this work, previously proposed exact algorithm designed
for the minimization of the number of operations in digital fil-
ter synthesis is improved with model simplification and prob-
lem reduction techniques to cope with larger search space.
The exact algorithm is tested on a rich set of instances where
constants are defined under binary, CSD, and MSD repre-
sentations. It is shown by the experimental results that bi-
nary representation achieves better solutions than widely used
CSD representation and gives more promising solutions than
MSD as the number of constants increases.



Table 2. 0-1 ILP problem sizes and results of FIR filter instances.
0-1 ILP Problem Sizes Minimum Number of Operation Solutions

Filter Binary CSD MSD Binary CSD MSD
vars cons optv vars cons optv vars cons optv adder step CPU adder step CPU adder step CPU

1 3862 13550 944 633 1427 316 2103 6877 602 81 7 7 83 5 0.1 82 5 0.7
2 9904 38038 1500 618 1460 289 1776 5024 623 86 6 5.5 88 5 0 87 5 0.2
3 16226 67753 1433 1833 6014 476 10054 38972 1354 52 5 14.2 56 4 1.3 53 5 20
4 15992 63884 1928 1210 3545 420 656 1460 333 92 7 7 94 5 0.1 93 5 0.1
5 6808 27119 873 827 2174 329 2606 8127 751 65 6 22 66 4 0.1 66 5 8.4
6 13581 55759 1012 1121 3059 417 2778 8862 763 71 6 3.1 74 5 0.2 72 4 0.3
7 2413 8674 567 371 808 188 434 1043 200 62 5 0.1 65 4 0.1 64 4 0
8 2781 10119 642 394 824 221 861 2272 370 71 5 0.1 73 4 0 72 4 0.1
9 140 162 119 231 344 166 348 562 227 79 7 0 80 4 0 80 4 0
10 171 289 122 126 147 109 152 211 119 82 7 0 84 4 0 84 4 0

Total 71878 285347 9140 7364 19802 2931 21768 73410 5342 741 61 59 763 44 1.9 753 45 29.8

Table 3. The effect of using the proposed techniques on FIR filters under binary representation.
Filter [7] This work

vars cons optv CPU vars cons optv CPU
1 60416 194552 1595 405 3862 13550 944 7
2 79707 262024 1886 278 9904 38038 1500 5.5
3 59069 191764 1510 678.2 16226 67753 1433 14.2
4 129530 444146 2366 503.1 15992 63884 1928 7
5 63076 207012 1519 52.3 6808 27119 873 22
6 58286 188294 1533 44.9 13581 55759 1012 3.1
7 47004 154086 1142 3.6 2413 8674 567 0.1
8 32044 98816 1048 3 2781 10119 642 0.1
9 133493 461220 2300 2.8 140 162 119 0
10 116294 405186 1880 2.6 171 289 122 0

Avg. 100% 100% 100% 100% 9.2% 10.9% 54.5% 3.0%

6. REFERENCES

[1] H. Garner, “Number Systems and Arithmetic,” Ad-
vances in Computers, vol. 6, pp. 131–194, 1965.

[2] R. Hartley, “Subexpression Sharing in Filters using
Canonic Signed Digit Multipliers,” IEEE Transactions
on Circuits and Systems II, vol. 43, no. 10, pp. 677–688,
1996.

[3] A. Hosangadi, F. Fallah, and R. Kastner, “Reducing
Hardware Complexity of Linear DSP Systems by It-
eratively Eliminating Two-Term Common Subexpres-
sions,” in Proceedings of the IEEE Asia and South Pa-
cific Design Automation, 2005, pp. 523–528.

[4] M. Potkonjak, M. Srivastava, and A. Chandrakasan,
“Multiple Constant Multiplications: Efficient and Ver-
satile Framework and Algorithms for Exploring Com-
mon Subexpression Elimination,” IEEE Transactions
on Computer-Aided Desig of IC Systems, vol. 15, no. 2,
pp. 151–165, 1996.

[5] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde,
and D. Durackova, “A New Algorithm for Elimina-
tion of Common Subexpressions,” IEEE Transactions
on Computer-Aided Design, vol. 18, no. 1, pp. 58–68,
1999.

[6] I-C. Park and H-J. Kang, “Digital Filter Synthesis Based

on Minimal Signed Digit Representation,” in Proceed-
ings of Design Automation Conference, 2001, pp. 468–
473.

[7] P. Flores, J. Monteiro, and E. Costa, “An Exact Algo-
rithm for the Maximal Sharing of Partial Terms in Mul-
tiple Constant Multiplications,” in Proceedings of Inter-
national Conference on Computer-Aided Design, 2005,
pp. 13–16.

[8] A. Dempster and M. Macleod, “Use of Minimum-Adder
Multiplier Blocks in FIR Digital Filters,” IEEE Trans-
actions on Circuits and Systems II, vol. 42, no. 9, pp.
569–577, 1995.

[9] Y. Voronenko and M. Puschel, “Multiplierless Multiple
Constant Multiplication,” to appear in ACM Transac-
tions on Algorithms.

[10] N. Een and N. Sorensson, “Translating Pseudo-
Boolean Constraints into SAT,” Journal on Satisfiabil-
ity, Boolean Modeling and Computation, vol. 2, pp. 1–
26, 2006.

[11] M. Velev, “Efficient Translation of Boolean Formulas
to CNF in Formal Verification of Microprocessors,” in
Proceedings of the IEEE Asia and South Pacific Design
Automation, 2004, pp. 310–315.


