
Effect of Outliers and Nonhealthy Individuals on
Reference Interval Estimation

Paul S. Horn,1* Lan Feng,2 Yanmei Li,3 and Amadeo J. Pesce4

Background: Improvement in reference interval estima-
tion using a new outlier detection technique, even with
a physician-determined healthy sample, is examined.
The effect of including physician-determined non-
healthy individuals in the sample is evaluated.
Methods: Traditional data transformation coupled with
robust and exploratory outlier detection methodology
were used in conjunction with various reference inter-
val determination techniques. A simulation study was
used to examine the effects of outliers on known refer-
ence intervals. Physician-defined healthy groups with
and without nonhealthy individuals were compared on
real data.
Results: With 5% outliers in simulated samples, the
described outlier detection techniques had narrower
reference intervals. Application of the technique to real
data provided reference intervals that were, on average,
10% narrower than those obtained when outlier detec-
tion was not used. Only 1.6% of the samples were
identified as outliers and removed from reference inter-
val determination in both the healthy and combined
samples.
Conclusions: Even in healthy samples, outliers may
exist. Combining traditional and robust statistical tech-
niques provide a good method of identifying outliers in
a reference interval setting. Laboratories in general do
not have a well-defined healthy group from which to
compute reference intervals. The effect of nonhealthy
individuals in the computation increases reference in-
terval width by �10%. However, there is a large devia-
tion among analytes.
© 2001 American Association for Clinical Chemistry

One problem facing the clinical chemist is how to derive
reference intervals (RIs)5 from healthy populations. The
effects of inclusion of individuals different because of age,
race, exceptional exercise, or diet and inclusion of non-
healthy populations on the healthy estimate have not
been examined. This may be considered an outlier prob-
lem. The advent of National Health and Nutrition Exam-
ination Survey (NHANES) data (1 ) and our Fernald
population (2 ) with extensive subject history has made it
possible to determine the effect of such individuals (e.g.,
outliers) on RI estimation. We have proposed the use of
robust estimators as a way of reducing the effect of
outliers (3, 4). However, we propose that removal of
outliers before analysis may yield better estimates of the
RI for both robust and nonparametric estimators. The
availability of the NHANES and Fernald data, which
include physician-determined health status, makes it pos-
sible to determine whether our proposed methodology is
useful. It also allows us to examine the effect of including
nonhealthy individuals on the estimates. The long-term
goal is to help clinical chemists decide whether their data
approximate those of a healthy population (5, 6). We use
the term nonhealthy rather than unhealthy to differentiate
between a physician health status score and a known
pathology.

The NHANES III, 1988–1994 CD-ROM (for purposes of
abbreviation referred to as NHANES III) contains data for
33 994 persons 2 months of age and older who partici-
pated in the survey (1 ). The CD-ROM was obtained from
the National Center for Health Statistic Data Dissemina-
tion Branch Centers for Disease Control and Prevention
(6525 Belcrest Road, Room 1064, Hyattsville, MD 20782-
2003). The data are the result of a complex survey design
involving stratification and clustering, and thus, weights
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were assigned to each individual. The weight for an
individual indicates the number of people represented by
that individual. For most analyses, the weight variable
WTPFHX6 should be used in conjunction with the mobile
examination center (MEC) and the home-examined sam-
ple and with items collected at both the MEC and the
home. However, in this report, we will treat the individ-
uals as coming from a random sample, i.e., individual
weights will be ignored. Analyses involving the individ-
ual weights will be explored in future work.

Clinical chemistry measurements were made on sev-
eral analytes, including glucose, sodium, and potassium.
Health status was also determined by a physician. The
Fernald population is a group of residents who lived near
a nuclear feed plant �15 miles west of Cincinnati, OH.
Clinical chemistry analyte measurements were made on
the Fernald population similar to those recorded for the
NHANES III. The health status of the 9000 residents from
Fernald was evaluated in a manner similar to that of the
NHANES III study population. The scoring differentiated
degrees of health into five (NHANES III) or six (Fernald)
categories. In this report, we use the highest (i.e., best, as
opposed to largest number) category of health status to
define “healthy”, whereas all other categories are com-
bined and referred to as “nonhealthy”.

We examine the RI width (RIW) estimators because
they are insensitive to instrumental, additive bias (al-
though not for proportional bias). Treating the known
healthy individuals as a “gold standard”, we examine the
effect of the addition of nonhealthy individuals on these
estimators. Finally, we evaluate the effect of an outlier
detection procedure on these estimators.

The NCCLS (6 ) recognizes that outliers in the data are
a real possibility. However, the recommendation is that
unless it is known that such points are aberrant for known
reasons (e.g., a mistake in the analysis), attempts should
be made to retain the values instead of deleting them. The
NCCLS recommends that the Dixon outlier range statistic
be used, especially for RIs determined by the nonpara-
metric procedure. The Dixon test is as follows: let R � the
range of the values (maximum–minimum) and let D � the
absolute difference between the most extreme (large or
small) value and the next most value (large or small). If
the ratio D/R exceeds 1/3, then the extreme value in
question is deleted. The NCCLS points out that if there are
two or three outliers on the same side of the sample, this
rule may fail because of masking, i.e., the less extreme
outliers mask the aberrance of the most extreme (and vice
versa). The recommendation is to test the least extreme
outlier as if it were the only outlier. If the D/R test rejects
the least extreme outlier, then the more extreme outliers
are rejected as well. Unfortunately, the NCCLS has never
indicated how these outlier candidates are determined.

Outlier detection methods are mathematically valid
based on assumptions about the underlying distribution,
which often is assumed to be gaussian. If such a technique
were used on skewed data, such as those found in clinical

chemistry analytes, it is not clear that the outlier detection
would achieve its goal. For example, it could be the case
that many good values would be deemed outliers and
thus omitted from calculations. This could possibly make
the resulting RI unreasonably narrow. On the other hand,
if there are a large number of outliers that “mask” their
aberrant location, the outlier detection scheme will not
flag enough values to be omitted. This could make the
resulting RI unreasonably wide. Thus, there is a trade-off
between these two situations.

For this report, we recognize that the underlying
population of analytical values from healthy individuals
is probably skewed (often toward higher values), but in
addition, outliers may exist in the observed sample. We
also recognize that no matter what the situation, it is
difficult to distinguish an extreme “healthy” observation
from that of an “nonhealthy” observation. Thus, for this
report we propose a two-stage outlier detection scheme
that will attempt to balance the two situations cited above.
The method will first transform the entire sample to
achieve an approximately gaussian random sample. The
method of transformation used will be that of Box and
Cox (7 ). Once the data have been transformed, a robust
approach to labeling outliers from a gaussian distribution,
as described by Tukey (8 ), will be used. The efficacy of
this new methodology, along with the traditional non-
parametric approach, will first be examined in a simula-
tion study.

Materials and Methods
One of the most popular methods for transforming data is
the family of transformations described by Box and Cox
(7 ). This methodology involves finding, through mathe-
matical techniques, a value for � (and c, if necessary) for
the following transformation of the original data, x:

y � � �x� � 1�/�; � � 0
ln� x � c�; � � 0 (1)

The first stage of our proposed outlier detection scheme is
to compute the maximum likelihood estimate of � or c as
described in the Box–Cox model (7 ). This transformation
is based on the entire sample; therefore, it is recognized
that outliers will have influence on the transformation.
However, if no outliers are present, then the resulting
sample should resemble that of a gaussian distribution.

The second stage involves the labeling of extreme
values using only the middle 50% of the sample, thus
reducing, or even eliminating, the masking effect of
possibly many outliers. This method is based on the work
of Tukey (8 ) and involves the computation of the lower
and upper quartiles (i.e., the 25 and 75 percentiles) of the
transformed data. Call these statistics Q1 and Q3. The
interquartile range (IQR), or Q3–Q1, is then computed.
Lastly, the lower and upper fences are computed as
follows: lower fence � Q1 � 1.5(IQR); upper fence � Q3 �
1.5(IQR). Any transformed data points outside of the
fences, i.e., either less than the lower fence or greater than
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the upper fence, are considered as outliers, and the
original data points are omitted from subsequent RI
estimation.

From a theoretical standpoint, for the standard gauss-
ian distribution, the lower and upper quartiles are �
0.6745, respectively, the IQR is 1.349, and the lower and
upper fences are �0.6745 � 1.5(1.349) and 0.6745 �
1.5(1.349), or � 2.698, respectively. Therefore, theoreti-
cally, only values �2.698 SD from the mean will be
labeled as outliers. In other words, for a normally distrib-
uted population, the 0.7% most extreme values will be
considered outliers. It should be noted at this point that if
the (transformed) data are representative of a gaussian
population, then �0.7% of valid values will have to be
omitted. For this reason, the width of the RI must be
adjusted upward to maintain the nominal values. For
example, to compute a nominal 90% RI, a 90.634% RI must
be computed if the above outlier detection scheme is used
(for a 95% RI, 95.67% must be used).

It could be argued that the width should be adjusted
upward even more because of the estimation of � (or c)
required for the Box–Cox transformation. The reasoning is
that the Box–Cox transformation may be unsuccessful (the
transformed data may not appear gaussian). It is also the
case that the outlier detection limits are functions of the
data themselves (9 ). These arguments are based on statis-
tical conservatism: where a false negative, in general, is
considered more serious than a false positive. However,
in the case of RIs, false negatives (having a “sick” indi-
vidual declared “healthy”) are, in general, considered
more serious than false positives. It is for this reason that
this outlier detection method takes a middle ground by
attempting to maintain the nominal width of the desired
RI while not allowing statistical conservatism to force the
RI to be unusually wide. It should be noted that the IFCC
and NCCLS do not recommend any adjustment to the
nominal width of the RI after outlier detection (5, 6).

Once the outliers, if any, are identified and removed,
the remaining observations are back-transformed to the
original scale and used for subsequent computation of the
RI. Hereafter, these remaining untransformed data points
(i.e., with outliers removed) will be referred to as the
adjusted sample. (In practice, these outliers would be
studied further to ascertain the reason for unusual behav-
ior.) Nonparametric and robust RIs will be computed
based on the original and adjusted samples. (Obviously, if
there are no outliers detected then the adjusted sample is
the same as the original.)

The nonparametric estimation procedure is the tradi-
tional one based on the observed 2.5 and 97.5 percentiles.
The RIW is the (positive) difference between these two
values. The robust estimator of the upper endpoint of the
RI is based on a function that smoothly down-weights the
observations based on their distance from the sample
median. Only observations greater than or equal to the
median are used, and the weighting function is the
biweight described by Horn et al. (3, 10, 11). The robust

estimator of the lower endpoint is a smoothed version of
the nonparametric estimator described by Harrel and
Davis (12 ) and used by Horn et al. (3, 4).

To examine the performance of the outlier removal, we
ran a simulation consisting of 1000 replicates of samples
of size n � 120 for each of six distributions to represent
various types of populations. These distributions were the
normal, �2 with 1 degree of freedom, log-normal, half-
normal (i.e., the positive part of the normal distribution),
noncentral �2 with 1 degree of freedom and noncentrality
parameter � 10, and a �2 with 4 degrees of freedom. For
each sample the RI was computed with and without
outlier removal. Subsequently, each sample had the 5%
most extreme values altered to mimic outliers. These
outliers replaced the 5% largest values of the sample
(right side), with the exception of the normal, which had
the outliers replace the 5% smallest values (left side).
Large-valued outliers were constructed as follows. Con-
sider the ordered sample: X1 	 X2 	, . . . , X114, X115 is set
equal to (10/7) 
 X114 � (3/7) 
 X1, which ensures that
X115 � X114 � 0.3 
 (X115 � X1), which is 	(1/3) 
 (X115

� X1). This is repeated for Xj � (10/7) 
 Xj � 1 � (3/7) 

X1 for j � 116–120. Note that this means that the Dixon
outlier detection (as recommended by the NCCLS) would
not identify these values as outliers because Xj � Xj � 1

	(1/3) 
 (Xj � X1). Similar computations were per-
formed on the smallest six values for the normal case.
(Note that the symmetry of the normal population should
preclude the need for left side outliers over right side.
However, because the robust procedure uses two differ-
ent estimators for the endpoints, we wanted to test
performance for outliers at the low end. The normal
population seemed the most appropriate of the distribu-
tions examined.)

The NHANES III data set is a survey of individuals in
the US. This data set was obtained from NHANES III, Ver.
1.21. The variable HSSEX was used to define sex and
HSAGEIR to define age at interview. The health status
was derived from the variable DMAPEP13A. Any data
with the following missing values were deleted: sex, age,
race (as defined by the variable DMARETHN), or health
status. Clinical chemistry and hematology measurements
were made on several analytes and cellular components.
These laboratory data were obtained from the NHANES
III Laboratory Data File. In this study we examined the
following 33 analytes: albumin, alanine aminotransferase,
alkaline phosphatase, aspartate aminotransferase (AST),
blood urea nitrogen (BUN), calcium, chloride, creatinine,
creatinine in urine, �-glutamyltransferase (GGT), glucose,
granulocytes, hematocrit, hemoglobin, potassium, lactate
dehydrogenase, lymphocytes, mean corpuscular hemo-
globin (MCH), MCH concentrate, mean corpuscular vol-
ume (MCV), monocytes, mean platelet volume, osmolal-
ity, platelets, phosphorous, red blood cells (RBCs), RBC
distribution width, sodium, total bilirubin, total CO2, total
protein, uric acid, and white blood cells.

The Fernald sample was obtained from a population
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living near a uranium ore processing plant located in
Fernald, OH (3, 4). The population is representative of the
greater Cincinnati metropolitan area. As part of a settle-
ment, the residents were offered an extensive medical
monitoring program extending for 17 years. This will be
referred to as the Fernald Medical Monitoring Program
(FMMP) group. The residents were given complete exam-
inations, including physical examination, personal and
family medical histories, pulmonary function tests, chest
x-rays, and cardiac monitoring as well as blood and urine
tests, including the chemistry and hematology tests re-
ported here. All individuals were seen within a 3-year
period from December 1990 to November 1993. The
FMMP group represents a unique data set. Disease his-
tory, family history, psychological history, physical exam-
ination, chest x-ray, and laboratory values were derived
for each of the 8517 residents. The same 33 analytes
mentioned above were examined for the FMMP group.

In both the NHANES III and FMMP groups, physicians
using similar rating scales scored the participants’ health
status. For both groups, we designated individuals as
healthy if they achieved the highest health status rating.
The remaining individuals were designated nonhealthy.
We chose to divide the adult population into 12 groups
comprising two genders and six age categories: 20–29,
30–39, 40–49, 50–59, 60–69, and 70–79 years. The num-
bers of individuals in each age category by gender by
health status are given in Table 1.

We examined the RIW because it is insensitive to
additive bias and ratios of these widths allow us to
compare across analytes. (Because some enzymes may
have proportional bias if assayed at different tempera-
tures, for example, measures based on RIWs alone may be
sensitive to such bias. However, measures based on ratios

of RIWs will not be sensitive to such bias.) Robust and
nonparametric estimators of the RIW were computed
using a SASTM program described previously (4 ). Because
we had access to the participants’ health status, we were
able to determine the effect of the inclusion of a non-
healthy group on the RIW. The RIW is defined as the
difference between the (1 � �/2) 
 100% and the (�/
2) 
 100% of the values of the group under consideration.
In this report, we examined 95% RIWs, i.e., � � 0.05.

The nonparametric estimation procedure is the tradi-
tional one based on the observed upper and lower end-
points, or percentiles. The RIW is the difference between
these two values. The robust estimator of the upper
endpoint of the RI is based on a function that smoothly
down-weights observations based on their distance from
the sample median. Only observations greater than or
equal to the median are used, and the weighting function
is the biweight described by Horn (11 ). The robust
estimator of the lower endpoint is a smoothed version of
the nonparametric estimator described by Harrel and
Davis (12 ) and used by Horn et al. (3, 4).

The RIW was calculated using the traditional nonpara-
metric 95% RIs and our previously described robust
estimator (4 ), with both methods using the proposed
outlier detection. We chose the ratio of RIWs as the
measure of the effect of inclusion of nonhealthy individ-
uals (RIW based on the total group divided by RIW based
on the healthiest in the group). To average across vari-
ables, we used the logarithm of this ratio because the
means of these values are not biased. For example, if
x/y � 1.25, then y/x � 0.8; therefore, the average of the
two is not equal to 1. However, if log (x/y) � 1.25, then
log (y/x) � �1.25, and the average is 0, which has an

Table 1. Frequencies of health status by age category and sex for NHANES III and FMMP.
Age categories, years

20–29 30–39 40–49 50–59 60–69 70–79 Total

NHANES III
Males, n

Healthy 1046 761 490 235 211 110 2853
Nonhealthy 551 663 701 586 906 687 4094
Total 1597 1424 1191 821 1117 797 6947

Females, n
Healthy 1175 923 533 244 184 89 3148
Nonhealthy 635 880 769 714 930 808 4736
Total 1810 1803 1302 958 1114 897 7884

FMMP
Males, n

Healthy 445 691 646 390 287 78 2537
Nonhealthy 60 159 221 249 239 121 1049
Total 505 850 867 639 526 199 3586

Females, n
Healthy 592 864 769 404 231 63 2923
Nonhealthy 93 276 324 341 309 120 1463
Total 685 1140 1093 745 540 183 4386
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anti-logarithm equal to 1. Therefore, the log-ratio analysis
included 6 age categories, 2 sexes, and 33 analytes for a
total of 396 comparisons.

Results
The results of the simulation are summarized in Tables 2
and 3 and in Tables S1 and S2 [Tables S1–S4 can be found
in a data supplement attached to the electronic version of
this article, available at Clinical Chemistry Online (http://
www.clinchem.org/content/vol47/issue12)]. The means
and SD for each of the endpoints of the RI are provided in
Table 2; the population or “ideal” values are given in
parentheses below each of the six distributions. The effect
of 5% outliers on the estimated endpoints is dramatic. For
example, for the �2 1 distribution, the average values of
the upper endpoint were 200–300% of the ideal value of
5.024. With outlier detection in place, the average values
of the upper endpoint were within 4% of the ideal value.
Similar results were obtained for the normal, half-normal,
noncentral �2 1, and the �2 4 distributions. The log-normal
distribution endpoints were also inflated, by �250%.
However, outlier detection was not as effective as with the
other distributions: the improvement was 5–13%.

The percentages of outliers removed from each of the

two sides of the sample are summarized in Table 3. With
no outliers and a normal distribution, we would expect
0.35% outliers removed from each side of the sample. In
general, this expectation was met, although the percent-
age of outliers found for the �2 1, half-normal, and �2 4
were less than expected. With 5% outliers, the method
found, on average, 5% for the normal distribution. For the
�2 1, half-normal, noncentral �2, and �2 4 distributions, the
percentages of outliers found were, on average, 2.5–4.3%.
For the log-normal distribution, only 0.7% were found at
the high end, providing an explanation for the weaker
performance observed in Table 2.

Lastly, to compare the accuracy of the RIW estimators
with and without outlier detection, the root mean square
error (RMSE) was examined. For each sample, the RIW
was computed, the ideal RIW was subtracted from it, and
the difference was squared. (The ideal RIW for each
distribution is the difference between its 97.5 and 2.5
percentiles. These population percentiles are given in
Table 2.) These squared differences were averaged over
the 1000 replications, and the square root was taken,
yielding the RMSE. For example, for the normal distribu-
tion:

Table 2. Means and SD of simulated RI endpoints.

Distribution
(Population
percentiles) Percentile Measure

No outlier detection Outlier detection

No outliers 5% outliers No outliers 5% outliers

Nonpara Robust Nonpar Robust Nonpar Robust Nonpar Robust

Normal 0.025 Mean �1.955 �2.008 �12.204 �14.483 �1.924 �1.946 �1.471 �1.484
SD 0.230 0.219 1.233 1.479 0.230 0.211 0.168 0.164

(�1.96; 1.96) 0.975 Mean 1.948 1.982 1.948 1.982 1.932 1.983 1.920 1.982
SD 0.229 0.182 0.229 0.182 0.232 0.195 0.229 0.196

�2 1 0.025 Mean 0.002 0.002 0.002 0.002 0.001 0.002 0.001 0.002
SD 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001

(0.001; 5.024) 0.975 Mean 5.070 4.609 13.154 11.570 4.896 4.295 5.249 4.915
SD 0.947 0.715 2.271 1.902 0.972 0.704 2.454 1.765

Log-normal 0.025 Mean 0.147 0.143 0.147 0.143 0.149 0.148 0.172 0.171
SD 0.033 0.029 0.033 0.029 0.038 0.034 0.037 0.034

(0.141; 7.099) 0.975 Mean 7.261 6.900 17.508 15.359 7.243 6.426 16.343 13.216
SD 1.820 1.829 3.408 2.794 1.992 1.667 6.647 4.893

Half-normal 0.025 Mean 0.035 0.035 0.035 0.035 0.030 0.031 0.030 0.030
SD 0.018 0.016 0.018 0.016 0.017 0.015 0.017 0.015

(0.031; 2.241) 0.975 Mean 2.228 2.207 6.761 6.141 2.228 2.200 1.844 1.977
SD 0.210 0.165 0.588 0.508 0.221 0.182 0.154 0.170

Noncentral �2 1 (10)b 0.025 Mean 1.541 1.480 1.541 1.480 1.515 1.486 2.231 2.205
SD 0.572 0.503 0.572 0.503 0.616 0.543 0.746 0.712

(1.446; 26.237) 0.975 Mean 26.298 25.773 79.078 72.052 26.187 25.561 25.662 27.291
SD 2.406 1.812 6.449 5.536 2.534 1.953 8.520 6.417

�2 4 0.025 Mean 0.505 0.491 0.505 0.491 0.477 0.468 0.656 0.650
SD 0.145 0.130 0.145 0.130 0.153 0.136 0.192 0.184

(0.484; 11.143) 0.975 Mean 11.150 10.707 32.175 29.068 11.108 10.558 14.648 14.051
SD 1.272 0.944 3.291 2.802 1.410 1.027 7.484 5.302

a Nonpar, nonparametric.
b 10 represents the noncentrality parameter.
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RMSE � � 1
1000 �

i � 1

1000

�RIWi � 3.92�2

where RIWi is the RIW for the ith sample. Thus, the ratio
described above is equal to: [RMSE (no outlier detec-
tion) � RMSE (with outlier detection)] 
 100%. These
values were derived for each of the six distributions, and
the results are presented in Table S1 of the data supple-
ment. With no outliers, as expected, the RIWs without
outlier detection were in general 5–10% more accurate.
With 5% outliers, the RIWs with outlier detection were
2.5–24 times more accurate for all of the distributions
except for log-normal, where the nonparametric was 4%
less accurate and the robust was only 12% more accurate.

A similar measure of accuracy was computed for the
coverage attained by the RIs. Simply stated, the methods
using outlier detection had larger RMSEs, by �30%, than
those without outlier detection. This is not surprising
because undetected outliers will often yield a very large
estimate (theoretically unbounded) of the upper endpoint
of the 95% RI, yielding a coverage of almost 97.5%. Such
RIs will have an RMSE equal to �0.025, whereas those
with outliers removed will often have smaller upper
endpoints, but their RMSEs are not bounded by 0.025. (If
outliers exist on both sides, a procedure that does not
remove outliers has RMSE bounded by 0.05, i.e., it attains
100% coverage, and no observation falls outside the
resulting RI.) These results appear in Table S2 of the data
supplement.

We applied the outlier detection scheme with robust
and nonparametric RI estimators to the NHANES and
Fernald data sets. We determined the percentage of
observations removed as a result of outlier detection for
both the NHANES III and Fernald groups, as well as their
healthy subgroups. This was done separately for each of
the 33 analytes, ignoring the sex and age categories.
Outliers were found in every case. Table S3 of the data
supplement provides for each analyte and study group
(FMMP or NHANES and total or healthy groups) the
number of (nonmissing) observations and the percentage
of outliers found among these values. In Table S3, in
general, larger percentages of observations were removed

from the total groups compared with their respective
healthy subgroups. The analyte with the largest percent-
age of detected outliers was glucose. This result was
expected because diabetic and prediabetic individuals are
present in the general population but may be deemed
healthy by a physician.

The RIW analysis included 6 age groups (20–29, 30–39,
40–49, 50–59, 60–69, and 70–79 years), 2 sex groups, and
33 analytes, for a total of 396 comparisons. The effect of
outlier detection on the RIWs of the two groups,
NHANES III and FMMP, as well as their respective
healthy subgroups, are given in Table 4. The RIW was
calculated using the traditional nonparametric 95% RIs
and our previously described robust estimator. For the
reasons described above, we chose the logarithm of the
ratio of RIWs as the measure of the effect of outlier
removal.

The log-ratios of the RIW with no outlier detection to
the RIW with outlier detection (
 100%) were calculated
for each set of 396 comparisons. The percentages of
observations removed from the data sets were similar,
�1.6%. Note that this is more than double the theoretical
value of 0.7% for a normal distribution. As seen in Table
4, the log-ratios were �0 for all comparisons, i.e., the
anti-logarithm of the ratio was �1. The outlier detection
and removal method was effective in reducing the RIW in
both the healthy groups and those with disease. For these
groups, the average changes for the nonparametric and
robust methods were �10% and 15%, respectively.

To determine whether the ratio was attributable to only
a few analytes, the effect of outlier detection on the RIW of
each analyte was reviewed. A summary of these analyses
is presented in Table S4 of the data supplement. The
results were similar to those in Table 4, except that they
are given for each analyte. It is clear that the robust

Table 3. Average percentage of outliers removed from left
and right tails of simulation.

Distributiona

No outliers 5% outliers

Left Right Left Right

Normal 0.5 0.4 5.0 0.5
�2 1 0.0 0.6 0.0 2.7
Log-normal 0.5 0.4 1.5 0.7
Half-normal 0.0 0.4 0.0 4.3
Noncentral �2 1 (10)b 0.3 0.4 2.4 3.5
�2 4 0.1 0.4 2.1 2.5

a All distributions have outliers on the right except for the normal.
b 10 is the noncentrality parameter.

Table 4. Means and SE of log-ratios (� 100%) of no outlier
to outlier removal and percentage of observations removed.

95% RIa

Nonparametric Robust

NHANES III
Total Mean 10.5 16.9

(1.7% removal) SE 0.9 1.1
Healthy Mean 9.8 14.6

(1.5% removal) SE 1.0 1.1
FMMP

Total Mean 9.4 12.9
(1.7% removal) SE 0.9 0.9

Healthy Mean 9.8 14.6
(1.6% removal) SE 1.0 1.1

a For each study (FMMP and NHANES) and group (Total and Healthy), the 396
RIs (nonparametric and robust separately) were computed with and without
outlier removal. For each of the 396 cases, the RIW without removal was divided
by the RIW with removal. The natural logarithm was taken for these ratios and
multiplied by 100%. Entries are the means and SE computed across each of
these 396 cases.
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approach was more affected by outliers than the nonpara-
metric approach. This is because the robust approach was
designed to capture information from the tails of the
underlying distribution, which may be heavy-tailed (10 ).
Thus, when such information is contaminated, the robust
approach will greatly benefit from outlier detection.
Lastly, it is also noteworthy that the RIWs for glucose
were the most affected by outlier detection and the
subsequent removal of observations. This applies to the
total groups and their respective healthy subgroups.

The means and SE of the log-ratios of the total to
healthy RIWs were calculated. For both the NHANES III
and FMMP groups, the RIW was larger for the total group
compared with that of the healthy, as was expected. In
other words, the inclusion of nonhealthy individuals
increased the width of the RI. For the nonparametric
estimator, the log-ratio of the RIW was larger for the
NHANES III data, on average, by �10% (SE � 0.7%). For
the FMMP data, the log-ratio of the RIW was larger, on
average, by �4.5% (SE � 0.5%). For the robust estimator,
the values were 9% (SE � 0.7%) for the NHANES III and
3.6% (SE � 0.4%) for the FMMP group.

The effect of including nonhealthy individuals was
also determined by examining the log-ratio of the RIW of
total to healthy for each analyte. These results are given in
Table 5. We found that the nonparametric RIW was more
affected by the presence of the nonhealthy than was the
robust RIW. To determine which analytes were most
affected, we considered a log-ratio 	10% indicative of a
large effect of a nonhealthy group on the RIW. Therefore,
based on this reasonable, although ad hoc, cutoff of 10%,
the analytes most affected for the FMMP group were
GGT, glucose, and monocytes. For the NHANES III
group, the most affected analytes were albumin, AST,
BUN, creatinine, GGT, glucose, hematocrit, hemoglobin,
MCH, MCV, monocytes, RBC distribution width, and uric
acid.

Discussion
The IFCC (5 ) and NCCLS (6 ) protocols describe the use of
healthy individuals to determine a RI. The problem is that
health status is difficult to validate. This is similar to the
problem of trying to prove the null hypothesis in statis-
tics. We proposed in this study the use of outlier detection
to help validate healthy individuals for inclusion in the RI
calculation. The proposed outlier detection scheme con-
sisted of two parts: (a) all of the data are transformed to fit
a normal distribution, using the Box–Cox family of trans-
formations; and (b) a robust outlier detection technique is
used based on the transformed data. A standard normal-
theory outlier detection is not used because the transfor-
mation may not be entirely successful. The use of a robust
outlier detection scheme after a transformation to normal-
ity provides protection against the possible perturbation
of the parameter estimates for the transformation. Thus,
the outliers that may cause erroneous transformation will
nevertheless be identified because of the outlier resistance

of the robust detection scheme. The reverse of these two
steps was not chosen because the robust outlier detection
scheme would identify too many outliers if the underly-
ing population were homogeneous but skewed.

The simulation study demonstrated that the use of
outlier removal when no outliers exist would lead to
minimal loss of accuracy of the endpoint estimators of the
RI. However, if there are as a few as 5% outliers (not
detectable by the Dixon range test), then the gains in
accuracy may be enormous, depending on the underlying
distribution of the analyte. The above study was based on
the minimal sample size of 120 as recommended by the
IFCC. A similar simulation was performed for sample size
of 60, and similar results were obtained.

Table 5. Mean log-ratios (� 100%) of total to healthy by
analyte.

Analytes

FMMP NHANES

Nonparametric Robust Nonparametric Robust

Albumin �0.6 0.5 10.8 9.1
ALTa 5.5 5.2 3.5 7.1
AP 4.6 3.5 8.5 10.1
AST 5.2 4.9 16.6 14.5
BUN �0.2 1.4 14.7 13.3
Calcium �1.8 �2.1 1.1 1.3
Chloride �2.9 �3.2 8.4 7.6
CR 4.3 5.7 16.6 12.8
CR-URIN 2.7 2.0 3.7 2.9
GGT 13.2 11.7 38.2 38.8
Glucose 14.7 10.3 21.0 17.2
GRAN 8.6 7.6 9.6 8.0
HCT 4.0 4.2 10.4 10.3
Hb 4.4 4.3 10.1 9.6
K� �0.4 2.1 5.7 6.3
LDH 6.3 5.5 8.9 7.4
LYMPH �0.1 2.5 7.5 6.7
MCH 5.6 4.4 11.3 9.5
MCH CON 2.5 0.6 0.4 �0.8
MCV 3.1 1.5 10.4 9.0
MONO 10.8 4.4 10.1 8.6
MPV 2.0 3.6 4.7 3.7
OSMO 5.0 4.4 7.4 8.1
Platelets 2.2 3.1 8.7 7.2
PO4 5.1 3.7 5.6 4.7
RBC 1.1 2.0 7.8 6.8
RBCDW 4.8 5.4 16.0 14.5
Sodium 7.9 3.7 6.6 5.6
TBILIRUB 1.6 2.1 8.0 5.2
TCO2 3.7 0.8 7.4 5.8
TPROTEIN 5.9 3.6 5.3 4.7
URIC 5.4 4.0 14.0 13.6
WBC 7.3 7.1 6.5 6.5

a ALP, alanine aminotransferase; AP, alkaline phosphatase; CR, creatinine;
CR-URIN, urinary creatinine; GRAN, granulocytes; HCT, hematocrit; Hb, hemoglo-
bin; LDH, lactate dehydrogenase; LYMPH, lymphocytes; MCH CO, MCH concen-
trate; MONO, monocytes; MPV, mean platelet volume; OSMO, osmolality;
RBCDW, RBC distribution width; TBILIRUB, total bilirubin; TCO2, total CO2;
TPROTEIN, total protein; URIC, uric acid; WBC, white blood cells.
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With a random sample from a normal distribution, the
outlier detection scheme will, theoretically, identify
�0.7% of the observations as outliers. We found that in
two healthy groups, the percentage of identified outliers,
by analyte, ranged from �0% to 4.2% (Table S3 in the data
supplement). The weighted average (because of different
sample sizes) for all 33 analytes was �1.6%, or a little
more than twice that of an ideal, normal group (Table 4).
Further verification of the outlier detection scheme comes
from the glucose data. For this analyte, 3.8–6.2% of the
values were identified as outliers, consistent with an
estimate of a diabetes prevalence of 6% in the US popu-
lation (13 ). It is also true that both of the groups would
contain individuals in a prediabetic state.

In general, the effect of the removal of 1.6% of the
observations decreased the RIW by �10–15%. This effect
varied among the 33 different analytes. For glucose, the
effect was striking. When we used outlier detection, the
reduction in the 95% RIW for both groups was �70–90%.
(For the 90% RIW, results were not reported; however, the
effect was smaller but substantial, ranging from 40% to
60%.)

A limitation of our outlier detection scheme is that it
will not work for sample groups that are significantly
different from the intended reference population. Specif-
ically, the resulting RI will not work, in most cases, for
pediatric data obtained from inpatients and applied to the
population of healthy children. However, every method
of RI estimation will suffer in this case. Another limitation
of our approach is that by removing outliers we may
increase the false-positive rate from the nominal value of
5% (for 95% RIs). However, this is balanced by the fact
that for most analytes the approach will improve the
ability to detect disease as well as remove inappropriate
values. For example, individuals of different races may be
combined to estimate a single RI. If all of the data are
used, this may produce a RI inappropriate for the relevant
population.

The problem of including unhealthy individuals in an
estimate of the RI is a real one. Few laboratories can obtain
well-defined healthy individuals in the numbers required
to meet IFCC and NCCLS standards (5, 6). There are no
publications as to how much of an effect this may have on
the RI estimate. In this work, we showed that even in the
most carefully defined healthy population, outlier detec-
tion is required to obtain a better estimate of the RI. To
perform our analysis we considered only comparisons
after outlier removal. Having the NHANES III and FMMP
groups, which have well-defined healthy and nonhealthy
subgroups, allowed us to examine the effect of including
nonhealthy individuals in our RI estimates. We have
shown that, as expected for almost every analyte, the RIW
was wider for the total group than for the healthiest
group. The difference in RIW is narrowed if robust
estimators rather than nonparametric estimators are used.

We observed that the FMMP total RIW was only �4%
wider than that of the healthy subgroup, compared with

9% for the NHANES III group. A well-defined healthy
group is required to determine RIs (5, 6). We have quan-
tified the effects of using a sample that includes non-
healthy individuals in the computation of RIs. These
effects can be substantial and vary by analyte (see Table
5). For example, GGT and glucose are the analytes most
sensitive to the inclusion of nonhealthy individuals in the
calculation of their respective RIs.

Several compilations of RIs have been reported. Spe-
cifically, there is one for the geriatric population (14 ).
Reference values for the same analytes vary widely
among the different reporting laboratories. Some of these
differences may be the result of method bias. However, in
cases where the same methods are used, we believe that
our estimates can serve as guidelines for which analytes
may be most affected by inclusion of the nonhealthy.

RIs by definition do not include the entire range of
healthy values. Thus the problem becomes how should
extreme values be omitted before the calculation. This can
be done either by a priori knowledge of known strata or
by the use of outlier detection. For example, including
individuals who exercise extremely hard, such as mara-
thon runners, is not appropriate for describing the usual
healthy population. If histories were taken, as they should
be, these individuals would be put in their own stratum
and not be included in the RI determination. When
histories are not known, the outlier detection scheme
described here should flag such individuals, and if possi-
ble, their medical histories may be evaluated for unusual
activities, such as extreme exercise. The decision of which
method to use to omit values depends on the knowledge
(stratification), or lack thereof (outlier detection), of the
individuals in the sample.

In conclusion, laboratories do not usually have specimens
from a well-defined healthy group. Instead, specimens are
obtained from a variety of sources, depending on avail-
ability, e.g., laboratory workers. Compounding this prob-
lem is the fact that laboratories do not have physician-
determined health status to serve as a prescreener. [See
Sasse (15 ) for a general discussion on the RI problem.]
Therefore, our proposed outlier detection scheme will be
useful in practice because it reduces the effect of un-
healthy individuals as well as those who may be inappro-
priate for the test group. We provide estimates of the
effects of including a nonhealthy group on various ana-
lytes. This should be useful in the assessment of RIs.
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