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Magnetotactic bacteria (MTB) are microorganisms widely inhabiting the oxic-
anoxic interface of aquatic environments. Beside biomineralizing magnetic 
nanocrystals, MTBs are able to sequester various chemical elements (e.g., 
carbon and phosphorus) for the biogenesis of intracellular granules, like 
polyhydroxyalkanoate (PHA) and polyphosphate (polyP), making them potentially 
important in biogeochemical cycling. Yet, the environmental controls of 
intracellular storage of carbon and phosphorus in MTB remain poorly understood. 
Here, we  investigated the influence of oxic, anoxic and transient oxic-anoxic 
conditions on intracellular storage of PHA and polyP in Magnetospirillum 
magneticum strain AMB-1. In the incubations with oxygen, transmission electron 
microscopy revealed intercellular granules highly rich in carbon and phosphorus, 
which were further interpreted as PHA and polyP based on chemical and 
Energy-Dispersive X-ray spectroscopy analysis. Oxygen had a strong effect on 
PHA and polyP storage in AMB-1 cells, as PHA and polyP granules accounted 
for up to 47 ± 23% and 5.1 ± 1.7% of the cytoplasmic space, respectively, during 
continuous oxic conditions, while granules disappeared in anoxic incubations. 
Poly 3-hydroxybutyrate (PHB) and poly 3-hydroxyvalerate (PHV) accounted for 
0.59 ± 0.66% and 0.0033 ± 0.0088% of dry cell weight, respectively, in anoxic 
incubations, while the values increased by a factor of 7 and 37 after oxygen 
was introduced. The results highlight a tight link between oxygen, carbon and 
phosphorus metabolisms in MTB, where favorable oxic growth conditions can 
lead to metabolic induction of polyP and PHA granule biogenesis.
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1. Introduction

Many microorganisms can form intracellular inclusions by sequestering various chemical 
elements (e.g., carbon, phosphorus, and sulfur) from the aquatic surroundings into relatively 
stable solid phases (Mino et al., 1998; Shively, 2006; Benzerara et al., 2011; Maki, 2013). The 
known chemical composition and physiological function of inclusions vary depending on the 
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group of microorganisms forming them. Among the different 
intracellular inclusions are polyhydroxyalkanoates (PHAs), which 
mainly include poly 3-hydroxybutyrate (PHB) and poly 
3-hydroxyvalerate (PHV). These polyesters are produced in microbial 
cells as carbon and energy storage compounds and electron sinks 
(Shively, 2006; Jendrossek, 2009). Another storage compound is 
polyphosphate (polyP), which is a linear polymer of tens to hundreds 
of phosphate residues linked together by high-energy bonds. The 
biological function of polyP granules differs widely among 
microorganisms, including inorganic phosphate storage reservoir, 
energy source, cation chelation, and environmental stress buffer 
(Kornberg, 1995; Albi and Serrano, 2016; Akbari et al., 2021). Typical 
examples of PHA-and/or polyP-containing microbes include 
polyphosphate-accumulating organisms (PAO) predominantly 
associated with enhanced biological phosphate removal (EBPR) in 
wastewater treatment plants, and sulfide oxidizing bacteria that are 
ubiquitous in marine sediments. The availability of oxygen (O2) in 
addition to carbon, nitrogen, and sulfur compounds have all been 
shown to drive PHA and polyP synthesis and consumption in bacteria 
(Gray and Jakob, 2015; Blunt et  al., 2018). For instance, under 
alternating oxic and anoxic conditions in engineered EBPR systems, 
PAOs store polyP under oxic conditions by degrading PHA as energy 
source, thus removing phosphorus from wastewaters (Mino et  al., 
1998). Also filamentous sulfur bacteria within the family Beggiatoaceae, 
which are abundant in marine sediments with oscillating redox 
conditions, accumulate high amounts of inorganic phosphate and store 
it as polyP (Brock and Schulz-Vogt, 2011; Brock et  al., 2012). 
Incubations with the model organism-marine Beggiatoa strain (35Flor 
Beggiatoa) under defined redox conditions suggested an extensive 
accumulation of polyP in Beggiatoa filaments under oxic conditions, 
while anoxic conditions with increasing sulfide concentrations led to a 
decomposition of polyP (Brock and Schulz-Vogt, 2011). The 
intracellular metabolisms of phosphorus and accumulation/release of 
polyP associated with redox changes remain unknown.

Magnetotactic bacteria (MTB) synthesize intracellular iron-rich 
inclusions called magnetosomes. They consist of magnetic nanocrystals 
in the form of magnetite (Fe3O4) and/or greigite (Fe3S4) enveloped by a 
lipid bilayer membrane (Bazylinski et al., 1995; Bazylinski and Frankel, 
2004; Schüler, 2008). Magnetosomes enable MTB to align with the 
Earth’s magnetic field lines allowing MTB to navigate more efficiently 
across preferred environmental niches (Frankel et al., 1997). MTB are 
cosmopolitan in distribution and ubiquitous in both freshwater and 
marine systems. While some cultivated species are obligate anaerobes 
(e.g., Desulfovibrio magneticus strain RS-1), most of the reported MTB 
are microaerophiles (Lefevre and Bazylinski, 2013). The microaerophilic 
lifestyle of most MTB allows them to inhabit the oxic-anoxic interface 
of sediments and water columns (Bazylinski and Frankel, 2004). In fact, 
the highest numbers of MTB were observed at the oxic-anoxic interface 
of stratified water columns (Moskowitz et  al., 2008). Electron 
microscopic images revealed that cultured and uncultured MTB 
contained other intracellular inclusions than magnetosomes, such as 
granules of PHA, polyP, sulfur and calcium carbonate (Lins and Farina, 
1999; Cox et al., 2002; Keim et al., 2005; Silva et al., 2008; Lefèvre et al., 
2009; Rivas-Lamelo et al., 2017; Schulz-Vogt et al., 2019; Li et al., 2020, 
2021; Monteil et al., 2021; Goswami et al., 2022). Due to the metabolic 
versatility of MTB and their miscellaneous intracellular inclusions, they 
might play an important role in the biogeochemical elemental cycling 
of iron, carbon, phosphorus and sulfur. For instance, the large 
magnetotactic cocci with phosphorus rich inclusions were suspected to 

contribute significantly to the phosphorus cycling in stratified water 
column of Black Sea (Schulz-Vogt et al., 2019). Based on increased gene 
expression of polyP kinases (ppk1 and ppk2) at the phosphate maximum, 
MTB within the genus Magnetococcus were hypothesized to take up 
phosphate at the upper boundary of suboxic zone and release it again at 
the lower boundary (Schulz-Vogt et al., 2019). However, the storage 
capacity of PHA and polyP in MTB, and the influence of redox 
conditions on the synthesis and decomposition of PHA and polyP have 
so far not been investigated in controlled laboratory incubations. 
Understanding the accumulation and release pattern of intracellular 
inclusions of cultivated MTB under manipulated redox conditions may 
provide an important framework for discerning their potential 
biogeochemical roles in natural environments.

In the well-studied MTB Magnetospirillum magneticum strain 
AMB-1, cells were frequently observed to contain PHA and polyP 
granules visualized with scanning transmission electron microscopy 
(STEM; Olszewska-Widdrat et al., 2019; Amor et al., 2020; Wan et al., 
2022). Stain AMB-1, originally isolated from freshwater sediment, is 
a facultative anaerobe and thus capable of growing aerobically, and is 
abundantly distributed at the surface of sediments (Matsunaga et al., 
1991). The main objective of this study was to systematically assess the 
effect of oxic, anoxic, and transient oxic-anoxic conditions on 
intracellular storage of PHA and polyP in strain AMB-1. Batch 
incubations were performed in parallel by exposing cells of AMB-1 to 
different oxic and anoxic regimes. To characterize the effect of O2 on 
the accumulation and release of PHA and polyP, inclusions were 
examined through STEM combined with Energy-Dispersive X-ray 
spectroscopy (EDX), and the concentration and composition of PHA 
were further analyzed through chemical analysis. Finally, the potential 
mechanisms underlying PHA and polyP storage in AMB-1 
were proposed.

2. Materials and methods

2.1. Cultivation conditions

We focused on the MTB Magnetospirillum magneticum strain 
AMB-1 in this study. Cells were grown in 60 mL of liquid medium in 
100 mL serum bottles at 25°C. Anoxic growth media contained: 5 mL 
Wolfe’s mineral solution, 0.68 g potassium dihydrogen phosphate 
(KH2PO4), 0.51 g sodium succinate anhydrous (C4H4Na2O), 0.58 g 
sodium tartrate dibasic dihydrate (C4H4Na2O6·2H2O), 0.050 g sodium 
acetate anhydrous (C2H3NaO2), 0.17 g sodium nitrate (NaNO3), 
0.040 g ascorbic acid (C6H8O6), 3 mL 10 mM ferrous sulfate (FeSO4), 
200 μL 0.2% resazurin and 0.5 mL vitamin solution per liter Milli-Q 
water. The detailed compositions of Wolfe’s mineral solution and 
vitamin solution were described in Wolin et al. (1963) and the website 
of the Deutsche Sammlung von Mikroorganismen und Zellkulturen 
(DSMZ) (Medium 141), respectively. All chemicals were purchased 
from Sigma-Aldrich (Germany). The pH of the medium was adjusted 
to 6.75–7.00, and O2 in the headspace was adjusted to ~2%.

2.2. Oxic and anoxic batch incubations

To investigate the effect of the oxygen regime on PHA and polyP 
inclusions in AMB-1, the pre-cultivated AMB-1 cells were incubated 
under oxic, anoxic and transient oxic-anoxic conditions 
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(Supplementary Figure S1). The 600 mL serum bottles contained 
two-thirds volume of anoxic sterile growth media in which ascorbic 
acid and resazurin were omitted. Bottles were closed with butyl 
rubber stoppers and the headspace was flushed with dinitrogen gas. 
AMB-1 cells were harvested in the middle of the exponential growth 
phase and centrifuged. The concentrated AMB-1 cells were 
subsequently inoculated into the serum bottles, resulting in the initial 
optical density at 565 nm (OD565) of 0.013 ± 0.0019. In parallel 
incubations, AMB-1 cells were subject to four different oxic and 
anoxic regimes for 20 days (Supplementary Table S1; 
Supplementary Figure S1). The incubation periods were named after 
the oxygen regime and incubation days (Supplementary Table S1). 
For example, 20 days of incubation under constant oxic conditions 
was named O20. In comparison, incubation under intermittent oxic-
anoxic conditions was named O7A5O8 under 7 days of oxic condition 
followed by 5 days of anoxic condition and another 5 days of oxic 
condition again. The anoxic conditions were achieved by flushing the 
headspace with nitrogen gas (N2), while pure O2 was added to provide 
oxic conditions. O2 concentrations in the media were manually 
controlled by monitoring with PyroScience noninvasive optical 
oxygen sensors (Germany) and injection of pure O2. As AMB-1 is 
typically grown with a low O2 concentration (2–10%) in the culture 
headspace (McCausland et  al., 2021), O2 concentrations were 
controlled at 5.1 ± 1.2 μM during oxic conditions (n = 50). During 
anoxic conditions, O2 concentrations were below the detection limit 
of the oxygen sensors (~0.0052 μM) (data not shown). The bottles 
were incubated at 25°C with gentle shaking at 100 rpm in the dark. 
Cell growth was determined daily by measuring OD565. The 
correlation between OD565 values and cell number was determined 
by cell-counting using Thoma cell counting chamber (ThermoFisher 
Scientific, United  States) with an optical microscope (Zeiss, 
Germany). The linear relationship of OD565 with cell density was 
given by function: Cell density = 3.0 × 108·OD565  + 1.0 × 106 
(R2  = 0.995). An OD565 of 0.1 corresponded to a cell density of 
3.1 × 107 cells/mL, which was similar to the value (i.e., 3.3 × 107 cells/
mL) calculated in a previous study using the cell counting method for 
Magnetospirillum strains (Heyen and Schüler, 2003). Culture samples 
(~25 mL) were collected daily for STEM visualization and various 
chemical analyses.

2.3. Scanning transmission electron 
microscopy and energy dispersive X-ray 
spectroscopy analysis

The harvested cells from the different incubations were washed 
three times with Milli-Q water and concentrated by centrifugation at 
2,500 rpm for 5 min. Approximately 10 μL of washed cells was loaded 
onto a 200-mesh Formvar–carbon-coated copper grid (Agar 
Scientific). The cells were allowed to settle for 15 min, and water was 
carefully removed with filter paper (Whatman, Germany). The grids 
were left to dry before microscopic analysis. Cell visualization and 
elemental analysis were conducted at STEM mode of Fei Quanta FEG 
200 ESEM equipped with an Oxford Instruments EDX spectrometer. 
The electron microscope was operated at high voltage of 10–30 kV and 
a working distance of 10 mm. Area and diameter of AMB-1 cells and 
inclusions were measured from STEM images using ImageJ software 
(1.53v).

2.4. Analytical measurements

For solid-phase PHA extraction, 20 mL of AMB-1 cultures were 
centrifuged at 4,000 rpm for 10 min at 4°C. The cell debris were stored 
at −18°C until PHA extraction, while the supernatant was filtered 
through 0.22 μm-pore-diameter polypropylene filters for analyses of 
nitrogen species, phosphate (PO4

3−), Fe2+ and organic carbon (i.e., 
sodium succinate, sodium tartrate and sodium acetate).

PHAs were extracted by a modified version of the sodium 
hypochlorite (NaClO) digestion method (Hierro-Iglesias et al., 2021). 
Prior to the extraction, AMB-1 cells were freeze-dried for 24 h. 
Weighed freeze-dried cells (~7 mg) were suspended in 2 mL of 13% 
NaClO (w/v; pH = 11.8), and incubated at room temperature. After 1 h, 
2 mL of milli-Q water was added to enhance the PHA sedimentation 
rate, followed by another 8 h of incubation at room temperature. After 
centrifugation at 4000 rpm for 10 min, the supernatant (containing 
water-soluble components) was removed, while the pellet (containing 
PHA) was resuspended in 2 mL of 70% isopropanol (w/v). After freeze-
drying overnight, cell debris was weighed and digested at 100°C in 
2 mL of acidified methanol (20% sulfuric acid v/v) and 1 mL of 
chloroform (containing an exact amount of heptadecane (ca. 1 g/L) as 
internal standard) for 3.5 h. After incubation, 1 mL water was added to 
enhance phase separation. The lower phase containing PHA was 
transferred into 2 mL glass vial. Samples were analyzed by gas 
chromatography equipped with a flame-ionization detector and a 
column (60 m, 0.53 mm internal diameter, 1 μm film thickness) coupled 
with a guard-column (0.32 mm internal diameter). Helium was utilized 
as carrier gas at constant pressure (14.5 psi), and the temperature of 
injection and detector was 280°C and 230°C, respectively. PHB and 
PHV were the two target compositions of PHA to be analyzed. The 
compound was confirmed by retention time and mass spectral 
matching with known PHA standards (a commercial co-polymer of 
PHB-PHV (88:12 M)), and quantified based on the internal standard.

An air-segmented continuous-flow analyzer (SKALAR San++, 
Netherlands) was used for colorimetric analysis of ammonium 
(NH4

+), nitrite (NO2
−), NOx

− (i.e., NO2
− + nitrate (NO3

−)) and PO4
3−. 

Dissolved reduced iron (Fe2+) was determined colorimetrically using 
a Ferrozine solution (50 mmol/L HEPES, 0.08% Ferrozine, pH 7) 
(Stookey, 1970; Thamdrup et al., 1994). Organic carbon concentrations 
of sodium succinate anhydrous, sodium tartrate and sodium acetate 
were analyzed by high performance liquid chromatography (HPLC) 
with a refractive index detector. pH was monitored by a pH probe 
(WTW GmbH, Weilheim, Germany).

3. Results and discussions

3.1. Growth of and magnetosome 
formation in AMB-1 cells

Growth of AMB-1 and magnetosome formation were influenced 
by O2 (Figure 1). Transient high growth rates were observed within the 
first 48 h, i.e., (2.0 ± 0.21) × 107 cells/mL/d and (1.2 ± 0.075) × 107 cells/
mL/d under oxic and anoxic conditions, respectively (Figure 1). Fast 
growth was accompanied by a decrease in the concentrations of 
sodium succinate, sodium tartrate, NO3

−, PO4
3− and dissolved Fe2+ 

(p  < 0.05; Supplementary Figures S2–S5). After 48 h, AMB-1 cell 
density continued to increase in the presence of O2, while anoxic 
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conditions resulted in stagnated growth or a net loss of cells (Figure 1). 
As facultative anaerobic bacteria, AMB-1 can use NO3

− as the terminal 
electron acceptor during growth under anoxic conditions, while 
respiratory oxygen reduction was suggested to facilitate growth under 
low O2 conditions (Yang et  al., 2001; Heyen and Schüler, 2003; 
Matsunaga et al., 2005; Olszewska-Widdrat et al., 2019). Based on 
complete genome sequence, AMB-1 has been shown to possess genes 
(including nitrate reductase, nitrite reductase, nitric oxide reductase, 
and nitrous oxide reductase) for a complete denitrification pathway 
(Matsunaga et al., 2005). However, strict anaerobic conditions have 
been reported to inhibit AMB-1 growth (Yang et al., 2001; Heyen and 
Schüler, 2003). Similar to the results in this study, cell density was 
observed to decrease by half when changing initial O2 concentrations 
from 3.9 to 0% in previous AMB-1 batch incubations (Popa et al., 2009).

Based on STEM images (Figures  2, 3), AMB-1 cells showed a 
spirillum morphology with a mean area of 1.8 ± 0.29 μm2 (4.3 ± 1.6 μm 
in length and 0.56 ± 0.095 μm in width; n = 277). AMB-1 cells contained 
10–47 magnetosomes in 1–5 bundles of multiple chains (Figures 2, 3). 
Also, EDX analysis of magnetosomes showed high content of iron and 
oxygen (Figure 3), suggesting that magnetite (Fe3O4) was the major 
component of magnetosomes of AMB-1. Similar diameter (41 ± 10 nm) 
and size [(1.7 ± 0.84) × 10−3  μm2] of magnetosomes were obtained 
during different imposed conditions in our AMB-1 batch incubations. 
There was no significant change (p > 0.05) in magnetosome number 

per cell during short intervals of oxic-anoxic transition, such as during 
O3A3O3A3O8 and O7A5O8 incubations (Supplementary Figure S6). 
In contrast, fewer magnetosomes (per cell) were formed after long 
anoxic periods, gradually decreasing from 22 ± 5 at day 3 to 15 ± 3 at 
day 12 for A12O8 incubation, compared to continuous oxic incubations 
(e.g., averaged 23 ± 3 during O20 incubation; p < 0.05). While too high 
O2 and anoxic conditions would result in lower magnetosome 
formation, a low O2 concentration of 2–8 μM was found optimal for 
magnetosome formation of AMB-1 (Yang et  al., 2001; Heyen and 
Schüler, 2003; Ge et al., 2011; Li and Pan, 2012; Olszewska-Widdrat 
et al., 2019). As the oxygen in MTB-biomineralized magnetite comes 
from water based on previous isotope analysis (Mandernack et al., 
1999), the formation of magnetosomes thus seemed indirectly 
dependent on dissolved O2 concentration. Although the underlying 
molecular mechanism remains unclear, our oxygen-shift experiments 
indicated that O2 likely served as regulatory signal for metabolic 
induction of the biomineralization of magnetosomes.

3.2. Intracellular storage of carbon and 
phosphorus in AMB-1

Apart from magnetosomes, AMB-1 cells also contained two 
additional types of electron-dense inclusions: large electron-lucent 

FIGURE 1

Cell density of AMB-1 cultures during incubation period. Pink and grey colors indicate oxic and anoxic periods, respectively. Black and white squares 
define parallel incubations. The different incubation periods were named after oxygen regime and incubation days (Supplementary Table S1).
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and small dark ellipse-shape granules (Figures 2, 3). White and black 
inclusions were 0.25 ± 0.090 μm and 0.084 ± 0.031 μm in diameter, and 
0.049 ± 0.030 μm2 and 0.0053 ± 0.0038 μm2 in area, respectively 

(n  = 777–2,138). Compared to the cytoplasmic background, EDX 
analysis of white inclusions indicated a high content of carbon. A 
major carbon peak could indicate organic compounds in the granules. 

FIGURE 2

Examples of STEM images of AMB-1 cells at different incubation time. Pink and grey colors indicate oxic and anoxic periods, respectively. The different 
incubation periods were named after oxygen regime and incubation days (Supplementary Table S1).

FIGURE 3

Example of STEM-EDX illustration (A) and analysis (B) of inclusions in AMB-1 (day 17).
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Conversely, the black inclusion contained mainly phosphorus together 
with oxygen and magnesium (Figure 3).

3.2.1. Effect of oxic and anoxic conditions on PHA 
storage

There were consistent trends of white inclusions observed in 
STEM images and PHA concentrations analyzed through chemical 
analysis under different oxic and anoxic regimes, i.e., more white 
inclusions and higher PHA concentrations under oxic conditions and 
vice versa under anoxic conditions (Figures 2, 4, 5). Combined with 
EDX analysis, the results indicated that the carbon containing 
inclusions were highly PHA-rich. Intracellular PHA granules in 
bacteria occur mostly as different types of homo-and heteropolymers 
(i.e., PHB), and/or poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) 
[P(3HB-co-3 HV)] (Khanna and Srivastava, 2005; García et al., 2013; 
Hierro-Iglesias et al., 2021). During oxic conditions in our different 
incubations, analysis of extracted PHA revealed the presence of PHB 
copolymerized with PHV in AMB-1, with the averaged ratio of PHB/
PHV at (98 ± 1.9):(2.1 ± 1.7) (mol%; n = 160) (Figure  4). PHA 
aggregates have previously been reported in different MTB, such as 
Magnetospirillum gryphiswaldense strain MSR-1, Magnetococcus 
marinus strain MC-1, and Candidatus Magnetoglobus multicellularis, 
using chemical analytical and staining methods (e.g., Nile red staining; 
Schultheiss et  al., 2005; Silva et  al., 2008; Lefèvre et  al., 2009; 
Fernández-Castané et  al., 2017; Hierro-Iglesias et  al., 2021). The 
calculated PHB/PHV ratio in our study was close to the value of 99:1 
reported for MSR-1 in the exponential phase, which was grown under 
similar cultivation conditions (Hierro-Iglesias et al., 2021).

Referring to the carbon utilization by other PHA-accumulating 
microbes (Lemos et al., 1998; Lütke-Eversloh and Steinbüchel, 1999; 
Steinbüchel and Lütke-Eversloh, 2003), the potential carbon source of 
PHA synthesis for AMB-1 could be succinate, tartrate and acetate in 
medium (Supplementary Figure S2). These organics are converted to 
common intermediates, like acetyl-CoA that can be  used as the 
substrate of PHA synthesis (Steinbüchel and Lütke-Eversloh, 2003). 
PHA yield was calculated as the unit amount of PHA produced 
(mmolC PHA) divided with unit amount of substrate consumed 
(mmolC carbon). For AMB-1 in our study, the estimated PHA yield 
was 0.036 ± 0.030 (maximum value of 0.11) under oxic conditions in 
all incubations, indicating that organic carbon added to medium was 
primarily used for cell growth (Figure 1; Supplementary Figure S2). 
The PHA yield was in the low range of values reported for other 
PHA-accumulating microbes (Lemos et al., 1998; Serafim et al., 2004; 
Albuquerque et al., 2007; Fradinho et al., 2014; Queirós et al., 2014; 
Sciarria et  al., 2018). For instance, using an inoculum from a 
laboratory-scale EBPR reactor fed with acetate, Serafim and 
coworksers obtained a PHA storage yield of 0.68 mmolC PHA/mmolC 
carbon (Serafim et al., 2004). Bacteria enriched from activated sludge 
were reported to use acetate and butyrate as carbon sources for PHA 
synthesis, resulting in a maximum PHA yield of 0.77 ± 0.18 mmolC 
PHA/mmolC carbon (Sciarria et  al., 2018). Since PHA granules 
occupied up to 88% of the cell area under oxic conditions (Figures 2, 5), 
the PHA yield of AMB-1 seemed to be underestimated, probably due 
to low recovery efficiency of the applied extraction method (Madkour 
et al., 2013). Further comparison between different PHA extraction 
methods using cultured AMB-1 cells would be helpful to achieve a 
more precise quantification of PHA storage capability. After depletion 
of organic carbon after day 10 in O7A5O8 and O3A3O3A3O8, and 

after approximately day 13 in O20, PHA continued to accumulate 
under oxic conditions (Figure  4; Supplementary Figure S2). The 
additional carbon source might be from the cell decay during anoxic 
periods (days 8–12 in O7A5O8, days 10–12 in O3A3O3A3O8), where 
cell growth stagnates and even decreases (Figure  1). In the oxic 
incubation, additional carbon source could originate during the 
stationary/death phase (days 14–20 for O20) (Figure  1). More 
investigations are needed in order to demonstrate the carbon source 
for PHA synthesis under different growth phases.

Oxygen had a profound effect on PHA storage in AMB-1 cells. 
Overall, bigger PHA inclusions and higher content of intracellular 
PHA inclusion were observed in cells during oxic periods, compared 
to anoxic conditions (Figures 2, 5). During continuous oxic conditions 
in O20, the number and area of PHA storage granules per cell 
increased remarkably with time, occupying 47 ± 23% of the 
cytoplasmic space on day 17 (Figures 2, 5; 
Supplementary Figures S7–S9). Conversely, PHA inclusions were not 
found during anoxic periods in A12O8, where they appeared after 
introducing O2 to the bottle. Here, PHA inclusions accounted for 
30 ± 10% of the cytoplasmic space on day 17 (Figure 5). Similar trends 
were also observed during short-term oxic-anoxic transitions in 
O7A5O8 and O3A3O3A3O8, where PHA inclusions accumulated in 
the presence of O2, and decreased in both size and number in the 
absence of O2 (Figures  2, 5; Supplementary Figures S7–S9). For 
instance, in O7A5O8, the area percentage of PHA inclusions decreased 
from 19 ± 5.2% on day 6 (oxic) to 3.0 ± 4.0% on day 12 (anoxic), and 
subsequently increased again to 41 ± 17% on day 17 (oxic) (Figure 5). 
The aforementioned microscopic observations were consistent with 
PHB and PHV results (Figures 2, 4, 5). During anoxic conditions, 
PHB and PHV accounted for 0.59 ± 0.66% and 0.0033 ± 0.0088% of 
dry cell weight, respectively, while values increased up to 9.9% 
(averaged 4.3 ± 2.5%) and 0.33% (averaged 0.14 ± 0.089%) of dry cell 
weight under oxic conditions.

The presence of PHA inclusions has been reported in many 
bacteria (Steinbüchel et al., 1992; Pötter and Steinbüchel, 2006). PHA 
granules can act as storage compounds of carbon and energy, which 
are required for the maintenance of metabolism and synthesis of 
cellular metabolites during starvation, in particular after growth 
resumes, as well as an electron sink into which excess of reducing 
power can be channeled (Wältermann and Steinbüchel, 2005; Pötter 
and Steinbüchel, 2006). Besides the primary storage function, PHA 
also can enhance robustness and survival of bacterial cells against 
environmental stress conditions, like under high or low temperature, 
freezing, oxidative and osmotic pressure, which is likely associated 
with their extraordinary architecture and biophysical properties 
(Obruca et  al., 2020). It has been previously reported that the 
biosynthesis of PHA was promoted under imbalanced nutrient 
conditions, such as an excess of carbon source and electron donor and 
lack of another nutrient (e.g., nitrogen or sulfur) (Kessler and Witholt, 
2001; García-Torreiro et al., 2016; Fernández-Castané et al., 2017). In 
our incubations, sodium succinate anhydrous, sodium tartrate and 
NO3

− became limited from day 3–12 (Supplementary Figures S2, S3). 
Similar PHA storage and release patterns were observed under 
different oxic-anoxic transition regimes throughout the whole 
incubation period, revealing that O2 had the strongest influence on 
PHA accumulation. The role of O2 on PHA synthesis differs among 
different microorganisms (Mino et  al., 1998; Borah et  al., 2002). 
Similar to AMB-1, the presence of O2 has been observed to enhance 
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PHA accumulations by Bacillus mycoides (Borah et al., 2002), while 
PHA formations only took place after exhaustion of O2 in PAOs and 
glycogen-accumulating organisms (GAOs) in EBPR systems (Mino 
et al., 1998).

3.2.2. Effect of oxic and anoxic conditions on 
polyP storage

The third type of granule identified inside AMB-1 cell was the 
phosphorus-rich granule, which was smaller and more electron dense 
than PHA granule, and less electron dense than the magnetosome. 
Each AMB-1 cell contained up to 12 spherical phosphorus-rich 
granules, with the diameter in the range of 0.00022–0.19 μm, while 
some cells contained no granules right in phosphorus (Figures 2, 3; 
Supplementary Figures S10, S11). Phosphorus-rich inclusions in 
single cells were located adjacent to the PHA inclusions. Elemental 
EDX analysis showed that these phosphorus-rich granules besides 
phosphorus contained oxygen and magnesium as major elements, and 
small amount of potassium and calcium (Figure 3). Dark red color was 
observed when cells were stained with toluidine blue (data now 
shown). Based on the dark red colour and the presense of metals in 
phosphorus-rich granules, we assumed that phosphorus-rich granules 
in the AMB-1 cells were consisted of polyP (Brock and Schulz-Vogt, 
2011; Schulz-Vogt et al., 2019). The presence of similar phosphorus-
rich inclusions has previously been observed in MTB with 
transmission electron imaging, especially in uncultured magnetotactic 

cocci (Lins and Farina, 1999; Cox et  al., 2002; Keim et  al., 2005; 
Lefèvre et al., 2009; Rivas-Lamelo et al., 2017; Schulz-Vogt et al., 2019; 
Li et al., 2021; Goswami et al., 2022). These phosphorus-rich inclusions 
were also classified as polyP. For example, the volume of polyP 
granules made up most of the cell volume of magnetotactic cocci in 
Lake Pavin, France (Rivas-Lamelo et al., 2017). Besides of phosphorus 
with a relative abundance of 65.9 ± 3.2%, the authors found 
magnesium, potassium and calcium elements associated with polyP 
granules in relative abundances of 22.8 ± 4%, 5.1 ± 3.1% and 6 ± 5.4%, 
respectively (Rivas-Lamelo et al., 2017). PolyP inclusions were also 
observed in MTB of the genus Magnetococcus in the suboxic zone of 
Black Sea (Schulz-Vogt et  al., 2019). In the Black Sea MTB, the 
inclusions contained 26–34% phosphorus and 1–5% metals (e.g., iron 
and manganese) (Schulz-Vogt et  al., 2019). PolyP is generelly 
composed of linear polymers of orthophosphate linked through high 
energy phosphoanhydride bonds (Kornberg, 1995; Cox et al., 2002). 
Each orthophosphate unit carries a monovalent negative charge at 
physiological pH, resulting in a large cation exchange capacity of 
polyP. The binding energy facilitates polyP to sequester Mg2+, Ca2+, K+ 
etc., (Reusch, 2000; Cox et  al., 2002), consistent with the signals 
detected in EDX spectra of phosphorus-rich granules in AMB-1 cells 
(Figure 3). The binding of these metals leads to the high electron 
density of these polyP granules.

Similar to PHA inclusions, the presence of O2 strongly enhanced 
the intracellular storage of polyP in AMB-1 cells, with more and 

FIGURE 4

Changes in poly 3-hydroxybutyrate (PHB) and poly 3-hydroxyvalerate (PHV) content in AMB-1 cells during incubation period. Pink and grey colors 
indicate oxic and anoxic period, respectively. The different incubation periods were named after oxygen regime and incubation days 
(Supplementary Table S1).
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bigger polyP granules under oxic conditions (Figures  2, 6; 
Supplementary Figures S10–S12). During continuous oxic conditions 
in O20, the number and area of polyP granules gradually increased 
from 3.4 ± 1.6 and 0.0032 ± 0.0014 μm2 on day 3 to 6.5 ± 1.7 and 
0.011 ± 0.0048 μm2 on day 17, respectively, accounting for 0.69 ± 0.21% 
(day 3) and 5.1 ± 1.7% (day 17) of the cytoplasmic space. Short O2 
exposure time led to less polyP, with the area percentage of 1.9 ± 0.55% 
in A12O8, 2.4 ± 0.56% in O7A5O8, 2.8 ± 1.2% in O3A3O3A3O8 on 
day 17 (Figures 2, 6). PolyP granules were barely observed under 
anoxic conditions (Figures 2, 6). Similar to PHA synthesis, upon the 
depletion of PO4

3− in medium, any additional phosphorus source for 
polyP synthesis might originate from cell decay during anoxic periods 
where cell growth stagnates and even decreases (day 8–12 in O7A5O8, 
day 10–12 in O3A3O3A3O8), and during the stationary/death phase 
in the oxic incubation (day 14–20 for O20) (Figure  1; 
Supplementary Figure S5). We did not observe any release of PO4

3− 
after the transition from oxic to anoxic conditions. The amount of 
phosphorus released into medium might be too low to detect with the 
technique used in our study (detection limit of PO4

3− was ~0.058 mM). 
The phosphorus utilization for polyP synthesis under different growth 
phases and nutrient availability remains to be  investigated in 
future studies.

The physiological function of polyP inclusions in MTB remains 
unclear. According to other non-MTB polyP-accumulating bacteria, 
such as PAO in EBPR reactors, these polyP inclusions might serve as 
a source of ATP, or a response to oxidative stress (Seviour et al., 2003). 

Rivas-Lamelo et al. (2017) speculated that the massive accumulation 
of polyP in magnetotactic cocci in Lake Pavin was due to the effect of 
oxic/anoxic fluctuations, either by travelling vertically over short 
distances from the anoxic to oxic zone (and vice versa), or due to 
seasonal variation in the position of the oxic-anoxic interface. It has 
been hypothesized that MTB accumulated high polyP contents under 
oxic conditions, and released phosphate under anoxic conditions 
triggered by sulfide (Rivas-Lamelo et  al., 2017; Schulz-Vogt 
et al., 2019).

3.2.3. Potential mechanisms of PHA and polyP 
storage

The pathway of PHA synthesis in many bacteria involves enzymes 
of β-ketothiolase (PhaA), acetoacetyl CoA reductase (PhaB), and PHA 
polymerase (PhaC; Kessler and Witholt, 2001; García-Torreiro et al., 
2016). Firstly, PhaA converts two molecules of acetyl-CoA to a 
molecule of acetoacetyl-CoA. The formed acetoacetyl-CoA is then 
stereoselectively reduced to form (R)-3-hydroxybutyryl-CoA by PhaB 
using NADH as the electron donor in most species. PhaC is 
responsible of PHA polymerization. The degradation of PHA is 
catalyzed by PHA depolymerase (PhaZ), which is able to hydrolyze 
amorphous native PHA granules yielding PHA monomers as final 
products (Kessler and Witholt, 2001; Liu et al., 2008; García-Torreiro 
et al., 2016). Similar pha genes have been detected in the genome of 
MSR-1 (Liu et al., 2008), which shares high genomic similarity with 
AMB-1 (Raschdorf et al., 2014). In a recent work, genomic excision of 

FIGURE 5

Changes in the area of PHA inclusions during incubation period (n = 43–212 cells). The area of PHA inclusions (% of the cell area) was calculated by 
dividing the sum of the area of PHA inclusions (μm2) in an AMB-1 cell by the area of the cell (μm2). The number, diameter, and area of PHA inclusions 
are presented in Supplementary Figures S7–S9. Pink and grey colors indicate oxic and anoxic period, respectively. The different incubation periods 
were named after oxygen regime and incubation days (Supplementary Table S1).
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the phbCAB operon in MSR-1 was shown to eliminate the production 
of PHA granules (Raschdorf et al., 2014). In addition, presumptive 
magnetosome protein Mms16, associated with isolated magnetosomes 
from two Magnetospirillum strains (AMB-1 and MSR-1), is a PHB 
granule-bound protein (phasin) and acts in vitro as an activator of 
PHB hydrolysis (Schultheiss et al., 2005). There is however limited 
knowledge of the regulation of PHA metabolism in MTB at enzymatic 
and transcriptional level. Based on the metabolic response of other 
bacterial strains (e.g., Halomonas, Pseudomonas and Azotobacter) 
under nutrient deprivation, regulation of PHA metabolism might 
occur at different levels: activation of pha gene expression (i) by 
specific environmental signals, like nutrient starvation or (ii) by 
specific cell components or metabolic intermediates; (iii) inhibition of 
metabolic enzymes of competing pathways and consequently 
enrichment of required intermediates for PHA synthesis; or (iv) a 
combination of those (Kessler and Witholt, 2001; Castillo et al., 2013; 
García-Torreiro et al., 2016). Considering the higher AMB-1 growth 
rates and carbon consumption rates under oxic conditions (Figure 1; 
Supplementary Figure S2), enhanced carbon metabolism with high 
conversion of carbon to acetyl-CoA might result in more carbon 
fluxes spilled over into PHA synthesis (Castillo et al., 2013; García-
Torreiro et al., 2016). Alternatively, the transition of anoxic or oxic 
condition might trigger the PHB synthesis by activating PHA gene 
expression or increasing the NADH/NAD+ ratio, where high NADH 
concentrations would inhibit citrate synthase and isocitrate 

dehydrogenase leading to the accumulation of acetyl-CoA for PHA 
synthesis (Senior et al., 1972; Senior and Dawes, 1973; Ling et al., 
2018; Li et al., 2022). The exact mechanisms of O2 mediated PHA 
synthesis in MTB call for further investigations.

Previous full genome studies indicated the presence of polyP 
kinases (Ppk1 and Ppk2), exophosphatases (Ppx) or phosphate 
regulon (Pho) in MTB, including AMB-1, MSR-1, Magnetospirillum 
magnetotacticum MS-1, MC-1 and Magnetofaba australis strain IT-1, 
resulting in the potential ability of MTB to synthesis and degrade 
polyP granules (Zhang et al., 2002; Rao et al., 2009; Schübbe et al., 
2009; Araujo et al., 2016; Zhou et al., 2017; Koziaeva et al., 2019). 
Pho controls phosphate uptake, and Ppk1 reversibly catalyzes the 
formation of polyP, whereas Ppk2 and Ppx degrade polyP to produce 
ATP or phosphate (Rao et al., 2009; Schübbe et al., 2009). Besides, 
PolyP:AMP phosphotransferase (Pap) is a class II Ppk2, which can 
transfer the terminal phosphate residue from poly-P to AMP, 
producing ADP. For example, bacterial polyP inclusions in MTB 
affiliated with the genus Magnetococcus were found to contribute 
substantially to the phosphorus peak observed at the lower boundary 
of the suboxic zone of the Black Sea (Schulz-Vogt et al., 2019). The 
phosphorus maximum correlated with an increase in gene 
expression of ppk by several groups of bacteria including those of the 
family Magnetococcaceae, suggesting active bacterial polyP 
degradation (Schulz-Vogt et al., 2019). MTB were therefore proposed 
to shuttle up and down within the suboxic zone, scavenging 

FIGURE 6

Changes in the area of polyP inclusions during incubation period (n = 27–114 cells). The area of polyP inclusions (% of the cell area) was calculated by 
dividing the sum of the area of polyP inclusions (μm2) in an AMB-1 cell by the area of the cell (μm2). The number, diameter, and area of polyP inclusions 
were presented in Supplementary Figures S10–S12. Pink and grey colors indicate oxic and anoxic period, respectively. The different incubation periods 
were named after oxygen regime and incubation days (Supplementary Table S1).
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phosphate at the upper of the suboxic zone and releasing it at the 
lower boundary. This is consistent with the results in our batch tests: 
when the growth of AMB-1 resumed under oxic conditions, the 
biosynthesis of PHA and polyP was promoted, which could act as 
storage compounds for energy and carbon needed for maintenance 
of metabolism and synthesis of cellular metabolites under 
anoxic conditions.

3.2.4. Possible link between PHA, polyP and 
magnetosome biomineralization

As homopolymers with unique molecular characteristics, both 
polyP and PHA (especially PHB) can assist to regulate internal ion 
concentrations by serving as vehicles for selective transport of ions 
across membranes (Reusch, 2000). PolyP is often correlated with 
PHB, where PHB solvates (dissolves) cations, and associates with 
polyP to form selective ion channels across plasma membranes 
(Reusch, 2000). In our work, we observed remarkable accumulations 
of carbon-and phosphorus-rich granules together with fewer 
magnetosomes (per cell) under oxic incubation periods (Figures 5, 6; 
Supplementary Figure S6). Since PHA formation diverts cellular 
resources from growth, high levels of PHA might hinder 
magnetosome preparation and synthesis (Fernández-Castané et al., 
2017). Our results are in agreement with recent works regarding the 
energy competition between the formation of PHA and 
magnetosomes, where magnetosome production was negatively 
correlated with PHA formation (Raschdorf et al., 2014; Fernández-
Castané et al., 2017, 2018). Furthermore, phosphate metabolism may 
be associated with magnetosome biosynthesis. It has been proposed 
that magnetite formation in MTB proceeds from the storage of iron 
in the form of phosphate-rich ferric hydroxide (FeP), which 
supposedly transforms to a transient and short-lived ferrihydrite 
(Fe2O3·nH2O) followed by the reduction to form the final magnetite 
mineral (Baumgartner et  al., 2013). However, considering the 
relatively small size of magnetosomes [(1.7 ± 0.84) × 10−3  μm2], it 
appears difficult to follow the release of PO4

3− into medium after the 
separation from FeP.

3.3. Environmental relevance

Our results revealed strong effects of O2 on intracellular storage 
of PHA and polyP in Magnetospirillum magneticum strain AMB-1, 
indicating a tight link between oxygen, carbon and phosphorus 
metabolism in MTB. As a group of prokaryotes that appears to 
be  depending on the presence of an oxic-anoxic interface in 
sediments or water columns, MTB can be considered as gradient 
organisms, shuttling with the help of magnetotaxis between oxygen-
deficient and anoxic zones for oxidized and reduced (often reduced 
sulfur species) chemical compounds. Intracellular storage of carbon 
and phosphorus can facilitate efficient energy acquisition for cell 
metabolism and growth in anoxic environments. The intracellular 
storage ability of various chemical elements suggests that MTB show 
a great potential for biogeochemical carbon, phosphorus and iron 
cycling across the redox interface. Moreover, the transport of 
phosphorus from surface waters into deeper layers by MTB could 
have important implications for the retention of phosphorus in the 
anoxic layers and prevention of phosphorus eutrophication in surface 
waters. In practice, the high accumulation of PHA and polyP in MTB 

would enable them to be critical actors for removing excess carbon 
and phosphorus, and offer a promising alternative for PHA and 
phosphorus recovery from impaired water. The recovered polyP can 
be applied as new sustainable sources of phosphorus to maintain 
modern food production, while PHAs are a family of biodegradable 
polymers with promising applications for agricultural, medical and 
pharmaceutical industries.

4. Conclusion

The present study examined the accumulation and release 
pattern of PHA and polyP inclusions in well-studied MTB 
Magnetospirillum magneticum strain AMB-1 under manipulated 
redox conditions. AMB-1 growth was enhanced in the presence of 
O2, while anoxic conditions resulted in stagnated growth or a net 
loss of cells. Apparently fewer magnetosomes (per cell) were formed 
after long anoxic periods, compared to continuous oxic incubations, 
indicating that O2 likely served as regulatory signal for metabolic 
induction of the biomineralization of magnetosomes. Apart from 
magnetosomes, STEM images revealed two additional types of 
intercellular granules highly rich in carbon and phosphorus in 
AMB-1 cells, which were further interpreted as PHA and polyP 
based on chemical and EDX analysis. Oxygen significantly affected 
PHA and polyP granules, as they accounted for up to 47 ± 23% and 
5.1 ± 1.7% of the cytoplasmic space, respectively, during continuous 
oxic conditions, while granules disappeared in anoxic incubations. 
Consistently, PHB and PHV accounted for 0.59 ± 0.66% and 
0.0033 ± 0.0088% of dry cell weight under anoxic conditions, 
respectively, while the values increased up to 9.9 and 0.33% of dry 
cell weight under oxic conditions. Furthermore, the potential 
mechanisms underlying PHA and polyP storage in AMB-1 were 
proposed. The results advance the understanding of intracellular 
storage ability of MTB, and suggest their great potential for 
biogeochemical carbon, phosphorus and iron cycling across the 
redox interface.
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