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Effect of Parametric Uncertainties on the
Performance of a Piezoelectric Energy
Harvesting Device
The use of piezoelectric materials for the development of electromechanical devices for
the harvesting or scavenging of ambient vibrations has been extensively studied over
the last decade. The energy conversion from mechanical (vibratory) to electrical energy
is provided by the electromechanical coupling between mechanical strains/stresses and
electric charges/voltages in the piezoelectric material. The majority of the studies found in
the open literature present a tip-mass cantilever piezoelectric device tuned on the operating
frequency. Although recent results show that these devices can be quite effective for
harvesting small amounts of electrical energy, little has been published on the robustness
of these devices or on the effect of parametric uncertainties on the energy harvested.
This work focuses on a cantilever plate with bonded piezoelectric patches and a tip-mass
serving as an energy harvesting device. The rectifier and storage electric circuit was
replaced by a resistive circuit (R). In addition, an alternative to improve the harvesting
performance by adding an inductance in series to the harvesting circuit, thus leading to a
resonant circuit (RL), is considered. A coupled finite element model leading to mechanical
(displacements) and electrical (charges at electrodes) degrees of freedom is considered.
An analysis of the effect of parametric uncertainties of the device on the electric output
is performed. Piezoelectric and dielectric constants of the piezoelectric active layers and
electric circuit equivalent inductance are considered as stochastic parameters. Mean and
confidence intervals of the electric output are evaluated.
Keywords: energy harvesting, energy scavenging, uncertainties, piezoelectric materials,
resonant shunt circuits

Introduction

The use of piezoelectric materials for the development of energy

harvesting devices has been largely studied over the last decade

(Sodano, Inman and Park, 2004). The motivation for the use of

such materials as energy harvesting devices is based on their vast

employment as distributed sensors and actuators due to their large

electromechanical coupling coefficient. Piezoelectric materials can

be found in the form of thin monolithic patches or fiber reinforced

composites which can be easily integrated into flexible structures

without significant mass increase (Sodano, Lloyd and Inman, 2006;

Trindade and Benjeddou, 2012). Thus, the conversion of vibratory

energy into electrical energy through the electromechanical coupling

of piezoelectric materials could be useful in several applications

(Roundy, 2005; Beeby, Tudor and White, 2006).

Most of the research found in the open literature explores the

use of eletromechanical resonant devices tuned to the operational

resonance frequency of the host structure or machine in order to

maximize the electrical energy harvested or generated. The vast

majority of the considered devices are based on a cantilever beam with

tip mass whose properties are tuned accordingly so that the device

resonance frequency matches the operating frequency. The electrical

energy is generated by one or more piezoelectric patches bonded to

a cantilever substrate. Through their electrodes, the piezoelectric

patches can convert part of their strain energy into useful electrical

energy. This induced electric current should be directed to a proper

electric circuit responsible for signal rectification and energy storage

(Ottman et al., 2002; Guyomar et al., 2005; Guan and Liao, 2007).

The performance of these resonant devices for energy harvesting

is greatly dependent on the adequate tuning between resonant and

operation frequencies. Any mismatch due to variability of the device

properties or operation frequency may lead to large performance

losses (Adhikari, Friswell and Inman, 2009). Therefore, the
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device’s resonant frequency should be very well estimated or known.

Consequently, the predictive model considered to design the device

may be extremely important. Although the majority of the studies

found in the literature use one degree of freedom models to represent

the cantilever beam with tip mass, this simplification may lead to

an incorrect prediction of the resonance frequency of the device

and, therefore, to an inadequate frequency tuning (Erturk and Inman,

2008).

Moreover, few studies have attempted to analyze the effect of

parametric uncertainties on the energy harvesting performance. Ali,

Friswell and Adhikari (2010) studied the effect of uncertainties of an

energy harvesting device resonance frequency and damping factor on

its performance. On the other hand, uncertainties of electric shunt

circuits on piezoelectric shunt damping for passive and active-passive

structural vibration control have been studied recently (Andreaus and

Porfiri, 2007; Santos and Trindade, 2011).

Therefore, the main objective of this study is to perform an

analyzis of the effect of parametric uncertainties of the piezoelectric

device on the harvested energy. A cantilever plate with bonded

piezoelectric patches and a tip-mass serves as the energy harvesting

device. Piezoelectric and dielectric constants of the piezoelectric

active layers and electric circuit equivalent inductance are considered

as stochastic parameters. Mean and confidence intervals of the

harvested energy output are evaluated. In addition, an assessment of

energy harvesting performance quantification metrics was performed

and an alternative analysis using the electric current per unit velocity

is proposed.

Problem Description

A piezoelectric energy harvesting device can be designed using a

cantilever plate partially covered with piezoelectric layers or patches

and a tip mass to adjust the resonance frequency of the device.

This was done here using an aluminium plate with dimensions

60 x 25 x 1 mm3 on the surfaces of which two PZT-5A piezoceramic
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patches with dimensions 55 x 25 x 0.25 mm3 are bonded, as shown in

Fig. 1. The aluminium plate is clamped at one of its smaller sides to

a moving base and a seismic mass is attached to the opposite side.

The base is free to move in the transversal direction to represent

the base excitation of the device. The material properties are: i)

Aluminum – Young’s modulus 70 GPa, Poisson’s ratio 0.33, mass

density 2700 kg/m3; and ii) PZT-5A – c̄D
11 = cD

22 = 96.39 GPa, c̄D
12 =

51.22 GPa, c̄D
44 = c̄D

55 = 39.63 GPa, c̄D
66 = 22.57 GPa, h̄31 = h̄32 =

−1.677 109 N C−1, β̄ε
33 = 104.5 106 m F−1, ρpzt = 7750 kg m−3.

The energy harvesting electric circuit is represented here by a simple

electric load with resistance Rc. The energy dissipated in the electric

resistance can be thought then as an upper limit to the potentially

harvested energy. In addition, an electric inductance Lc may be

connected in series to the harvesting circuit. If properly adjusted, the

inductance may induce a resonant behavior in the circuit, increasing

the electric current and, thus, the harvested energy.
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Figure 1. Cantilever plate with two PZT transducers patches connected to
an electric circuit for energy harvesting.

To maximize the energy harvesting performance, it is normally

desirable to maximize the strains in the piezoelectric materials such

that more vibratory energy is available to be converted to electric

energy by the piezoelectric material. This can be done by maximizing

the vibration amplitude of the cantilever plate for a given excitation

which, in turn, suggests to match the operating (excitation) frequency

with the device natural frequency. In this work, the operating

frequency is assumed to be 100 Hz. A first estimate for the tip mass

M was set to 90 g so that the resonance frequency of the device in

open-circuit approaches 100 Hz.

In order to obtain a more practical device design, the tip mass was

modeled such that its volume would be minimal and well distributed.

Hence, tungsten was chosen due to its high mass density and the tip

mass is considered to be a prismatic bar along the plate width with

square cross-section, as shown in Fig. 1. It is worthwhile to notice

that the tip mass moment of inertia is also accounted for in the model.

The simulations performed in this work used a finite element

model for laminated plates with piezoelectric layers connected to

electric circuits described in Godoy and Trindade (2011). The

model is based on an Equivalent Single Layer (ESL) formulation

combined with First-order Shear Deformation Theory for which the

layers may have independent electric degrees of freedom. Each

piezoelectric layer may be connected to an independent electric circuit

with resistance, inductance. The connection of circuits and patches

considers that the electrodes entirely cover the patches surfaces

resulting in an equipotential surface so that the electric charges

induced on the piezoelectric layers’ electrodes are transferred to the

electric circuit. The equipotential surface may also be composed of

several patches. Considering the equivalence between electric charges

in the patches and in the circuits to which they are connected, the

following coupled equations of motion can be written (Godoy and

Trindade, 2011):

[
M 0

0 Lc

]{
ü

q̈c

}
+

[
C 0

0 Rc

]{
u̇

q̇c

}
+

[
Km −Kme

−Kme
t Ke

]{
u

qc

}
=

{
Fm

0

}
, (1)

where Km, Kme and Ke are the mechanical, piezoelectric and

dielectric stiffness matrices, respectively. M and C are the mass and

damping matrices and Fm is a vector of mechanical forces. Lc and Rc

are diagonal matrices with the values of inductance and resistance of

the shunt circuits.

The seismic mass was implemented in the model considering

translational and rotational inertias at the free end of the cantilever

plate and it was properly distributed in the corresponding finite

element nodes. A transversal force located at the moving base

(clamped end of the plate) was considered as excitation input. The

transversal velocity at the same point is used as the measured

mechanical output.

Mechanical and Electrical Frequency Responses

Evaluation

In order to evaluate the mechanical and electrical frequency

response functions of the structure with piezoelectric patches

connected to a single electric shunt circuit, a harmonic mechanical

excitation is considered, such that Fm = b f and f (t) = f̃ ejωt , where b

is the vector of distribution of mechanical forces into the mechanical

nodal degrees of freedom. Then, a point transversal velocity at the

device base, v(t) = ṽejωt , is considered as the mechanical output

and the electric current induced in the circuit, I(t) = Ĩejωt , is

considered as the electrical output. Thus, it is possible to define the

frequency response functions from ṽ = GvF (ω) f̃ (velocity output)

and Ĩ = GIF (ω) f̃ (electric current output). A modal decomposition

is considered for the nodal displacements such that u =φα, where

φ is the mass-normalized modal matrix and α are the corresponding

modal displacements. Hence, the modal displacements and circuit

electric charges are written, respectively, as α = α̃ejωt and qc =
q̃cejωt . Considering the assumptions above, the equations of motion

(1) are rewritten as

(−ω2I+ j2ωΛΩ +Ω 2)α̃−Kpq̃c = bφ f̃ , (2)

(−ω2Lc + jωRc +Ke)q̃c −Kt
pα̃ = 0, (3)

where Kp = φt Kme and bφ = φt b. Ω is a diagonal matrix of

squared eigenfrequencies for the structure with piezoelectric patches

in open-circuit. Λ is a diagonal matrix of modal damping factors,

thus it is supposed that the damping matrix C is diagonalized by the

undamped vibrations modes.

Solving (3) for q̃c and substituting into (2), it is possible to write

α̃ in terms of the excitation amplitude f̃ . Then, the electric charge

output due to the mechanical excitation can be solved substituting the

obtained value of α̃ in (3).

The base (clamp) transversal velocity is written as v = cvu̇, where

cv is a row vector that defines the nodal degree of freedom that is
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measured. Thus, for the harmonic excitation ṽ = jωcφα̃ with cφ =
cvφ. Hence, the frequency response function of the velocity output

due to a mechanical excitation is defined as GvF = ṽ/ f̃ , such that

GvF (ω) = jω(−ω2Lc + jωRc +Ke)cφ
[
(−ω2Lc + jωRc +Ke)×

(−ω2I+ j2ΛΩω+Ω 2)−KpKt
p

]−1
bφ. (4)

Notice that a resonant (RL) electric circuit may introduce an

additional resonance frequency to the original structural resonance

frequencies. These are coupled by the symmetric (but full) matrix

KpKt
p which relates to the effective modal piezoelectric coupling.

The resonant electric circuit may also introduce an anti-resonance at

the circuit resonance frequency.

The electric current output is obtained using I = q̇c so that Ĩ =
jωq̃c and the frequency response function GIF = Ĩ/ f̃ is written as

GIF (ω) = jωKt
p

[
(−ω2Lc + jωRc +Ke)×

(−ω2 + j2ΛΩω+Ω 2)−KpKt
p

]−1
bφ. (5)

By comparing equations (4) and (5), it is noticeable that, unlike

the velocity frequency response GvF , the electric current frequency

response GIF does not present the anti-resonance at the circuit

resonance frequency.

It is also worthwhile to analyze the average harvesting

performance over a given frequency-range. This was done here using

the average of the amplitude of the electric current frequency response

GIF , defined as

|ḠIF |=
∫ ωt+∆ω/2

ωt−∆ω/2
|GIF |dω, (6)

where ωt is the target harvesting frequency and ∆ω is the frequency-

range considered.

An alternative analysis of energy harvesting performance could

be performed using the induced electric current per unit velocity at

the point of force application. It is suggested here that this measure

better represents the conversion of motion into electric current and,

thus, could be a better measure of efficiency in energy harvesting.

This can be defined as

GIv(ω) = GIF (ω)/GvF (ω), (7)

and thus may be evaluated by dividing equation (5) by equation (4).

To simplify the expressions above, consider the energy harvesting

performance over a narrow frequency-range ∆ω around the operating

frequency ωt to which the fundamental resonance frequency ωn of

the harvesting device was tuned. In this case, it is assumed that

the structural response could be adequately represented by the first

(fundamental) vibration mode. Thus, the nodal displacements are

approximated as u ≈φnαn so that the frequency response function

of base velocity per unit applied force GvF can be rewritten as

GvF (ω)= jωcnbn(−ω2Lc+jωRc+Ke)
[
(−ω2Lc+jωRc+Ke)×

(−ω2 + j2ζnωnω+ω2
n)−K2

p

]−1
, (8)

where cn = cvφn and bn = φt
nb are the modal projections of the

output and input distribution vectors, ζn is the structural modal

damping factor for the fundamental vibration mode, and Kp =φt
nKme

represents the effective modal piezoelectric coupling coefficient.

Notice that all parameters in (8) are scalars.

Similarly, the frequency response functions of circuit current

output GIF and GIv read

GIF (ω) = jωKpbn

[
(−ω2Lc + jωRc +Ke)×

(−ω2 + j2ζnωnω+ω2
n)−K2

p

]−1
, (9)

GIv(ω) = Kpc−1
n (−ω2Lc + jωRc +Ke)

−1. (10)

Electric Circuit Components Design

Two electric circuits were considered in this work. In both cases,

the harvesting circuit (rectification and storage) is represented by

constant electric impedance (resistance) supposing that the energy

extracted (dissipated) from the plate by a resistive load could

alternatively be stored in a real harvesting circuit. In the first case,

only the equivalent resistive load is connected to the piezoelectric

patches.

In the second case, an inductance is connected in series with

the resistive load. The inductance provides an electrical resonance

frequency to the circuit that may be tuned to the target operating

frequency so that the circuit absorbs the energy from the structure

when it vibrates with frequencies close to the target one.

In both cases, there may be optimal electric circuit parameters

that maximize the amount of energy extracted from the structure.

Although the values for the resistance, which represents the

harvesting circuit, may be constrained by the harvesting circuit

design, it is considered here that an optimal value for the resistance

could be evaluated and then used as one of the design criteria for the

harvesting circuit.

It was shown in previous studies on resistive shunted damping

that a resistive circuit connected to a piezoelectric patch, bonded to

a vibrating structure, acts like a viscoelastic material providing an

effective loss factor that depends on the excitation frequency. The

effective loss factor provided to the structure is maximized for the

following resistance value (Trindade and Maio, 2008):

Rc =
Ke

√
1−K2

n

ωn
, with K2

n =
K2

p

Keω2
n

, (11)

where Ke is the effective dielectric stiffness of the patches (inverse

of their capacitance), ωn is the fundamental resonance frequency,

for the first bending vibration mode of the device with patches in

open-circuit, and Kp is the modal piezoelectric coupling coefficient,

projection of the electromechanical stiffness matrix onto the first

bending vibration mode. K2
n is the effective squared modal

electromechanical coupling coefficient which represents the ratio of

energy converted by the piezoelectric material.

Substituting (11) into the frequency response expressions

(8), (9) and (10) and after some algebraic manipulations and

adimensionalization, these are rewritten as

GvF (ω) = jωω−2
n cnbn(1+ jδ

√
1−K2

n )×
[
(1+ jδ

√
1−K2

n )(1−δ2 + j2ζnδ)−K2
n )
]−1

, (12)

GIF (ω) = jωK−1
p bnK2

n×
[
(1+ jδ

√
1−K2

n )(1−δ2 + j2ζnδ)−K2
n

]−1
, (13)
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GIv(ω) = KpK−1
e c−1

n (1+ jδ

√
1−K2

n )
−1, (14)

where the dimensionless frequency is defined as δ =ω/ωn.

In the case of resistive-inductive (resonant) circuit, techniques

from the design of dynamic vibration absorbers can be used to design

the circuit components in order to minimize the vibration amplitude

of the structure. An optimum design would then indicate that an

adequate amount of energy is being absorbed by the circuit and

then dissipated (or harvested). There are a number of different

techniques to design a dynamic vibration absorber but, in general

terms, it is desired to design the circuit inertia (inductance) so that

the circuit resonance frequency matches the operating frequency (or

structural resonance frequency). Then, the resistance can be designed

to provide the appropriate damping factor for the coupled resonances.

The resistance and inductance that maximize the vibration amplitude

reduction may be obtained using the formula (Godoy and Trindade,

2011)

Lc =
Ke

ω2
n

, Rc =

√
2KnKe

ωn
. (15)

An alternative formulation for the design of shunt circuits can be

found in Thomas, Deü and Ducarne (2009). Substituting Eq. (15)

in Eqs. (8), (9) and (10) and with some algebraic manipulations, the

frequency response functions are rewritten as

GvF (ω) = jωω−2
n cnbn(1−δ2 + jδ

√
2Kn)×

[
(1−δ2 + jδ

√
2Kn)(1−δ2 + j2ζnδ)−K2

n

]−1
, (16)

GIF (ω) = jωbnK−1
p K2

n×
[
(1−δ2 + jδ

√
2Kn)(1−δ2 + j2ζnδ)−K2

n

]−1
, (17)

GIv(ω) = KpK−1
e c−1

n (1−δ2 + jδ
√

2Kn)
−1. (18)

Notice that for δ = 1, that is when the excitation frequency

matches the natural frequency of the device, the frequency responses

GvF and GIF are controlled by the structural damping ζn and

the effective electromechanical coupling coefficient Kn, while the

frequency response GIv is controlled only by Kn.

Energy Harvesting Performance Nominal Results

The performance of the energy harvesting device, shown in Fig. 1,

was evaluated using the electric current frequency responses (5), (6)

and (7) when subjected to a transversal force applied at the base

(clamp). The two electric circuits, one purely resistive (R) and one

resistive-inductive (RL), are considered and compared. Since the

connection of the piezoelectric patches to the electric circuit (either

R or RL) modifies the electric boundary condition (from the original

open circuit condition), it is possible that the original tip mass does not

guarantee a perfect tuning between operating and device resonance

frequencies. The frequency response functions were evaluated using

a reduced model obtained through projection onto a truncated modal

basis composed of the first ten vibration modes.

Therefore, the value of the seismic mass was adjusted so that

the resonance frequency, in the case of the resistive circuit, or the

anti-resonance frequency, in the case of the resonant circuit, matches

the target operating frequency (ωt = 100 Hz). For this purpose, the

value of the seismic mass was empirically adjusted to each electric

boundary conditions leading to 88.5 g and 91 g for the R and RL

circuits, respectively. For comparison purposes, the mass of the

aluminum plate with the two piezoelectric patches is 9.4 g.

The electric circuit parameters were evaluated using (11) and (15)

and then fine tuned manually, in the case of the resonant circuit.

The optimal resistance for the resistive circuit was found to be Rc =
13.3 KΩ. For the resonant circuit, the resistance was found to be

Rc = 8.4 KΩ and the inductance Lc = 21.5 H. Notice that this value

of inductance is only attainable by using a synthetic inductance.
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Figure 2. Nominal values for GIF (ω) (a), ḠIF (∆ω) (b) and GIv(ω) (c) for
resistive (R) and resonant (RL) circuits.

Figure 2a shows the nominal frequency response of the device,

when excited by the transversal force, observed by the electric current

induced in the circuit. It may be noted that at the peak frequency

(100 Hz), the value obtained for the electric current per unit applied

force is larger for the resistive circuit and, thus, does not justify the

inclusion of the inductance. However, it may also be observed that the

resonant circuit leads to a flatter performance level around the target

frequency and, thus, may lead to a wider effective frequency range.

Indeed, as shown in Fig. 2b, the average electric current induced in

the circuit over a frequency range centered at the target frequency ωt

decreases rapidly for the resistive circuit, whereas it is almost constant

up to a 30 Hz wide frequency range for the resonant circuit. Thus, the
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average performance of the RL circuit is larger than the one of the R

circuit for frequency ranges wider than 20 Hz. Therefore, this result

indicates that in case of a variable or ill-known operating frequency or

a mismatch between resonant and operating frequencies, the resonant

circuit could yield a more robust performance.

It is well-known that a resonant circuit is generally more effective

for reducing the structural vibration amplitude. Thus, it is reasonable

to believe that, for a given applied transversal force, the input power

is different for resistive and resonant circuits. Thus, an alternative

analysis is performed for which the electric current induced in the

circuit is evaluated per unit base velocity. It is suggested here that

this could better represent the harvesting device effectiveness in terms

of conversion of motion into electric current. Thus, Fig. 2c shows

the amplitude of the frequency response of electric current per unit

velocity GIv, according to Eq. (7). Note that, in this case, the resonant

circuit is always more effective than the resistive one.

Given that the harvesting performance is very much dependent on

a proper adjustment of the device geometric and material properties

and circuit components, it is also worthwhile to analyze the effect

of parametric uncertainties on the performance of harvesting devices

using resistive and resonant circuits. Here, it is considered that the

design of geometric properties should be sufficiently precise, whereas

the piezoelectric material properties are generally not well-known

and could be much less precise. In terms of circuit parameters, the

inductance was found to have a much more important effect on the

harvesting performance.

Stochastic Modeling for Uncertainty Quantification

This section presents an approach for analyzing uncertainties

of piezoelectric material properties h31 and βε
33 and electric circuit

inductance Lc. An appropriate probabilistic model for each random

variable, denoted as X , is constructed accounting for the available

information only, which is the following: (1) the support of the

probability density function is ]0,+∞[; (2) the mean values are such

that E[X ] = X̄ ; and (3) zero is a repulsive value for the positive-valued

random variables, which is accounted for by the condition E[ln(X)] =
cX with |cX |<+∞. The Maximum Entropy Principle yields a Gamma

probability density function for each stochastic variable X (Jaynes,

1957; Kapur, 1993; Soize, 2001; Ritto et al., 2010)

pX (X) = I]0,+∞[

(
1

δ2
X X̄

)δ−2
X Xδ−2

X −1

Γ(δ−2
X )

exp

(
− X

δ2
X X̄

)
, (19)

in which δX = σX/X̄ is the relative dispersion of stochastic variable

X and σX is its standard deviation (X ∈ {ĥ31,β̂
ε
33, L̂c}). The Gamma

function is defined as Γ(α) =
∫ ∞

0 tα−1e−tdt.

Random realizations of the stochastic variables,

{ĥ31(θi), β̂ε
33(θi), L̂c(θi)}, were then generated using MATLAB

function gamrnd. Then, four analyses were performed. First,

the effect of uncertainties on each individual stochastic variable

was evaluated. Thus, for each realization of a given stochastic

variable, the frequency response functions ĜIF (ω) and ĜIv(ω)

were evaluated. The average of the amplitude of ĜIF for different

frequency ranges, ̂̄GIF (∆ω), was also evaluated. This allows to

analyze the individual effect of each stochastic variable. Then, the

combined effect of all stochastic variables was evaluated. This was

done by combining the vectors of realizations for each stochastic

variable into a set {ĥ31(θi), β̂ε
33(θi), L̂c(θi)} for which the same

responses are evaluated (ĜIF (θi,ω), ĜIv(θi,ω), ̂̄GIF (θi,∆ω)).
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Figure 3. Mean square convergence for R (solid) and RL (dashed) circuits

using as stochastic variables: (a) dielectric constant β̂ε
33, (b) piezoelectric

constant ĥ31, (c) electric inductance L̂c and (d) all three simultaneously.

For all three stochastic variables, a relative dispersion δX of 10%

was considered. The mean-square convergence analysis with respect

to the independent realizations of random variable ĜIF (ω), denoted

by ĜIF (θ j,ω) was carried out considering the function

conv(ns) =
1

ns

ns

∑
j=1

∫
‖|ĜIF (θ j,ω)|− |GN

IF (ω)|‖2 dω, (20)

where ns is the number of simulations and GN
IF (ω) is the response

calculated using the corresponding nominal model. Figure 3 shows

the mean-square convergence analysis for the four cases considered.

It is possible to observe that, for all cases, 1500 simulations seem to

be enough to assure convergence.

The statistical analyses of the FRF amplitude outputs, ĜIF (ω),

ĜIv(ω), ̂̄GIF (∆ω), were performed using their 3000 realizations

to calculate the corresponding mean values and 95% confidence

intervals. The 95% confidence intervals were evaluated using the

2.5% and 97.5% percentiles of the realizations of ĜIF (θi,ω) and

ĜIv(θi,ω) frequency response amplitudes at each frequency and of
̂̄GIF (θi,∆ω) for each frequency-range ∆ω considered.

Uncertainty Quantification Results

This section presents the uncertainty quantification results for

each one of the four cases considered. For that, the mean values and

confidence intervals for ĜIF (ω), ̂̄GIF (∆ω) and ĜIv(ω) are analyzed.

The main purpose of such analyses are to evaluate the effect of

parametric uncertainties on the energy harvesting performance of

standard (resistive or R) and resonant (RL) circuits.

First, the effect of dielectric constant βε
33 is analyzed. The

main motivation for such analysis is that, in general, only free βσ
33

or blocked βε
33 dielectric constants are provided by manufacturers

and thus considered in modeling piezoelectric structures. However,

for piezoelectric patches bonded to or embedded in host structures,

neither constant represents the actual mechanical boundary conditions

of the piezoelectric patch. Thus, the effective dielectric constant is

generally unknown and must be approximated by measurement of

bonded patch static capacitance. The dielectric constant may have

three major effects on the energy harvesting performance. First, it

affects the amount of charge induced in the patches electrodes for
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Figure 4. Mean values (solid) and confidence intervals (filled) for ĜIF (ω) (a),
̂̄GIF (∆ω) (b) and ĜIv(ω) (c) for resistive (R) and resonant (RL) circuits and

uncertain dielectric constant β̂ε
33.

a given patch deformation. Second, it affects the effective structural

stiffness and, thus, resonance frequencies. Third, for a resonant circuit

(RL), it affects the circuit resonance frequency and, thus, the proper

tuning between circuit resonance frequency and target harvesting

frequency.

Figure 4 shows the mean values and 95% confidence intervals for

ĜIF (ω), ̂̄GIF (∆ω) and ĜIv(ω) for resistive (R) and resonant (RL)

circuits. It can be noticed that, as expected, the performance of the

resistive circuit is much less dependent on the dielectric constant

and, thus, its corresponding confidence intervals are narrower. In a

worst case scenario, the dielectric constant may reduce the energy

harvesting performance of a resonant circuit by detuning the device

(Fig. 4a). However, the efficiency of the resonant circuit is always

superior to the resistive one (Fig. 4c), although more dependent on

the dielectric constant and, thus, less robust. On the other hand,

the average performance over a frequency-range is less sensitive to

the dielectric constant and for all frequency-ranges considered, the

resonant circuit seems to be more interesting since it widens the

effective harvesting frequency-range of the device (Fig. 4b).
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Figure 5. Mean values (solid) and confidence intervals (filled) for ĜIF (ω) (a),
̂̄GIF (∆ω) (b) and ĜIv(ω) (c) for resistive (R) and resonant (RL) circuits and

uncertain piezoelectric constant ĥ31.

In a second analysis, the effect of uncertainties of piezoelectric

constant h31 on the energy harvesting performance is analyzed. It is

expected that, for both resistive and resonant circuits, the higher the

piezoelectric constant the better, since this constant affects directly

the amount of mechanical energy converted into electrical energy

and, thus, potentially harvested. Thus, in opposition to the previous

case, the piezoelectric constant does not detune the device, but instead

amplifies (or reduces) the amount of energy potentially harvested.

Figure 5 shows the effect of uncertain piezoelectric constant

ĥ31 on the energy harvesting performance through mean values and

confidence intervals for ĜIF (ω), ̂̄GIF (∆ω) and ĜIv(ω) for resistive

(R) and resonant (RL) circuits. One may notice that the confidence

intervals for the resistive circuit are wider than in the previous case.

In the case of resonant circuit, the harvesting performance confidence

interval is very wide at the target frequency (100 Hz) as shown in

Fig. 5a, although it shrinks significantly over increasing frequency-

ranges (Fig. 5b). As in the previous case, the device efficiency is

always superior for a resonant circuit (Fig. 5c).

For the third analysis, the inductance of the resonant circuit is
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Figure 6. Mean values (solid) and confidence intervals (filled) for ĜIF (ω)

(a), ̂̄GIF (∆ω) (b) and ĜIv(ω) (c) for resonant circuit and uncertain circuit

inductance L̂c.

considered as uncertain, consequently only the resonant circuit device

is analyzed. This analysis is motivated by the fact that, in practice,

synthetic inductance circuits should be used to attain the very high

inductance values required. These circuits are composed of a number

of electronic components which are subjected to uncertainties and/or

variabilities. Figure 6 shows the mean values and 95% confidence

intervals for ĜIF (ω), ̂̄GIF (∆ω) and ĜIv(ω). As expected, the main

effect of circuit inductance uncertainties is to detune the device,

although dispersion of ĜIF is almost negligible for a frequency

near the target one (around 101 Hz), as shown in Fig. 6a. This

frequency could be designed to match the target one in order to

obtain a harvesting performance robust to uncertainties of the circuit

inductance. On the other hand, the detuning does not significantly

affects the average harvesting performance (Fig. 6b).

Finally, an analysis of the effect of simultaneous uncertainties of

the previous three parameters on the energy harvesting performance

is performed. In this case, the realizations of dielectric constant β̂ε
33,

piezoelectric constant ĥ31 and circuit inductance L̂c were combined

to evaluate the mean values and 95% confidence intervals of ĜIF (ω),
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Figure 7. Mean values (solid) and confidence intervals (filled) for ĜIF (ω) (a),
̂̄GIF (∆ω) (b) and ĜIv(ω) (c) for resistive (R) and resonant (RL) circuits and

uncertain parameters β̂ε
33, ĥ31 and L̂c.

̂̄GIF (∆ω) and ĜIv(ω). The results are shown in Fig. 7. As

expected from the previous analyses, the confidence intervals for the

resonant circuit are wider than those for the resistive circuit. The

predicted harvesting performance for resistive and resonant circuits

at the target frequency is the same when measured by ĜIF (Fig. 7a),

however the performance of the resonant circuit device is superior

when considering average performance over a wider frequency-range

(Fig. 7b). In terms of efficiency, the resonant circuit device is also

always superior to the resistive one (Fig. 7c).

Previous results were obtained considering a 10% dispersion

for the stochastic variables. It is worthwhile to notice that neither

the stochastic model (Gamma probability density function) nor its

parameters (mean and dispersion) were validated since no real

measurements were available for the three parameters considered.

While it is quite reasonable to consider the data provided by the

manufacturer (for βε
33 and h31) and design value (for Lc) as nominal

(mean) values, the dispersion of these variables can only be guessed.

Therefore, a parametric analysis of the parameters dispersions was

also performed. For the sake of brevity, only results for the electric

current average over a 10 Hz frequency band are presented. Its mean
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values and confidence intervals for various parameters dispersions

are shown in Fig. 8. Notice that the mean values of the electric

current average do not change substantially for increasing parameters

dispersions. On the other hand, as expected, higher parameters

dispersions yield wider confidence intervals. Comparison of Figs. 8a,

8b and 8c shows that the electric current average confidence intervals

are more sensitive to increases in the dispersion of piezoelectric

material constant h31.
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Figure 8. Confidence interval of the electric current average over a 10 Hz

frequency band for several parameters dispersions. a) β̂ε
33, b) ĥ31 and c) L̂c.

Conclusions

The effect of parametric uncertainties on the performance of a

piezoelectric energy harvesting device was analyzed. A cantilever

plate with bonded piezoelectric patches and a tip-mass serves as

the energy harvesting device. Piezoelectric and dielectric constants

of active layers and inductance of electric circuit were considered

as stochastic parameters. Mean and confidence intervals of the

electric output were evaluated. Results have shown that, for

10% dispersion on the three parameters considered, the predicted

harvesting performance for resistive circuits at the target frequency

is more important than the one for resonant circuits, when measured

by GIF ; however, the performance of the resonant circuit device

is superior when considering average performance over a wider

frequency-range ḠIF . In terms of efficiency, measured by electric

current induced in the circuit per unit base velocity GIv, the resonant

circuit device is always superior to the resistive one. All parameters

considered as stochastic are relevant to the harvesting performance

confidence intervals. For the resonant circuit, the dielectric material

constant and electric circuit inductance affect mainly the proper

tuning between resonance and operating frequency, while the

piezoelectric material constant leads only to amplification/reduction

of the harvesting performance.
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