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Abstract Experiments indicate that particle clusters that form in fluidized–bed
risers can enhance gas-phase velocity fluctuations. Direct numerical simulations
(DNS) of turbulent flow past uniform and clustered configurations of fixed particle
assemblies at the same solid volume fraction are performed to gain insight into
particle clustering effects on gas-phase turbulence, and to guide model development.
The DNS approach is based on a discrete-time, direct-forcing immersed boundary
method (IBM) that imposes no-slip and no-penetration boundary conditions on each
particle’s surface. Results are reported for mean flow Reynolds number Rep = 50

and the ratio of the particle diameter dp to Kolmogorov scale is 5.5. The DNS confirm
experimental observations that the clustered configurations enhance the level of
fluid-phase turbulent kinetic energy (TKE) more than the uniform configurations,
and this increase is found to arise from a lower dissipation rate in the clustered
particle configuration. The simulations also reveal that the particle-fluid interaction
results in significantly anisotropic fluid-phase turbulence, the source of which is
traced to the anisotropic nature of the interphase TKE transfer and dissipation
tensors. This study indicates that when particles are larger than the Kolmogorov
scale (dp > η), modeling the fluid-phase TKE alone may not be adequate to capture
the underlying physics in multiphase turbulence because the Reynolds stress is
anisotropic. It also shows that multiphase turbulence models should consider the
effect of particle clustering in the dissipation model.
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1 Introduction

Flows involving a carrier gas or liquid laden with solid particles are ubiquitous in
industry. Gas-solid flows are important in conventional industrial processes such as
fluidized–bed combustion, fluid catalytic cracking (FCC) and coal gasification. There
is also renewed interest in studying these flows in the context of biomass energy
generation [14, 34], and other emerging technologies such as chemical looping com-
bustion for environmentally–friendly energy generation. One of the challenges in
the development of these technologies is the design and scale-up of the components
involving particle–laden flow. Fluidized beds and pneumatic transport lines where
particle–laden flows are usually encountered are notoriously hard to design and scale
up [29].

Device-scale calculations using computational fluid dynamics (CFD) of the aver-
aged equations of multiphase flow are a promising route to inexpensive design and
scale-up of industrial process equipment involving multiphase flows. It is expected
that CFD will play an ever-increasing role in the design and scale-up of process
equipment involving particle–laden flows [21]. CFD of multiphase flow involves
solving the averaged equations in each phase [13, 26], which contain unclosed terms.
The closure of these equations requires modeling of average stresses and second
moments of the fluctuating velocity in both phases.

The focus of this work is on fluctuations in the fluid–phase velocity and their in-
teraction with particle clusters. It is important to note that fluid velocity fluctuations
in particle–laden flow also arise from the disturbance flow caused by the presence
of particles and their evolving configuration, in addition to turbulent motions in the
fluid phase. Therefore, even “laminar” particle–laden flows exhibit non–zero fluid
velocity fluctuations. Current averaging procedures and most closure models do not
distinguish between these two different physical mechanisms that give rise to fluid–
phase velocity fluctuations, since both mechanisms essentially manifest themselves
as a non–zero second moment of fluid velocity. The effects of particles on fluid phase
turbulence have been studied experimentally (see e.g., [59]). Also CFD calculations
of particle–laden flow [8] indicate that the model for interaction of gas–phase turbu-
lence with particles affects the predicted mean velocity profiles. Although the second
moment of fluid velocity is sometimes neglected in gas-solid flow on the grounds
that the particle phase represents the major portion of the mixture momentum
and energy, it is important to retain and model this term. Even though the second
moment of fluid velocity may be small in comparison to the mixture energy, one
cannot neglect the subgrid fluid motions in CFD calculations of gas-solid flow. The
gas phase turbulence model effectively contributes an essential additional “eddy”
viscosity to the viscous term in the mean fluid momentum equation. These gas–phase
fluctuations also contribute to the generation of particle velocity fluctuations, that in
turn influence mean flow structure in risers. Furthermore, the interaction of fluid–
phase velocity fluctuations with particles, or clusters of particles, can enhance their
magnitude.

Clustering of particles occurs in gas-solids suspensions in a volume fraction range
from a few percent to about 30%. Particle clusters are observed as an inhomogeneous
solid volume fraction profile in the radial direction inside the circulating fluidized
bed, where a dilute gas-solid suspension preferentially moves upward in the core and
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a dense annulus of particle clusters, or strands, moves downward along the wall [10].
Recently, particle clusters have been directly visualized using a borescope and a
high-speed camera [12]. Thus, a variety of experiments using different techniques
conclusively reveal that particles do form clusters in particle-laden suspension flow
[7, 30, 71].

Clusters of particles with characteristic size on the order of 10dp–100dp [20]
are found to significantly affect the overall flow behavior. It is worth noting that
clusters of high–inertia particles (Stokes number O(100)) formed in fluidized beds
and risers are different from the clustering of lower inertia particles (Stokes number
O(1 − 10)) in turbulent flow [52]. While current CFD simulations of gas-solid flow
are capable of reproducing the core-annulus flow in risers [9, 47, 48], there is still
considerable uncertainty regarding models for gas-particle interaction. Phenomeno-
logical models of cluster drag have been proposed to explicitly account for the
formation of clusters [22, 30, 41, 67], but these may not be predictive for general
flows because they lack information about the microscale flow physics. Also to the
best of our knowledge, the interaction between fluid-phase velocity fluctuations
and particle clusters has not been modeled. This work aims to provide this much–
needed insight into the microscale flow physics through particle–resolved direct
numerical simulations (DNS) of turbulent flow past assemblies consisting of several
particles.

Experiments by Moran and Glicksman [38] report gas–phase velocity fluctuations
measured inside a circulating fluidized bed (CFB) at dilute particle concentrations
(∼1–5%). The measurements indicate that at larger particle concentrations where
clusters usually form, the gas–phase velocity fluctuations increase dramatically.
Moran and Glicksman [38] suggest that a length scale based on the particle cluster
size, as opposed to the particle size, should be used to estimate the increased
levels of gas–phase velocity fluctuations caused by the particle phase. It is worth
noting that they interpret their experimental results using a criterion suggested by
Gore and Crowe [19] to arrive at this inference. One of the principal findings of
the Gore and Crowe [19] study is that fluid–phase turbulence intensity increases
dramatically if dp/ le > 0.1, where dp is the size of particle and le is characteristic
length scale of the most energetic eddy in the flow. For dp/ le below this critical
value 0.1, the presence of particles does not increase turbulence intensity. The ratio
dp/ le = 0.01 in Glicksman’s experiments is an order of magnitude below the cutoff
value 0.1 suggested by Gore and Crowe [19] for turbulence enhancement due to
particles. Therefore, the Gore and Crowe criterion indicates that the addition of
small particles (164μm) would lead to a decrease in turbulence intensity in the
Glicksman experiments. However, the experimental data show 158% increase of
turbulence intensity inside the CFB. Moran and Glicksman attribute this discrepancy
to the continuous formation and breakage of particle clusters in CFB. A plausible
explanation advanced by Moran and Glicksman to describe the apparent increase
in gas phase fluctuations is that the dominant structures are particle clusters, with
the dominant particle length scale being the cluster size dc, instead of the particle
diameter dp. If the length scale of the particle cluster dc is chosen as the particle
phase length scale in Gore and Crowe’s criterion, then dc/ le = 1.25, which is an
order of magnitude greater than the cutoff value of 0.1. Now applying the Gore and
Crowe’s criterion with dc instead of dp, Moran and Glicksman show that the fluid
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phase TKE increases with the addition of particles as observed in their experiments.
The difficulties in performing measurements in gas-solid flow pose a considerable
challenge to obtaining direct evidence of this effect from such experiments.

The experimental findings of Moran and Glicksman [37, 38] suggest that turbu-
lence models for gas-solid flows should incorporate a dependence on particle cluster
size, but it is difficult to extract data from these experiments for modeling purposes.
DNS offers an alternative means of investigating the effect of particle clustering in
turbulent gas-solid flows. In principle, DNS can be used to directly quantify unclosed
terms in Eulerian–Eulerian (EE) models [1, 2, 6, 54]. Using DNS to study the effects
of particle clusters on the unclosed terms in EE models can provide valuable insight
into fluid-phase TKE modulation by particle clusters.

DNS of particle–laden flow can be classified as those that resolve the flow around
each particle, or “particle–resolved” DNS, and those that do not. The point-particle
approximation is usually invoked in DNS that do not resolve the flow around each
particle. This approximation is based on the assumption that the particle size is
smaller than the Kolmogorov length scale of fluid-phase turbulence. If the particle
size is comparable to (or larger than) the Kolmogorov scale, then particle–resolved
DNS is the appropriate simulation approach. In Glicksman’s experiment [38], they
estimate the Kolmogorov scale η to be approximately 146μm. Since the particle
diameter dp =164μm, a particle–resolved DNS approach is necessary because dp >η.

Recently a variety of numerical approaches have been developed for particle–
resolved direct numerical simulation. These can be broadly classified as those that
rely on a body–fitted mesh to impose boundary conditions at particle surfaces, and
those that employ regular Cartesian grids. The body-fitted methods include the
arbitrary Lagrangian Eulerian (ALE) approach [25, 40] as well as the method used
by Bagchi and Balachandar [4, 5]. Also Burton and Eaton [11] used the overset grid
technique to study the interaction between a fixed particle and decaying homoge-
neous isotropic turbulence. The principal disadvantage with approaches based on
body-fitted meshes is that repeated re-meshing and solution projection are required
for moving interfaces. Even for fixed particle simulations the cost of meshing a single
configuration can be significant, and for random assemblies it is necessary to simulate
many such configurations to account for statistical variability.

For methods that employ regular Cartesian grids this need for re-meshing and
projection is eliminated, resulting in much faster solution times for moving particle
simulations and multiple random spatial configurations of fixed particle assemblies.
However, because the grid does not conform to the particle surface, special attention
is needed to generate an accurate solution. Prosperetti has developed a method
called PHYSALIS that uses a general analytic solution of the Stokes equation in
the flow domain close to particle boundaries to impose the no-slip velocity boundary
condition on the particle surface [50, 56, 69, 70]. This method is numerically efficient
and is shown to be accurate for flow over a single particle up to a Reynolds number of
100. One limitation of PHYSALIS is the need for an exact analytical solution of the
Stokes equation, which only exists for a few body shapes. Also detailed comparison
for multiparticle simulations is needed to validate the underlying assumptions for
more general problems. Other methods based on regular Cartesian grids include the
fictitious domain method, the Lattice Boltzmann method (LBM), and the immersed
boundary method (IBM). The fictitious–domain method with Lagrange multipliers
has been developed to solve flow past many moving particles by several research
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groups [3, 16, 17, 44, 53]. LBM has been used to simulate flow through a fixed
bed of spheres [23, 24, 62, 64] and for particulate flows [31, 32, 57]. IBM was
proposed by Peskin [45, 46] to simulate flexible boundaries in a flow field. More
recently, several researchers [15, 27, 35, 36, 60, 61] have modified IBM to study the
interaction between flow and rigid particles. LBM simulation of turbulent liquid–
solid suspensions by Ten Cate et al. [57], and IBM simulations by Uhlmann [60, 61]
and Lucci et al. [35] are examples of particle–resolved DNS with multiple moving
particles in turbulence.

Typically spectral methods have been used in DNS of single–phase turbulent flows
because of their high accuracy, and the numerical method used in this work exploits
a partially pseudo-spectral implementation for this reason. Finite–difference and
finite–volume methods require sophisticated high-order schemes in order to simulate
turbulence with numerical accuracy comparable to spectral methods [39, 63]. In
flows where dp/η > 1, the resolution requirement is dictated by the particle diameter
rather than the Kolmogorov scale, and this may be less of an issue.

We use a discrete-time implementation of a direct-forcing immersed boundary
approach on a regular Cartesian grid developed by Mohd. Yusof [36]. The dy-
namically changing resolution requirement is not an issue because we simulate
flow over fairly dilute fixed particle assemblies where the resolution requirement is
determined by the fixed particle configuration and the Reynolds number. The scaling
of computational cost in IBM with number of particles is excellent because of the
implicit imposition of boundary conditions through a forcing term in the Navier–
Stokes equations. For example, going from 2 to 100 particles the computational
cost increases by only 25%. The Fourier–Fourier-finite difference implementation
of IBM [36] that is used in this work to simulate homogeneous particle assemblies
exploits periodic boundary conditions in the cross-stream directions (the flow is
statistically homogeneous in planes perpendicular to the mean flow direction) to
achieve spectral accuracy in the cross-stream directions. The approach also reduces
the Poisson pressure solution to a simple tridiagonal matrix system. Spectral accuracy
in the IBM implementation is a significant advantage when simulating turbulent
flow past particles. Therefore, we choose the IBM approach for simulating turbulent
flow past fixed particle assemblies for the following reasons: (i) excellent scaling
of computational cost with number of particles, (ii) spectral accuracy in cross-
stream directions, and (iii) simplification of pressure solution for the statistically
homogeneous problem to a tridiagonal matrix solution.

The objective of our study is to examine the effects of particle clustering on fluid–
phase turbulence. Although the interaction of a single particle with turbulent flow
has been studied by other researchers [4, 5, 11, 36], there are few particle–resolved
DNS studies of turbulence interacting with several particles [57]. Even in these
studies [57], the nature of how particle clusters affect fluid–phase turbulence is not
addressed. Toward this end we use IBM as a particle–resolved DNS approach to sim-
ulate turbulent flow past a fixed bed of spheres. Fixed particle assemblies have been
used as a reasonable approximation to a freely moving suspension of high Stokes
number particles for extracting computational drag laws from DNS [15, 62, 64, 68].
We use the same approximation here to enable some additional simplifications
specific to the particle clustering problem. By using fixed particle assemblies we can
generate different particle configurations corresponding to clustered and uniform
distributions, and maintain a constant pair correlation function throughout the



740 Flow Turbulence Combust (2010) 85:735–761

simulation.1 In order to isolate the effect of clustering, we generate the uniform and
clustered distributions at the same solid volume fraction. In this way we can quantify
the effect of particle clustering on fluid turbulence with greater confidence than in a
freely–evolving suspension where the level of clustering cannot be controlled. With
stationary spheres we also avoid uncertainties associated with collision modeling and
lubrication forces when spheres come close to each other.

Since the particle velocities change on the particle momentum response time scale,
by defining a characteristic flow time scale as 20 dp/| 〈U〉 | we find that a Stokes
number defined as the ratio of these two time scales characterizes the change of
the velocity state of the particles. This Stokes number can be rewritten as St =
(1/18)(ρp/ρ f )Rep/20, which informs us that for moderate particle Reynolds number
Rep ∼ O(10) and high density ratio of particles to fluid (e.g., for coal particles in
air ρp/ρ f ∼ 1,000) results in relatively large particle Stokes number O(100). This
means that the particle velocity changes little over the time it takes for the flow
turbulence to lose memory of its initial conditions. The other relevant timescale ratio
is the time that the particle configuration takes to change compared to dp/| 〈U〉 |,
and this time scale ratio depends on ReT = dpT1/2/ν, which is the Reynolds number
based on the particle fluctuating velocity that is characterized by the particle granular
temperature T. In our simulations we have ReT = 0. While one expects finite
granular temperature in risers, both direct numerical simulations of freely–evolving
suspensions [58] and recent high–speed imaging of particles [12] show that this value
of ReT is low. Hence, these numerical simulations of turbulence past fixed clusters of
spheres can be considered a reasonable approximation to gas–solid riser flows where
particles have high Stokes number (moderate Rep, high particle/fluid density ratio)
and relatively low levels of particle velocity fluctuations.

A notable difference between the turbulent case considered here and the simula-
tion of steady nonturbulent flow past a homogeneous bed of fixed particles to extract
mean drag laws [15, 62, 64, 68] is that the flow quantities in our setup are statistically
inhomogeneous in the flow direction. In order to understand the modification
of turbulence by particles, an initially homogeneous, isotropic turbulence field is
convected with a specified mean flow velocity over a homogeneous bed of spheres
(see Fig. 1). This is accomplished with inflow/outflow boundary conditions in the flow
direction, whereas in the nonturbulent case it is customary to use periodic boundary
conditions on the statistically homogeneous fluctuation fields. As a consequence,
in this study the flow statistics change along the axial direction as the turbulence
is progressively affected by interaction with the particles starting from its initial
undisturbed state upstream of the bed. In this setup the flow statistics can vary
along the axial flow direction, but the flow is statistically homogeneous in the cross-
flow plane and reaches a statistically stationary state. This allows us to use time-
averaging and spatial averaging over the cross-plane when computing axially varying
flow statistics from the DNS data. An alternative approach would be to extract
time–varying statistics from the decay of homogeneous particle-laden turbulence and

1The pair correlation function is a statistical measure of the level of particle clustering in a
homogeneous system.
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Fig. 1 The computational domain containing a statistically homogeneous assembly of randomly dis-
tributed particles. Periodic boundary conditions are imposed in the cross-stream y and z directions,
and a zero pressure gradient boundary condition is imposed at the convective outflow boundary.
Contours of the fluctuating velocity u′ are shown at the zero pressure gradient inflow plane

compare the clustered and uniform cases, but the low levels of turbulence that can
be simulated using particle–resolved DNS render this option less attractive.

The rest of the paper is organized as follows. In Section 2 the simulation method-
ology including the DNS approach is described, and validation results are presented.
The test problems chosen to characterize the effect of uniform and clustered particle
configurations on turbulent flow, and the DNS results for these cases are described
in Section 3. The implications of the DNS results for multiphase turbulence modeling
are discussed in Section 4, and conclusions are drawn in Section 5.

2 Simulation Methodology

The governing equations of the discrete-time, direct-forcing immersed boundary
method (IBM) are described in Section 2.1 along with the boundary and initial
conditions for turbulent flow past homogeneous fixed particle assemblies. This is
followed by a brief description of the Fourier–Fourier-finite difference numerical
scheme that is used to solve the governing equations. Salient features of the parallel
implementation that is needed to solve the turbulent cases are summarized. Initial-
ization of the particle configurations for the uniformly distributed and clustered cases
is described. The approach used to generate the inflow turbulence field is outlined.
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Numerical resolution requirements for the turbulent flow cases are discussed, and a
feasible range of parameters is established based on these requirements. Validation
of the simulations with existing results on turbulent flow past a single particle
concludes this section.

2.1 Governing equations

We solve incompressible flow past a homogeneous assembly of fixed particles in
a computational domain as shown in Fig. 1. The fluid velocity and pressure fields
evolve by the incompressible Navier–Stokes equations from a specified initial state,
subject to no–slip and no–penetration boundary conditions at the particle surfaces.
For simplicity, the mean flow is taken to be along the positive x-direction, and so
inflow/outflow boundary conditions are imposed on the boundary planes normal to
the x-axis. Periodic boundary conditions are imposed in the cross-stream (y and z)
directions.

The immersed boundary method [18, 36, 45] has the ability to handle moving
or deforming bodies with complex surface geometry without body-fitted meshes.
This enables the computation of flow past multiple particles with no-slip and no-
penetration boundary conditions on uniform three-dimensional Cartesian grids.
In our simulations we impose no–slip and no–penetration boundary conditions at
particle surfaces by using the discrete-time, direct-forcing version of the immersed
boundary method proposed by Mohd. Yusof [36]. In this approach the instantaneous
velocity u(x, t) and pressure P(x, t) fields evolve by

∂u

∂t
+ (u · ∇) u = −

1

ρ
∇ P + ν∇2u + f (1)

−
1

ρ
∇2 P = ∇ · ((u · ∇)u − f) (2)

where ρ is the fluid–phase density and ν is the fluid–phase kinematic viscosity.
The forcing term f in the momentum equation is used to impose no-slip and no-
penetration boundary conditions at the surface of each particle. Since this study
considers stationary particles, the velocity at each particle surface is set to zero.
The initial condition for this problem is steady nonturbulent flow past the particle
assembly.

Following Mohd. Yusof [36], the governing equations are partially Fourier trans-
formed in the y- and z- directions to obtain the following evolution equations:

∂ũ

∂t
+ S̃x = −

1

ρ

∂ P̃

∂x
+ ν

∂2ũ

∂x2
− ν

(

κ2
y + κ2

z

)

ũ, (3)

∂ ṽ

∂t
+ S̃y = −

1

ρ
ικy P̃ + ν

∂2ṽ

∂x2
− ν

(

κ2
y + κ2

z

)

ṽ, (4)

∂w̃

∂t
+ S̃z = −

1

ρ
ικz P̃ + ν

∂2w̃

∂x2
− ν

(

κ2
y + κ2

z

)

w̃, (5)
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where ũ, ṽ, w̃ and P̃ are the partially Fourier transformed fields in (x, κy, κz, t) space.

In (3)–(5) the nonlinear terms S̃x, S̃y and S̃z are given by

S̃x = F

(
∂uu

∂x
+

∂uv

∂y
+

∂uw

∂z

)

, (6)

S̃y = F

(
∂vu

∂x
+

∂vv

∂y
+

∂vw

∂z

)

, (7)

S̃z = F

(
∂wu

∂x
+

∂wv

∂y
+

∂ww

∂z

)

, (8)

where F represents the two–dimensional, spatial Fourier transform from (x, y, z, t)

to (x, κy, κz, t) space. The pressure Poisson equation in (2) becomes

−
1

ρ

(

∂2 P̃

∂x2
−

(

κ2
y + κ2

z

)

P̃

)

=
∂ S̃x

∂x
+ ικy S̃y + ικz S̃z −

(

∂ f̃x

∂x
+ ικy f̃y + ικz f̃z

)

(9)

where ι =
√

−1.
The numerical scheme [36, 65] that is used to solve (3)–(9) is a primitive-variable,

pseudo-spectral method, using fast Fourier transforms in the y- and z- directions,
and centered finite differences in the x- (streamwise) direction. The fractional time-
stepping scheme proposed by Kim and Moin [28] is used to advance the velocity field
in time. The Adams-Bashforth scheme is used for the nonlinear terms in (6)–(8), and
the Crank–Nicolson scheme is used for the diffusion terms.

This approach was used by Mohd. Yusof [36] to simulate turbulent flow past a
single sphere. Subsequently, improvements to this approach were implemented in a
new code that was developed by Xu [65], which was extensively tested and validated.
Selected validation test results are presented later in this section. As shown later in
this section, the choice of parameters dictated by numerical resolution requirements
for turbulent flow past several particles requires parallelization of the IBM DNS
code. The advantage of the IBM approach is that it enables the use of Cartesian
grids, which considerably simplifies parallelization of the solver as compared to
unstructured body-fitted grids. Using domain decomposition, the grid is partitioned
among processors and the numerical solver is parallelized on computer clusters with
distributed memory [65]. For this study a serial implementation of Mohd. Yusof [36]’s
IBM approach is parallelized to achieve this objective. Details of the parallelization
can be found in Xu [65].

2.2 Particle initialization

The particle centers in the fixed bed are generated to correspond to two cases with
different levels of clustering at the same average solid volume fraction: (a) a near-
uniform distribution of particles, and (b) a clustered distribution of particles (see
inset of Fig. 2). All the particles are spherical and of the same size. The near-uniform
distribution of non-overlapping spheres is generated using the Matérn hard-core
point process [55]. This is essentially a Poisson point process for particle centers from
which overlapping spheres have been removed using an approach called dependent
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thinning. The Matérn hard-core point process results in particles homogeneously
distributed in a volume with minimum particle clustering effects. It has an analytic
form for the pair correlation function that is plotted in Fig. 2.

To generate clustered distributions of particles we choose the particle centers from
homogeneous granular gas simulations [42]. These particle clusters are assumed to
be representative of those found fluidized beds and risers, which are qualitatively
different from particle clusters observed in particle-turbulence studies. In these
hard–sphere molecular dynamics simulations, particles form clusters by interacting
through inelastic collisions from a specified initial equilibrium state. To attain this
initial equilibrium state, particle positions are specified according to a Matérn
hard-core point process as described in Stoyan et al. [55] and the particle velocity
distribution is initialized to be Maxwellian. Then each particle undergoes at least
100 elastic collisions at which point the particle configuration and temperature
have reached equilibrium. From this equilibrium initial condition the particles now
evolve under inelastic collisions with the normal coefficient of restitution set to
0.5 in these simulations. Under the influence of inelastic collisions the particle
granular temperature decays, and the system is denoted a granular cooling gas.

r/d
p

g
(r

)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

clustered

uniform

clustered

uniform

Fig. 2 The pair correlation function g(r) for the uniformly distributed and clustered particle
configurations. The solid line is the analytical form of the pair correlation for the Matérn hard-core
distribution [55]. The dash-dot line represents the pair correlation for the clustered state of inelastic
granular cooling gas obtained from hard-sphere MD calculations
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In the homogeneous cooling state, the energy in the system decays according to
Haff’s cooling law. Beyond the homogeneous cooling state (HCS), the granular
system develops clusters. The particle positions are chosen from the granular gas
simulation at a simulation time of 104τ (where τ = tν(0), and ν(0) is the Enskog
collision frequency at initial time), which corresponds to a time instant well beyond
the HCS and deep into the clustering regime. The level of the particle clustering
can be characterized by the pair correlation function g(r) (shown in Fig. 2), where
r is the spatial separation between particle centers. These clustered configurations
of particles from the granular gas simulations are used to then perform IBM DNS
simulations of turbulent flow past fixed particle assemblies. Since the particles
are fixed, the same level of clustering is maintained throughout the IBM DNS
simulations, allowing us to quantify the effect of clustering on gas-phase velocity
fluctuations.

2.3 Upstream turbulence initialization

To simulate upstream turbulence, velocity fluctuations are imposed at the inlet. The
velocity field U is decomposed as U = 〈U〉 + u′, where 〈U〉 is the mean velocity field
and u′ is the turbulent fluctuation. The upstream fluctuations u′ are initialized as
homogeneous, isotropic box turbulence using the classic algorithm by Rogallo [51],
while the energy spectrum follows the model spectrum given by Pope [49]. This
homogeneous, isotropic box turbulence is progressively convected into the computa-
tional domain by the inlet mean velocity 〈U〉, where it then interacts with the fixed
bed of particles. The simulation setup is shown in Fig. 1.

2.4 Numerical resolution requirements

Particle–resolved DNS of turbulent gas–solid flow must resolve all flow length and
time scales. This imposes computational limitations on the range of parameters that
can be simulated using particle–resolved DNS. In DNS of single-phase turbulence
using a regular three-dimensional Cartesian grid of length L with N nodes in each
direction, the limitations on the accessible range of parameters that are imposed by
this resolution requirement [49] can be expressed as the scaling of the number of
nodes N with Reynolds number:

N =
L

	x
=

(
L

L11

)(
L11

L

) (
L

η

)
( η

	x

)

∼ 1.6

(
L

η

)

= 1.6Re
3/4

L = 0.4R
3/2

λ , (10)

where ReL = k
1/2

f L/ν (with L = k
3/2

f /ε) is the turbulence Reynolds number, Rλ =
u′λg/ν is the Taylor-scale Reynolds number, L11 is the longitudinal integral length
scale, and η is the Kolmogorov length scale that must be resolved by the grid spacing
	x = L /N. This estimate is valid for high Reynolds number turbulence where the
ratio of L11 to L is constant (L11/L ≈ 0.43). In this case, the requirement that the
computational box L be large enough to contain the energy–containing motions
(that are estimated to be equal to L11), can be expressed in terms of the ratio L /L.
Thus, the requirement in (10) can be interpreted as a combination of the resolution
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requirement for the large scale motions expressed by the ratio L /L (taken to be
8 × 0.43 in (10)), and the resolution requirement for the small scale motions η/	x

(taken to be 1.5/π). These requirements are related by the ratio of large to small
scale turbulent motions L/η that characterizes the dynamic range of turbulence.
Therefore, for a given problem size N3 that is determined by available computational
resources, there is an upper limit to the Reynolds number that can be simulated.

Here we develop similar numerical resolution requirements for particle–resolved
DNS of turbulent gas-solid flow that allow us to determine the accessible range of
parameters. For this we must take into consideration the particle length scales in
addition to the turbulence scales. Even the introduction of fixed particles requires the
consideration of two important particle length scales: one is the particle diameter dp,
and the other is the characteristic length scale of the interstices between the particles
dI through which the fluid flows.

In order to resolve the length scales of the particle–induced flow field, the grid
spacing 	x should be smaller than the boundary layer thickness δ. The boundary
layer thickness δ around each particle is estimated to be δ/dp ∼ 1/

√

Rep, where
Rep = | 〈U〉 |dp/ν and dp is the particle diameter. This requirement imposes a restric-
tion on Rep, which is the Reynolds number based on mean slip velocity. Depending
on the choice of mean flow Reynolds number and turbulence Reynolds number, the
resolution of the particle boundary layer δ or the Kolmogorov scale η can be limiting.
For the case considered in this paper, with particles larger than the Kolmogorov
scale, and at sufficiently high mean flow Reynolds number Rep = 50, the small
scale resolution requirement is determined by the boundary layer resolution. If the
boundary layer is resolved for these large particles, the Kolmogorov scale is in fact
over-resolved when compared to single–phase DNS.

The limitation on the largest turbulent motions that can be represented in a
DNS of single-phase turbulence in a computational domain of size L arises from
requirement that the velocity autocorrelation should decay to zero within the do-
main [49]. If this criterion is violated, then imposing periodic boundary conditions at
the boundaries results in unphysical effects in the simulations. Similar criteria need
to be developed for turbulent particle-laden flows. For particle-laden flows, the same
criterion when extended to the particle phase requires that the autocorrelation of
particle force decay to zero within the domain. For fixed particle assemblies, the
particle force autocorrelation is closely tied to the pair correlation function, and since
that is constant and decays to unity within 4 particle diameters (cf. Fig. 2) we do not
explicitly include this criterion in our estimation of the accessible parameter regime.
Since we do not have any a priori estimates for the fluid velocity autocorrelation in
particle–resolved DNS of gas-solid flow, we base our initial estimates from single–
phase turbulent flow. Therefore, for the particular case considered in this paper, the
resolution requirement at large scales is taken to be the same as that in single-phase
turbulent flow.

Based on these small and large scale resolution requirements, we now estimate
the scaling of the number of grid points N in each direction with the physical
parameters of turbulent gas-solid flow. We express N using the small scale resolution
requirement that the boundary layer around the particles be resolved as

N =
L

	x
=

(
L

L11

)(
L11

L

) (
L

η

)(
η

dp

)(
dp

δ

)(
δ

	x

)

(11)
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where again L/η ∼ Re
3/4

L ∼ R
3/2

λ , and dp/δ ∼
√

Rep. For fixed resolution require-
ments of large scales (L /L11) and small scales (δ/	x), and fixed length scale
ratios L11/L and η/dp, the remaining ratios can be expressed in terms of physical
parameters. The scaling in terms of the mean flow Reynolds number Rep and the
Taylor–scale Reynolds number of upstream turbulence Rλ is

N ∼
(

L

L11

) (
L11

L

)

R
3/2

λ

(
η

dp

)√

Rep

δ

	x
∼ R

3/2

λ

√

Rep.

This scaling informs us that the cost to perform particle–resolved DNS of turbulent
particle–laden flows is more expensive than that of single–phase DNS by a factor
√

Rep. Therefore, for the same number of grid nodes the accessible values of Rλ will
be correspondingly lower as the mean flow Reynolds number is increased.

Based on available computational resources we performed the DNS calculations
on a 512 × 256 × 256 grid. The first half (2563) of the computational grid is initialized
with box turbulence that is convected over the computational test section containing
the fixed particle assembly that occupies the second half of the grid. The mean
flow Reynolds number Rep is chosen to be 50, resulting in δ ∼ dp/7 that requires
	x < dp/15 to resolve the boundary layer. The important physical and numerical
parameters in this DNS are listed in Table 1, where αp denotes the volume fraction
of solid particles, u′/|V| is the turbulence intensity, and where κmax is the maximum
wavenumber corresponding to the grid. As Table 1 shows, with dp/	x = 20 the
ratio δ/	x ≈ 3 . Elsewhere Garg et al. [15] have shown that this resolution was
adequate to obtain grid–converged results for the mean fluid–particle drag in steady
nonturbulent flow past fixed assemblies of particles using a slightly different tri-
periodic implementation of IBM. Furthermore, for every realization of the particle
configuration simulated in this study, it is guaranteed that there are at least two grid
points between the nearest particle surfaces.

The turbulence intensity u′/| 〈U〉 | encountered in fluidized beds is usually less
than 40% [37, 38]. We choose the turbulence intensity to be 20% and the ratio
of particle diameter to Kolmogorov scale dp/η = 5.55. Therefore, the Kolmogorov
scale η is guaranteed to be resolved as κmaxη = 11.3. Note that the suggested κmaxη

value is 1.5 for single phase turbulence [49]. The relevant length scale ratio at the
large scale that appears in (11) is L /L = 7.12. The computational box length L is
12.8dp, indicating that the box is 3 times larger than the pair correlation length scale
for the clustered particle configuration (cf. Fig. 2).

The time step 	t is chosen as follows

	t = ν
	x

|U| +
√

2

3
k f

(12)

where ν is the Courant number. This is simply the CFL condition with the magnitude
of instantaneous slip velocity rather than the magnitude of the mean slip velocity.
After the flow has evolved for 1.5 flow–through times (L /| 〈U〉 |) from the initial

Table 1 Parameters for simulation of turbulent flow past a fixed bed of spheres

αp u′/|V| ν Rep dp/η Rλ dp/	x κmaxη L /	x

5% 20% 0.002 50 5.55 11.9 20 11.3 256
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Table 2 Time averaged CD from the parallelized IBM DNS solver is compared with the drag force
coefficient reported by Bagchi and Balachandar [4]
〈

Rep

〉

I = urms/|Vr| (%) CD (IBM DNS) CD [4]

107 10 1.02 1.07

114 25 1.025 1.03

58 20 1.52 1.53

condition, if the instantaneous total kinetic energy of the fluid–phase in the compu-
tational test section changes by less than 1% over one flow–through time, the flow
is deemed to have reached steady state. All the statistics reported in Section 3 are
gathered after the flow field reaches this steady state.

2.5 Validation

DNS results using a parallel implementation of the immersed boundary method
solver are validated in the test case of turbulent flow past a single particle. As
noted earlier, the nonturbulent cases have been extensively validated elsewhere [15].
In Table 2 the mean drag coefficient for turbulent flow past a single particle
obtained from the parallel IBM DNS on regular Cartesian grids is compared with the
simulation results reported by Bagchi and Balachandar [4], which were performed on
body-fitted spherical coordinate grids. We find reasonably good agreement for the
mean drag coefficient at different mean flow Reynolds numbers and different levels
of upstream turbulence intensity.

When comparing these simulations it should be noted that there are differences
in the initialization of turbulence that could contribute to the small discrepancy
in the mean drag values. In Bagchi and Balachandar [4] the turbulence field is a
precomputed 2563 DNS solution [33] that determines the energy spectrum and the
microscale Reynolds number. In our simulations the turbulence field is initialized
according to a model spectrum due to Pope [49]. Having validated the parallel IBM
DNS solver for turbulent gas-solid flow, we now use it to investigate the effect of
particle clustering on upstream turbulence.

3 Results

DNS results for turbulent flow past fixed particle assemblies in uniform and clustered
configurations at the same solid volume fraction are reported. The uniform and
clustered particle configurations are studied as two different cases in the numerical
simulation. The uniform configuration is generated using the Matérn hard-core point
process [55], while the clustered particle configuration is from particle centers of the
granular gas simulation [42]. The flow field simulation setup is exactly the same for
both cases. For each case four independent simulations are performed and the fluid
phase turbulence statistics are estimated using ensemble-averaging method.

The parameters of the physical problem and the numerical parameters used in
the simulation are listed in Table 1. The solid volume fraction is chosen to be 5%,
which is characteristic of riser flows. It is also the maximum volume fraction for
which measurements were reported by Moran and Glicksman [38], and the volume



Flow Turbulence Combust (2010) 85:735–761 749

fraction at which they conclude the effects of particle clustering on turbulence are
most pronounced.

As noted earlier, the flow is statistically inhomogeneous in the axial direction.
Therefore, in each DNS realization the flow statistics are functions of the axial
coordinate x and are computed by averaging over the cross-plane after statistical
stationarity has been attained. Multiple independent simulations (MIS) are per-
formed for each of the two random arrangements (uniform particle configuration
and clustered particle configuration) to capture the statistical variability arising from
particle configurational effects. For both types of random particle arrangement—
uniform and clustered—the flow statistics from each DNS realization corresponding
to that arrangement are ensemble–averaged over the MIS, as detailed in Xu [65].
Due to computational limitations, only four MIS could be performed for each of the
clustered and uniform cases.

3.1 Mean momentum balance in the fixed bed

Before looking at fluid-phase turbulence statistics, it is instructive to first understand
the steady mean momentum balance in the fixed bed. From the inlet at x = 0 to x ∼
2.5dp (see Fig. 1) there is an “entrance region” where the flow adjusts to the particles
in the bed. Although the flow is statistically inhomogeneous in the flow direction,
beyond the entrance region the mean flow inside the fixed bed closely resembles
the mean flow obtained by imposing a constant mean pressure gradient on flow past
a homogeneous fixed assembly of particles with periodic boundary conditions. In
other words, the mean fluid velocity attains a nearly constant value, resulting in a
constant mean slip velocity. The mean velocity shows less than 5% variation in the
“fully-developed” region of the bed, as shown in Fig. 3a. These variations are due to
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Fig. 3 Mean fluid velocity and mean pressure in the fully–developed region of the fixed bed. (a) The
mean fluid velocity is nearly constant, resulting in a constant slip velocity. The variation in the mean
fluid velocity 〈U〉 normalized by its reference upstream value V is less than 5% in the fully–developed
region of the bed. The error bars represent the standard deviation in the ensemble–averaged mean.
(b) Mean pressure decreases linearly resulting in an approximately constant pressure gradient in the
fully–developed region of the fixed bed
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the small number of independent realizations that could be performed, but it is clear
that in the limit of infinite realizations the mean fluid velocity would be constant. The
mean pressure decreases almost linearly (see Fig. 3b), resulting in a constant mean
pressure gradient that balances the mean drag due to the presence of particles.

3.2 Turbulent kinetic energy inside the fixed bed

Figure 4 shows that the level of fluid phase TKE k f inside the bed is enhanced
relative to its upstream reference value by both the clustered and uniform particle
configurations. The physical explanation for the enhancement of turbulence is the
interaction of turbulence with particle wakes, and this has been noted by other
studies on a single particle interacting with turbulence [36]. Beyond the entrance
region (x > 2.5dp), k f in the clustered configuration is always higher than k f for
the uniform configuration. While k f for the uniform particle configuration remains
relatively unchanged as x increases inside the fixed bed, the clustered configuration
appears to show an increase with x. It is implausible that this increase would continue
indefinitely as the bed length is increased, so we conclude that a continued increase of
fluid phase TKE along the flow direction is unphysical. It is expected that k f in the
clustered particle configuration will become independent of x if the computational
domain is sufficiently long.
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Fig. 4 Comparison of k f (x) normalized by its upstream value kref for uniform and clustered particle
configurations. Particle clustering enhances gas-phase turbulence. Error bars in the plot indicate the
standard deviation of k f (x) obtained from four different realizations
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As noted earlier, the experiments performed by Moran and Glicksman [38]
measure gas-phase velocity fluctuations for particle concentrations in the range ∼1–
5% in a circulating fluidized bed (CFB). Their results indicate that gas-phase velocity
fluctuations increase dramatically at higher particle concentrations where clusters
are usually formed. This experimental result is inferred from the fact that higher
gas-phase velocity fluctuations are found at higher particle concentrations. However,
the level of particle clustering was not directly measured in these experiments. Our
DNS results at 5% volume fraction shown in Fig. 4 confirm that increased fluid-
phase fluctuations are found in the clustered particle configuration relative to the
uniform configuration. The error bars in Fig. 4 show the standard deviation in k f

calculated from four independent simulations. Although the standard deviation of
fluid-phase TKE k f in the clustered particle configuration is considerably higher
than that in the uniform case, it is still clear that the effects of particle clustering on
gas-phase turbulence are statistically significant. On this basis we conclude that these
DNS results show that the presence of particle clusters enhances fluid–phase velocity
fluctuations, which supports the hypothesis of Moran and Glicksman [38]. However,
due to computational limitations only a small set of realizations was feasible and
a complete parametric study in volume fraction, mean flow Reynolds number and
turbulence intensity space is outside the scope of this work.

3.3 Evolution of Reynolds stress in the fluid phase

In order to understand the enhancement of TKE in the fixed bed it is useful to
examine the transport equation for the fluid phase TKE. Since k f is half of the trace

of the fluid-phase Reynolds stress, we examine the transport equation for R
( f )
ij , which

is [43, 66]:

〈

I f ρ f
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(13)

The Reynolds stress in the fluid phase R
( f )
ij evolves due to the following terms:

(1) the first term on the right hand side (denoted “1”) is the transport of triple

velocity correlations, with u
′′( f )
i being the fluctuating velocity of the fluid phase;

(2) terms grouped as 2 correspond to the production Pij due to mean flow gradient

∂
〈

U
( f )
i

〉

/∂xk, where
〈

U
( f )
i

〉

is the mean fluid–phase velocity;
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(3) terms grouped as 3 correspond to the fluctuating velocity–stress divergence
correlations that result in dissipation;

(4) terms grouped as 4 correspond to interphase TKE transfer arising from

fluctuating velocity–interfacial force correlations [43, 66], where M
( f )
i is the

interphase momentum transfer on the fluid side of the interface, and is given by

τ jin
( f )
j δ(x − x(I)). Here τ ji is the stress tensor on the fluid side of the interface,

n
( f )
j is the unit normal at the interface pointing outward with respect to the

fluid phase, and δ(x − x(I)) represents a generalized delta function located at
the interface.

The fluctuating velocity–stress divergence tensor (grouped as 3 in (13)) is decom-
posed as �ij + �ij, corresponding to the contributions from pressure and viscous
contributions to the stress tensor, where �ij is defined as

�ij ≡ −
〈

u
′′( f )
i

∂
(

I f p′′( f )
)

∂x j

〉

−
〈

u
′′( f )
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∂
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I f p′′( f )
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∂xi

〉

, (14)

and

�ij ≡
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i
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〉

+
〈
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j

∂
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I f 2μSki
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∂xk

〉

, (15)

where Skj is the rate-of-strain of the instantaneous velocity field and p′′( f ) is the fluid
phase fluctuating pressure. The trace of these quantities are denoted � = 1

2
�ii and

� = 1

2
�ii, respectively.

At steady state, the Reynolds stress transport equation is essentially a balance
between the generation of fluid–phase fluctuations by the interphase TKE transfer

term
〈

u
′′( f )
i M

( f )
j

〉

+
〈

u
′′( f )
j M

( f )
i

〉

and the �ij term that contains viscous dissipation

(the distinction between dissipation rate and the fluctuating velocity-viscous stress
divergence correlation in two-phase flows is explained in Appendix). The relative
magnitude of these terms in the TKE transport equation is quantified by taking
the trace of (13), scaling the terms by Vkref /dp, and computing their volume
averages over the fully–developed region of the fixed bed (2.5dp < x < 12.8dp). The
normalized, volume–averaged interphase TKE transfer term is compared with � in
Table 3. The value reported for both the uniform and clustered cases represents the
ensemble average over 4 MIS. In comparison, the convective term is O(10−1), the
transport of triple-velocity correlation is O(10−3), the production term is zero,2 and
the fluctuating velocity–pressure gradient correlation � is O(10−2).

Based on our finding that the steady state TKE is determined by the balance
between interphase TKE transfer and the dissipation rate, we seek to explain why
the clustered configuration results in higher fluid–phase TKE than the uniform
configuration. We plot normalized � as a function of x/dp in Fig. 5 (the normal-
ization factor Vkref /dp is the same as in Table 3, where kref is the TKE in the

2This is true in the limit of infinite MIS. Note that the mean velocity is practically constant in the
fully–developed region (cf. Fig. 3a).
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Table 3 Magnitude of dominant terms—interphase TKE transfer
〈

u
′′( f )
i M

( f )
i

〉

and fluctuating

velocity–viscous stress divergence correlation � in the TKE transport equation

Uniform Clustered
〈

u
′′( f )
i M

( f )
i

〉

0.87 0.77

� −0.77 −0.68

Each term is volume–averaged over the fully–developed region 2.5dp < x < 12.8dp, normalized by
Vkref /dp, and averaged over 4 realizations

upstream homogeneous turbulence, dp is the particle diameter and V is the mean
slip velocity). The fluctuating velocity–viscous stress divergence correlation �(x)

acts as an energy sink inside the fixed bed. Downstream of x = 6dp, the magnitude
of �(x) in the clustered particle configuration is smaller than that in the uniform
particle configuration. The integral of �(x) from x = 6dp to x = 11dp in the clustered
particle configuration is 34% less than that in the uniform case. Therefore, � from
the uniform particle configuration dissipates more energy compared to the clustered
particle configuration. The lower level of � in the clustered particle configuration

x/d
p

n
o

rm
a

li
z
e

d
Θ

4 6 8 10 12
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Θ (clustered)

Θ (uniform)

Fig. 5 The normalized half trace � = �ii/2 of the fluctuating velocity–viscous stress divergence
tensor inside the fixed bed for uniform particle configuration and clustered particle configuration.
�(x) is normalized by Vkref /dp, where kref is the TKE in the upstream homogeneous turbulence,
dp is the particle diameter and V is the mean slip velocity
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directly contributes to the higher level of fluid–phase TKE in the second half of
the fixed bed (6 < x/dp < 12) (cf. Fig. 4). Interphase TKE transfer is not plotted
as a function of x/dp in Fig. 5 because with only four independent realizations
this surface–averaged quantity suffers from high statistical error. In general, it is
difficult to reliably extract the spatial variation of surface–averaged statistics from
such particle–resolved simulations, especially for dilute flows.

3.4 Anisotropy of the Reynolds stress

The variation of R
( f )
11 (x) and R

( f )
22 (x) in the fixed bed are shown in Fig. 6. Since R

( f )
33

is statistically identical to R
( f )
22 , it is not shown here. The Reynolds stress becomes

anisotropic inside the fixed bed and significant redistribution of Reynolds stress
is observed for both uniform and clustered particle configurations. The magnitude

of R
( f )
11 is higher than that of R

( f )
22 (or R

( f )
33 ) inside the fixed bed, even though

the upstream turbulence is isotropic. To quantify the evolution of anisotropy of
the Reynolds stress in the fixed bed, the invariants3 ξ and η of the normalized

Reynolds stress anisotropy tensor b ij = R
( f )
ij /(2k f ) − 1

3
δij, at different x locations in

the fixed bed are plotted in the ξ -η plane (see Fig. 7). The color of the symbols
in Fig. 7 indicates the location in the fixed bed starting from x = 2.5dp (blue) to
x = 12.8dp (red). Most of the symbols in Fig. 7, lie on the η = ξ line, indicating an
axisymmetric state of turbulence with one large eigenvalue. Therefore, the Reynolds-
stress becomes increasingly more anisotropic as one moves along the streamwise
direction in the fixed bed. There is not much difference in the Reynolds stress
anisotropy between the uniform and clustered configurations.

3These are defined following Pope [49] as 6ξ2 = b ijb ij and 6η3 = b ijb jkb ki.
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Fig. 7 The invariants ξ and η of the Reynolds stress anisotropy tensor. The color of the symbols
indicates the location of the measurement going from x = 2.5dp (blue) at the inlet of the bed to
x = 12.8dp (red) at the end of the bed. The Reynolds stress becomes progressively more anisotropic
as we move deeper into the particle bed, starting from its initially isotropic state at the inlet

The reason why the Reynolds stress becomes anisotropic inside the fixed bed
can be understood from the transport equation for the Reynolds stress. From the
analysis in Section 3.2, the dominant terms on the right hand side of (13) are �ij

and the interphase TKE transfer term. We compute the invariants ξ and η of the
normalized anisotropy tensors corresponding to the volume–average of �ij and the

interphase TKE transfer term
〈

u
′′( f )
i M

( f )
j

〉

+
〈

u
′′( f )
j M

( f )
i

〉

. Table 4 shows that both

tensors are anisotropic. In single–phase turbulence it is reasonable to assume that
the dissipation rate tensor is isotropic on the basis that dissipation arises from small
scale motions that are locally isotropic. Often multiphase turbulence models use a
modified single–phase model for the trace of the dissipation rate tensor. This result

Table 4 The invariants ξ and η of the normalized anisotropy tensors corresponding to the volume–

average of �ij and the interphase TKE transfer term
〈

u
′′( f )
i M

( f )
j

〉

+
〈

u
′′( f )
j M

( f )
i

〉

Particle configuration ξ η

�ij Uniform 0.2221 0.2178

Clustered 0.2123 0.2123

Interphase TKE transfer Uniform 0.3616 0.3630

Clustered 0.3549 0.3562
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shows that if particles are larger than the Kolmogorov scale, the assumption of an
isotropic dissipation rate is not valid.

4 Discussion

The differences in TKE for varying levels of particle clustering that are found
from these DNS results indicate that current multiphase turbulence models need
to be extended to account for particle clustering effects. The dissipation of fluid–
phase TKE depends on the level of particle clustering in these cases, indicating
that models for the dissipation rate need to account for this effect. These DNS
results also show that for particles larger than the Kolmogorov scale, the fluid–phase
Reynolds stress tensor is anisotropic and modeling the fluid–phase TKE alone may
not be adequate. Furthermore, the anisotropy of the dissipation rate is important
in determining the anisotropic fluid–phase Reynolds stress. Multiphase turbulence
models that are based on modified single-phase turbulence closures that assume an
isotropic dissipation rate, and which do not account for particle clustering, will not
be able to capture these effects.

However, including the effects of particle clustering in averaged two-fluid formu-
lations is nontrivial because these formulations are incapable of representing particle
clustering effects at their level of closure. Furthermore, the level of clustering changes
with time because clustering is a dynamic phenomenon. It is also tightly coupled to
the mean flow structure (that depends on the mean slip between the phases), the fluid
(and particle) velocity fluctuations as well as inelasticity of collisions and particle-
particle interactions that arise from cohesion or electrostatics.

While these DNS results provide interesting insights into multiphase turbulence
physics and model development, they are preliminary results that need to be
extended in several directions. These simulations were performed for static par-
ticle configurations because this allows us to characterize and maintain the pair–
correlation statistic, but in a real flow the particle configuration will be dynamically
changing in time. Therefore, allowing the particles to evolve freely in turbulent flow
is one extension that is needed. If a statistically stationary clustered configuration
is attained in these simulations, then time–averaging could be used to remove the
limitation of relatively few independent simulations that resulted in wider confidence
intervals in our ensemble–averaged estimates from fixed particle assemblies. A
comprehensive exploration of the parameter space defined by the solid volume
fraction, mean flow Reynolds number, turbulence Reynolds number, and particle
size to Kolmogorov scale ratio is needed to fully characterize the interaction of
particle clusters with turbulence.

It is also worth noting that the parameter range in the numerical and experimental
studies can only be compared in a limited sense. In the CFB experiments [38] the
Kolmogorov length scale is estimated to be η = 146μm, which is comparable to the
particle length scale dp = 164μm. The length scale of energy-containing eddies is
estimated to be l = 0.06m, which is around 400 times the Kolmogorov length scale
η = 146μm. The turbulent intensity is around 40%, and the turbulent Reynolds
number Rλ ≈ 136. In our DNS, the particle diameter dp/η is 5.55 (cf. Table 1),
and the turbulent Reynolds number Rλ = 11.9 is much smaller compared to the
experiments. Hence, only the dissipation range of the energy spectrum is resolved
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in this DNS study. The largest length and time scales in the experiments could not
be simulated because the resolution requirement is too high and the computational
cost is prohibitive. However, the key finding of this work is that these fluctuations
are enhanced by the presence of inertial particles whose size is greater than the
Kolmogorov scale. We note that the fluid velocity fluctuations induced in a laminar
upstream flow by the presence of solid particles is quite significant for particles with
high Stokes number. If the upstream turbulence level is lower than this level of
velocity fluctuations induced by particles, then the presence of particles enhances
turbulence (as is the case here). If the fully developed turbulent flow corresponds to
a level of turbulence higher than this reference value, then one can expect different
results (probably attenuation of turbulence). More definite conclusions can only be
drawn if very large–scale simulations are performed.

5 Conclusions

Direct numerical simulations of turbulent flow past fixed particle assemblies are
performed using a discrete–time, direct–forcing, immersed boundary method that
imposes no–slip and no–penetration boundary conditions on each particle’s surface.
Motivated by experimental observations in fluidized beds, the effect of particle clus-
tering on upstream turbulence is studied by comparing simulations past two different
types of random particle configurations at the same solid volume fraction: (i) uni-
formly distributed particle configurations, and (ii) clustered particle configurations
that result from a cooling granular gas simulation. Ensemble–averaged flow sta-
tistics are obtained from multiple independent simulations of statistically identical
initial conditions for both the clustered and uniform cases for the same set of
flow parameters: 5% solid volume fraction, mean flow Reynolds number Rep = 50,
Taylor–scale Reynolds number of upstream turbulence Rλ = 11.9, and particle size
to Kolmogorov scale ratio dp/η = 5.5. It is observed that the level of fluid–phase
turbulent kinetic energy (TKE) is enhanced (compared to its upstream value) by the
presence of particles in both configurations, and this is consistent with experimental
observations. However, for the clustered cases the level of fluid–phase TKE is always
greater than that of the uniform case at the same streamwise location. By isolating
the effect of particle clustering from volume fraction, these DNS results demonstrate
that particle clustering enhances turbulent velocity fluctuations in the fluid phase.
The fluid–phase TKE dissipation rate reveals that a lower rate of dissipation in the
clustered particle configurations directly contributes to the greater enhancement
of fluid–phase TKE as compared to the uniform particle configurations. Starting
from its reference upstream isotropic state at the beginning of the fixed bed, the
fluid–phase Reynolds stress becomes increasingly anisotropic along the streamwise
direction. In this problem, the fluid–phase Reynolds stress evolution is primarily
determined by the balance between interphase transfer of TKE and viscous dissi-
pation. The simulations reveal that the source of anisotropy in the Reynolds stress
lies in the anisotropy of the interphase TKE transfer and dissipation tensors. The
DNS results indicate that multiphase turbulence models should consider the effect
of particle clusters and anisotropy in the dissipation model, and that they should also
consider the evolution of the anisotropic Reynolds stress (not just the TKE).
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Appendix: The Fluctuating Velocity-Viscous Stress Divergence Correlation

in Two-phase Flows and the Dissipation Rate of Turbulence

The correlation between fluctuating velocity and the gradient of viscous stress
(or rate-of-strain) in multiphase turbulence that is obtained from particle–resolved
DNS in this work is different from the dissipation rate inferred from point–particle
DNS as discussed in Xu and Subramaniam [66]. Here we clarify the difference
between the fluctuating velocity-viscous stress divergence correlation �ij (cf. (15)),
and approximation of its trace by models for the dissipation rate of turbulence
in particle–laden flow that are based on modifications to the dissipation model in
single–phase turbulence. Specifically, we note that while the dissipation in single–
phase turbulence is a square term that always results in a decrease of turbulent kinetic
energy, the same property for the viscous part of �ij is not proved.

The term corresponding to
〈

u
′′( f )
j ∂(I f 2μSki)/∂xk

〉

in single–phase turbulence is

2ν
〈

u j∂ski/∂xk

〉

. The trace of this term simplifies as follows (see Eq. 5.163 in Pope [49])

2ν

〈

u j

∂skj

∂xk

〉

= ν

〈

u j

∂2u j

∂xk∂xk

〉

= 2ν
∂

∂x j

〈

uisij

〉

− ε,

where ε = 2ν
〈

sijsij

〉

is the dissipation rate in single–phase turbulence, which is a
square term that always contributes to the decay of k. Therefore, in homogeneous
single–phase turbulence the dissipation rate ε results in strictly decaying k according
to the transport equation dk/dt = −ε. The correlation between fluctuating velocity

and the gradient of viscous stress

〈

u
′′( f )
i

∂
(

I f 2μSkj

)

∂xk

〉

in two-phase turbulence cannot

be further decomposed as the sum of a square term in the strain rate and an
additonal transport term as in single–phase turbulence theory due to the presence of
the indicator function I f in the derivative ∂(·)/∂xk. So in statistically homogeneous
flows the trace of �ij is not guaranteed to be a square term that results in a strictly
decaying k f .
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7. Bhusarapu, S., Al Dahhan, M.H., Duduković, M.P.: Solids flow mapping in a gas–solid riser:
mean holdup and velocity fields. Powder Technol. 163(1–2), 98–123 (2006)

8. Bolio, E., Yasuna, J., Sinclair, J.: Dilute turbulent gas-solid flow in risers with particle-particle
interactions. AIChE J. 41(5), 1375–1388 (1995)

9. Bolio, E.J., Sinclair, J.L.: Gas turbulence modulation in the pneumatic conveying of massive
particles in vertical tubes. Int. J. Multiph. Flow 21(6), 985–1001 (1995)

10. Brereton, C.M.H., Grace, J.R.: Microstructural aspects of the behavior of circulating fluidized-
beds. Chem. Eng. Sci. 48(14), 2565–2572 (1993)

11. Burton, T.M., Eaton, J.K.: Fully resolved simulations of particle-turbulence interaction. J. Fluid
Mech. 545, 67–111 (2005)

12. Cocco, R., Shaffer, F., Hays, R., Reddy Karri, S.B., Knowlton, T.: Particle clusters in and above
fluidized beds. Powder Technol. 203(1), 3–11 (2010)

13. Drew, D.A., Passman, S.L.: Theory of multicomponent fluids. Applied mathematical sciences,
vol. 135. Springer (1999)

14. Fan, M., Marshall, W., Daugaard, D., Brown, R.C.: Steam activation of chars produced from oat
hulls and corn stover. Bioresour. Technol. 93(1), 103–107 (2004)

15. Garg, R., Tenneti, S., Mohd.-Yusof, J., Subramaniam, S.: Direct numerical simulation of gas-solid
flow based on the immersed boundary method. Engineering Science Reference, Ch. Computa-
tional Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice (2009)

16. Glowinski, R., Pan, T., Helsa, T., Joseph, D.: A distributed Lagrange multiplier/fictitious domain
method for particulate flows. Int. J. Multiph. Flow 25(5), 755–794 (1999)

17. Glowinski, R., Pan, T.W., Helsa, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach
to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:
application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

18. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no–slip flow boundary with an external force
field. J. Comput. Phys. 105(2), 354–366 (1993)

19. Gore, R.A., Crowe, C.T.: Effect of particle size on modulating turbulent intensity. Int. J. Multiph.
Flow 15(2), 279–285 (1989)

20. Grace, J., Tuot, J.: Theory for cluster formation in vertically conveyed suspensions of intermedi-
ate density. T. I. Chem. Eng.–Lond. 57(1), 49–54 (1979)

21. Halvorsen, B., Guenther, C., O’Brien, T.J.: CFD calculations for scaling of a bubbling fluidized
bed. In: Proceedings of the AIChE Annual Meeting, pp. 16–21. AIChE, San Francisco (2003)

22. Heynderickx, G.J., Das, A., De Wilde, J., Marin, G.: Effect of clustering on gas-solid drag in
dilute two-phase flow. Ind. Eng. Chem. Res. 43(16), 4635–4646 (2004)

23. Hill, R., Koch, D.L., Ladd, A.J.C.: The first effects of fluid inertia on flows in ordered and random
arrays of spheres. J. Fluid Mech. 448, 213–241 (2001)

24. Hill, R., Koch, D.L., Ladd, A.J.C.: Moderate-Reynolds-numbers flows in ordered and random
arrays of spheres. J. Fluid Mech. 448, 243–278 (2001)

25. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid–solid systems using
the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)

26. Jackson, R.: The dynamics of fluidized particles. Cambridge Monographs on Mechanics.
Cambridge University Press, Cambridge (2000)

27. Kim, D., Choi, H.: Immersed boundary method for flow around an arbitrarily moving body. J.
Comput. Phys. 212, 662–680 (2006)

28. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes
equations. J. Comput. Phys. 59, 308–323 (1985)

29. Knowlton, T., Karri, S., Issangya, A.: Scale-up of fluidized-bed hydrodynamics. Powder Technol.
150, 72–77 (2005)

30. Krol, S.A.P., De Lasa, H.: Particle clustering in down flow reactors. Powder Technol. 108(1),
6–20 (2000)

31. Ladd, A.J.C.: Simulations of particle-fluid suspensions with the Lattice–Boltzmann equation. In:
Plenary Lecture at the Third M.I.T. Conference on Computational Fluid and Solid Mechanics.
Cambridge, Massachusetts (2005)

32. Ladd, A.J.C., Verberg, R.: Lattice–Boltzmann simulations of particle-fluid suspensions. J. Stat.
Phys. 104, 119–1251 (2001)

33. Langford, J.A.: Toward Ideal Large-Eddy Simulation. Ph.D. thesis, University of Illinois at
Urbana-Champaign, IL (2000)



760 Flow Turbulence Combust (2010) 85:735–761

34. Li, F.X., Fan, L.-S.: Clean coal conversion processes progress and challenges. Energy Environ.
Sci. 1, 248–267 (2008)

35. Lucci, F., Ferrante, A., Elghobashi, S.: Modulation of isotropic turbulence by particles of Taylor
length-scale size. J. Fluid Mech. 650, 5 (2010)

36. Mohd. Yusof, J.: Interaction of Massive Particles with Turbulence. Ph.D. thesis, Cornell
University (1996)

37. Moran, J.C., Glicksman, L.R.: Experimental and numerical studies on the gas flow srrounding a
single cluster applied to a circulating fluidized bed. Chem. Eng. Sci. 58(9), 1879–1886 (2003)

38. Moran, J.C., Glicksman, L.R.: Mean and fluctuating gas phase velocities inside a circulating
fluidized bed. Chem. Eng. Sci. 58, 1867–1878 (2003)

39. Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite
difference schemes for incompressible flow. J. Comput. Phys. 142, 1 (1998)

40. Nomura, T., Hughes, T.J.R.: An arbitrary Lagrangian–Eulerian finite element method for inter-
action of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95, 115 (1992)

41. O’Brien, T., Syamlal, M.: Particle cluster effects in the numerical simulation of a circulating
fluidized bed. In: Fourth International Conference on Circulating Fluidized Beds. Somerset, PA
(1993)

42. Pai, M.G., Subramaniam, S.: Second-order transport due to fluctuations in clustering particle
systems. In: Proceedings of the 60th Annual Meeting of the Division of Fluid Dynamics. The
American Physical Society. Salt Lake City, UT (2007)

43. Pai, M.G., Subramaniam, S.: A comprehensive probability density function formalism for multi-
phase flows. J. Fluid Mech. 628, 181–228 (2009)

44. Patankar, N., Singh, P., Joseph, D., Glowinski, R., Pan, T.: A new formulation of the distributed
Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 26(9),
1509–1524 (2000)

45. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 25, 220
(1977)

46. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)
47. Pita, J., Sundaresan, S.: Gas-solid flow in vertical tubes. AIChE J. 37(7), 1009–1018 (1991)
48. Pita, J., Sundaresan, S.: Developing flow of a gas-particle mixture in a vertical riser. AIChE J.

39(4), 541–552 (1993)
49. Pope, S.: Turbulent Flows. Cambridge University Press (2000)
50. Prosperetti, A., Oguz, H.: PHYSALIS: a new o(N) method for the numerical simulation of

disperse systems. Part I: potential flow of spheres. J. Comput. Phys 167, 196–216 (2001)
51. Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence. Technical Report

TM81315, NASA (1981)
52. Saw, E.W., Shaw, R.A., Ayyalasomayajula, S., Chuang, P.Y., Gylfason, A.: Inertial clustering of

particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100(21), 214501 (2008)
53. Sharma, N., Patankar, N.: A fast computation technique for the direct numerical simulation of

rigid particulate flows. J. Comput. Phys. 205(2), 439–457 (2005)
54. Sinclair, J., Jackson, R.: Gas-particle flow in a vertical pipe with particle-particle interactions.

AIChE J. 35, 1473–1486 (1989)
55. Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, NY

(1995)
56. Takagi, S., Oguz, H., Zhang, Z., Prosperetti, A.: PHYSALIS: a new method for particle simula-

tion. Part II: two-dimensional Navier-stokes flow around cylinders. J. Comput. Phys. 187, 371–390
(2003)

57. Ten Cate, A., Derksen, J.J., Portela, L.M., van den Akker, H.E.A.: Fully resolved simulations
of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233–271
(2004)

58. Tenneti, S., Garg, R., Hrenya, C.M., Fox, R.O., Subramaniam, S.: Direct numerical simulation of
gas-solid suspensions at moderate Reynolds number: quantifying the coupling between hydrody-
namic forces and particle velocity fluctuations. Powder Technol. 203(1), 57–69 (2010)

59. Tsuji, Y., Morikawa, Y., Shiomi, H.: LDV measurements of an air-solid two-phase flow in a
vertical pipe. J. Fluid Mech. 139, 417–434 (1984)

60. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particu-
late flows. J. Comput. Phys. 209(2), 448–476 (2005)

61. Uhlmann, M.: Investigating turbulent particulate channel flow with interface-resolved DNS. In:
6th International Conference on Multiphase Flow ICMF 2007. Leipzig, Germany, 9–13 July
2007



Flow Turbulence Combust (2010) 85:735–761 761

62. van der Hoef, M.A., Beetstra, R., Kuipers, J.: Lattice–Boltzmann simulations of low-Reynolds-
number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag
force. J. Fluid Mech. 528, 233–254 (2005)

63. Vasilyev, O.V.: High order finite difference schemes on non-uniform meshes with good conser-
vation properties. J. Comput. Phys. 157, 746–761 (1999)

64. Wylie, J., Koch, D.L., Ladd, A.: Rheology of suspensions with high particle inertia and moderate
fluid inertia. J. Fluid Mech. 480, 95 (2003)

65. Xu, Y.: Modeling and direct numerical simulation of particle–laden turbulent flows. Ph.D. thesis,
Iowa State Univ., Ames, IA (2008)

66. Xu, Y., Subramaniam, S.: Consistent modeling of interphase turbulent kinetic energy transfer in
particle-laden turbulent flows. Phys. Fluids doi:10.1063/1.2756579 (2007)

67. Yang, N., Wang, W., Ge, W., Li, J.H.: CFD simulation of concurrent-up gas-solid flow in cir-
culating fluidized beds with structure-dependent drag coefficient. Chem. Eng. J. 96(1–3), 71–80
(2003)

68. Yin, X., Sundaresan, S.: Drag law for bidisperse gas-solid suspensions containing equally sized
spheres. Ind. Eng. Chem. Res. 48(1), 227–241 (2008)

69. Zhang, Z., Prosperetti, A.: A method for particle simulations. J. Appl. Mech. 70, 64–74 (2003)
70. Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle flow simula-

tions. J. Comput. Phys 210, 292–324 (2005)
71. Zhang, M., Qian, Z., Yu, H., Wei, F.: The solid flow structure in a circulating fluidized bed

riser/downer of 0.42-m diameter. Powder Technol. 129(1–3), 46–52 (2003)

http://dx.doi.org/10.1063/1.2756579

	Effect of Particle Clusters on Carrier Flow Turbulence: A Direct Numerical Simulation Study
	Abstract
	Introduction
	Simulation Methodology
	Governing equations
	Particle initialization
	Upstream turbulence initialization
	Numerical resolution requirements
	Validation

	Results
	Mean momentum balance in the fixed bed
	Turbulent kinetic energy inside the fixed bed
	Evolution of Reynolds stress in the fluid phase
	Anisotropy of the Reynolds stress

	Discussion
	Conclusions
	Appendix: The Fluctuating Velocity-Viscous Stress Divergence Correlation in Two-phase Flows and the Dissipation Rate of Turbulence
	References



