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Abstract

Cyclin-dependent kinase 6 (CDK6) is an important protein kinase that regulates cell growth,

development, cell metabolism, inflammation, and apoptosis. Its overexpression is associ-

ated with reprogramming glucose metabolism through alternative pathways and apoptosis,

which ultimately plays a significant role in cancer development. In the present study, we

have investigated the structural and conformational changes in CDK6 at varying pH employ-

ing a multi-spectroscopic approach. Circular dichroism (CD) spectroscopy revealed at

extremely acidic conditions (pH 2.0–4.0), the secondary structure of CDK6 got significantly

disrupted, leading to aggregates formation. These aggregates were further characterized by

employing Thioflavin T (ThT) fluorescence. No significant secondary structural changes

were observed over the alkaline pH range (pH 7.0–11.0). Further, fluorescence and UV

spectroscopy revealed that the tertiary structure of CDK6 was disrupted under extremely

acidic conditions, with slight alteration occurring in mild acidic conditions. The tertiary struc-

ture remains intact over the entire alkaline range. Additionally, enzyme assay provided an

insight into the functional aspect of CDK at varying pH; CDK6 activity was optimal in the pH

range of 7.0–8.0. This study will provide a platform that provides newer insights into the pH-

dependent dynamics and functional behavior of CDK6 in different CDK6 directed diseased

conditions, viz. different types of cancers where changes in pH contribute to cancer

development.

Introduction

Cyclin-Dependent Kinase 6 (CDK6) is an important regulatory protein of the cell cycle and

metabolism [1]. It controls the G1-S phase transition of the cell cycle through the Rb-E2F path-

way [2–5]. CDK6 is a key regulator in various cellular processes, such as cell proliferation [6–

8], differentiation [9–11], inflammation [12], apoptosis and cancer [1, 8, 13, 14], suggesting
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the importance of CDK6 [15]. Its activity is directly activated by cyclin activating kinase

(CAK) and cyclin D3, whereas indirectly several growth factors like tumor necrosis factor-α
(TNF-α), vascular epithelial growth factor, epidermal growth factor(EGF), nerve growth fac-

tor, transforming growth factor-β (TGF-β) and cytokines play a role in its activation [15]. It is

reported that CDK6 protein expression increases several folds than normal cell growth during

tumor and tumor-associated diseases like cancer [16, 17]. In all cancers like colon, breast,

lung, prostate, and stomach, the CDK6 expression level is very high, which signals cancerous

cells to show resistance against the several drug molecules, chemotherapy and radiotherapy

through continuous mutation [18].

In the last few decades, cancer cells show reprogramming of cellular and metabolic path-

ways. Several reports prove that the increased CDK6 level controls cell proliferation and alters

the metabolic pathway of glucose consumption. CDK6 inhibits the Phosphofructokinase

(PFK) and Protein Kinase (PK), key regulator enzymes of the glycolysis pathway. On the con-

trary, it activates the pentose phosphate pathway (PPP) and serine synthesis pathway that

cause NADPH production and prevent ROS generation, which ultimately inhibits apoptosis

[1, 19–23]. Evidence suggests that the alteration in the expression level of CDK6 involves can-

cer and is also found in neurodegenerative disorders like Parkinson’s [16, 24–26]. All these

reports highlight the importance of CDK6 as a potential therapeutic target to cure several path-

ological conditions [26], ranging from cancer to neurodegenerative disorders [27, 28].

There are additional domains in CDKs apart from consensus kinase domains. For instance,

CDK16, CDK17 and CDK18 comprise a conserved catalytic domain flanked by amino and

carboxy-terminal extensions implicated in the binding of cyclins. CDK12 and CDK13 com-

prise a kinase domain in the center with additional Arg/Ser rich motifs in the amino terminus

that serve as docking sites for splicing factors assemblage and as splicing regulators.

CDKs belong to the CMGC group of kinases [29]. Cyclin-dependent kinases (CDKs) are

serine/threonine protein kinase that controls the cell cycle [30]. CDKs and their cyclin strictly

control every stage of the cell cycle by signaling checkpoints [31]. CDK6 gene is located on

human chromosome 7q21.2, which encodes the 326 amino acids ~ 37 kDa cytosolic protein

[32]. The human CDK6 structure is a single polypeptide chain that consists of N- terminal

(amino-terminal) domain (5–100 amino acids) and C-terminal (Carboxyl terminal) domain

(101–309). The N-terminal domain comprises five β strands with one PLSTIRE α- helix. C-

terminal domain comprises mainly of α- helix with a small β sheet [33]. The all-inclusive struc-

ture of CDK6 is similar to CDK2 [34]. The catalytic site is present between both terminals.

Cyclin-D interacts with amino-terminal and changes its structure, partially activating CDK6;

CAK through phosphorylation/ dephosphorylation process at the specific site fully activated it

[35, 36]. Several factors, including temperature, the strength of the buffer, pH, ions, macro and

micro molecules present vicinity of the cell, is responsible for the function, proper folding and

3D structure of the protein [37–39]. Change in the ions concentration disturbs the pH homeo-

stasis, leading to alteration of net charge on protein, ultimately affecting the protein function

implicated in the diseased conditions [38]. It is apparent that any change in cellular pH, alters

the cellular processes like cell growth, proliferation, and metabolic rate of cells; all these are

hallmarks of cancer [40–42].

CDK6 structure and its function are already well reported, but structural and functional

characterization at different physiological pH conditions is unknown. Every protein shows its

optimum activity at a particular pH. Thus, this study intends to delineate the effect of various

pH conditions on the structure and function of CDK6 protein. We have successfully cloned,

expressed and purified the CDK6 protein from the bacterial system. The effect of pH on the

secondary and tertiary structure of CDK6 was investigated employing multi-spectroscopic

methods, fluorescence, UV visible, CD spectroscopies. ThT fluorescence was done to have an
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insight to characterize the aggregate formation of CDK6. The structural studies were further

complemented with the measurement of the kinase activity at various pH.

Materials and methods

Materials

DifcoTM LB broth Miller (Becton Dickinson, Fisher Scientific, Lenexa, KS, USA) was used for

bacterial culture. Antibiotic Kanamycin (Sigma, Saint Louis, MO, USA) 50 μg/ ml was used.

Isopropyl-β- thiogalactopyranoside (IPTG) was purchased from Calbiochem (USA). Tris-HCl,

NaCl, NaOH, glycine, sodium acetate, sodium phosphate monobasic, dibasic, TritonX-100,

dichloro-diphenyl-trichloroethane (DDT), lysozyme was procured from Sigma- Aldrich

(St. Louis, USA). Ni- NTA column and beads purchased from BioRad (USA).

Cloning, expression and purification

CDK6 protein was successfully cloned, expressed and purified using our well-established pro-

tocol as per earlier published literature [43].

Sample preparation

CDK6 protein structure analysis was carried out using a wide range of pH 2.0 to 11.0 buffers.

Glycine-HCl buffer was used for pH range 2.0–3.0; sodium acetate buffer was used for pH 4.0–

6.0. Tris- HCl buffer was used for pH 7.0–8.0; sodium bicarbonate buffer was used for pH 9.0–

10.0; Glycine-NaOH buffer was used for the pH range 11.0. The protein was incubated with a

50mM concentration of different buffers for 5 h at 25˚C, and equilibrium was successfully

attained before the spectroscopic measurements. All the measurements were carried out in

triplicates form.

CD measurements

Circular dichroism (CD) experiment was carried out at Jasco spectropolarimeter (J-1500,

Japan) (PTC-517), equipped with a Peltier-type temperature controller to maintain the tem-

perature. Far-UV CD spectra of CDK6 samples at different pH (2.0–11.0) were recorded in a 1

mm path-length cuvette with protein concentration kept at 8 μM. Spectra were recorded in the

range of 205–250 nm with a 100 nm/min scan speed and a response time of 1 s [44]. Each spec-

trum was an average of 3 consecutive scans. The results were expressed as Mean Residue Ellip-

ticity (MRE) in deg cm2 dmol−1 which is defined as:

MRE ¼
MRWX yobserved

10XlXc
ð1Þ

where θobserved is the observed ellipticity in milli degrees, MRW is the mean residue weight of

the protein, l being the path length in cm and c being the protein concentration in mg/ml.

Fluorescence measurement

Fluorescence spectra of CDK6 were measured on Jasco spectrofluorometer (FP 6200, Japan) at

25˚C ±1; the connected Peltier device-maintained temperature. The protein concentration was

kept at 4 μM, and the sample was excited at 280 nm with the emission spectra recorded in the

range of 300–400 nm [45]. Both the slit widths were fixed at 5nm and the response was set to

medium intensity. All the measurements were carried out in triplicates and reported spectra

were taken after subtracting appropriate blanks. For Thioflavin T (ThT) fluorescence, the sam-

ple was excited at 440 nm, and emission was recorded at 450–600 nm.
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UV/Vis absorbance measurements

UV/visible absorbance spectra of CDK6 were measured on Jasco UV/Vis spectrophotometer

(V-660) connected with the Peltier device to maintain the temperature. The incubated sample

spectra with a different range of pH buffer (2.0–11.0) were obtained at 240–340 nm by using a

1 cm path length cuvette. A Triplet set of samples were used for the experiment.

Kinase activity assay

To study the effect of pH on the enzymatic activity of CDK6 protein, kinase assay was carried

out in the presence of a different range of pH buffers. CDK6 protein (1 μM) sample was pre-

pared in a different range of pH buffers and freshly prepared ATP was added (50 μM) in a

reaction volume of 100 μl and incubated for 1hr at 25˚C for enzyme activity measurements.

Similar reactions were carried out in triplet form for different ranges of pH buffers. To stop

the reaction, a malachite green reagent (200 μl) was added into the reaction mixture and incu-

bated for 30 minutes at 25˚C for the development of green color. The absorbance of the final

product was measured spectrophotometrically at 620 nm.

Results and discussion

The pH of the solution is a vital player in deciding the charge over the protein’s surface,

thereby influencing the chemical stability of the protein. Thus, it is apparent that the pH of the

solution plays a key role and influences the structural and functional aspects of the proteins

[46, 47]. Thus, considering the importance of pH in governing the protein’s functionality, this

study intends to delineate the effect of pH on the structure and activity of an important kinase,

CDK6.

Effect of pH on the secondary structure

To see the effect of pH on the secondary structure of CDK6, CD spectroscopy was deployed.

CD spectroscopy is a sensitive technique routinely used to study changes in protein conforma-

tion under different pH conditions [48]. Native CDK6 showed spectral characteristics of a

mixture of α-helix and β-sheet structures. The protein retained its native secondary structure

in the pH range of 5.0–8.0, as revealed by the far-UV CD spectrum (Fig 1A). However, visible

aggregates were observed in the pH range of 2.0–4.0 that interfered in CD spectra and hence

almost no dichroic signal was obtained in this pH range. At pH 7.0–8.0, the protein attains a

properly folded conformation evident from the far UV CD spectra obtained in this pH range.

Fig 1B shows far UV CD spectra of CDK6 in the alkaline range (pH 7.0–11.0). Far UV CD

spectra are nearly identical in this range with no significant change suggesting that CDK 6

Fig 1. Changes in the secondary structure of CDK6 measured by far-UV CD. (A) Far-UV CD spectra of CDK6 in

the pH range of 2.0–8.0 (B) Far UV CD spectra of CDK6 in alkaline pH range (7.0–11.0) (C) A plot of MRE at 222 nm

(θ222) as a function of pH.

https://doi.org/10.1371/journal.pone.0263693.g001
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maintains a native-like conformation across the alkaline range with minimal alterations in the

secondary structure over the entire range. Fig 1C shows the plot of [θ]222 versus pH and

depicts that no significant perturbation of secondary structure occurs at alkaline pH (7.0–

11.0). These observations suggest that CDK6 attains maximum structure, indicating a native-

like structure at pH 7.0–8.0.

Effect of pH on the tertiary structure

Intrinsic fluorescence studies were carried out to see the effect of pH on the tertiary structure

of irisin. Since intrinsic fluorescence of proteins depends on aromatic amino acid residues [49,

50], a change in intrinsic fluorescence is a sign of change in the local environment of aromatic

amino acid residues. Thus, any structural perturbation that affects the microenvironment

around the fluorophore is often reflected in terms of changes in the emission spectrum of the

protein [51]. CDK6 possesses 8 Tyr and 3 Trp residues, and hence, we have investigated the

effect of pH on the tertiary structure of CDK6 in terms of intrinsic fluorescence spectroscopy.

A characteristic redshift in the emission maxima is observed when a protein unfolds due to the

increased solvent exposure of aromatic amino acid residues. Fluorescence emission spectra of

CDK6 in the pH range (pH 2.0–8.0) are depicted in Fig 2A. CDK6 attains its native conforma-

tion in the pH range of 7.0–8.0, showing an emission maxima peak at 341 nm, as reported for

other kinases [52]. A recently published study also reported that pyruvate dehydrogenase

kinase 3 (PDK3) and Sphingosine kinase 1 (SPHK1) maintains their tertiary structure over the

alkaline pH range [52, 53]. Another recently published literature reported that irisin, a myo-

kine, maintains its structure in the alkaline pH range [39].

In the pH range of 5.0–6.0, there was no spectral shift in the emission maxima, suggestive

of the fact that the environment around the aromatic amino acid residues was not perturbed

to a significant extent. However, a decrease in fluorescence intensity was observed attributable

to the protonation of water molecules or acidic amino acids surrounding Trp residues that act

as dynamic quenchers of intrinsic fluorescence [54]. A spectral shift was obtained in the pH

range of 2.0–4.0along with a decrease in the fluorescence intensity suggestive of the tertiary

structural perturbations in this pH range. At pH 4.0, a decrease in the fluorescence intensity

was coupled with a redshift of nearly 5nm, while at pH 2.0 and 3.0, visible aggregates were

seen, and a blue shift of 3 nm and 6 nm was recorded, respectively. CDK6 maintains its native

conformation at pH 5.0–8.0.

Fig 2B depicts the fluorescence emission spectra of CDK6 in the alkaline pH range (pH

7.0–11.0). It is quite clear from the figure that CDK6 maintains its tertiary structure in the alka-

line range (pH 7.0 to 11.0), attributable to no significant change in λmax across the alkaline

range. However, there was an evident decrease in the fluorescence intensity beyond pH 9.0.

Fig 2. Presenting pH-induced changes in the tertiary structure of CDK6 probed by fluorescence spectroscopy at

25˚C. (A) Fluorescence emission spectra of CDK6 in the pH range of 2.0 to 8.0 (B) Fluorescence emission spectra of

CDK6 in the pH range of 7.0–11.0. (C) Changes in emission λmax as a function of pH.

https://doi.org/10.1371/journal.pone.0263693.g002
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This decrease is attributable to the deprotonation of basic amino acids present in the vicinity

of intrinsic fluorophores causing fluorescence quenching. Protonation/deprotonation of

amino acid side chains may lead to charge destabilization in the local environment by disrupt-

ing the electrostatic interactions and internal salt bridges present in the native state [55]. The

plot of λmax as a function of pH is depicted in Fig 2C; fluctuations were evident in λmax in the

extreme acidic conditions, i.e., in the pH range of 2.0–4.0. In the pH range of 5.0–8.0, no sig-

nificant change in the emission wavelength maxima was observed, suggesting no changes in

the tertiary structure. However, a slight redshift of 2 nm was observed beyond pH 8.0. All

these observations reveal that the tertiary structure of CDK6 is maintained in the alkaline pH

range. In contrast, significant tertiary structural alterations occurred in the extreme acidic,

with slight alterations occurring in the mild acidic conditions.

To further examine the effect of pH on the tertiary structure of CDK6, UV-vis spectroscopy

was employed (240–340 nm). Conjugated double bond system present in the side chains of

aromatic amino acids acts as a chromophore and absorbs light strongly in the UV region

(240–340 nm) [56]. Additionally, the microenvironment of the aromatic residues corresponds

to changes in UV absorption maxima; increased solvent exposure causes a blue shift in λmax.

Fig 3A shows the UV absorption spectra of CDK6 in the pH range (2.0–8.0). In the pH range

of 5.0–8.0, nearly identical UV spectra were obtained, suggesting that minimal tertiary struc-

tural alterations occur and protein maintains its native-like conformation. In the pH range of

2.0–4.0, completely distorted UV spectra with a very high scattering were recorded. These dis-

torted spectra suggest the distortion of the tertiary structure of CDK6 in the acidic conditions

with subsequent aggregation. On the other hand, no significant changes were observed in the

UV spectral profile of CDK6 across the alkaline range (pH 7.0–11.0), implying that CDK6

maintains its native-like conformation in the alkaline pH range.

These observations corroborate fluorescence and CD spectroscopy observations advocating

that CDK6 maintains its native-like conformation in the alkaline pH range. Under extreme

acidic conditions, distortion in its tertiary structure occurs with subsequent aggregation.

Thioflavin T fluorescence

All the above observations suggest that aggregation of CDK6 occurs under extreme acidic con-

ditions. Thus, ThT fluorescence was carried out to strengthen these observations further since

ThT is an extrinsic dye routinely employed to characterize aggregates [57]. ThT binds to β-

sheets, and in the case of aggregates, ThT-binding to aggregates causes an increase in the

Fig 3. Showing pH-induced changes in the tertiary structure of CDK6 were investigated by absorbance

spectroscopy at 25˚C. (A) Absorption spectra of CDK6 in the pH range of 2.0 to 8.0. (B) Absorption spectra of CDK6

in the pH range of 7.0 to 11.0.

https://doi.org/10.1371/journal.pone.0263693.g003
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fluorescence [58, 59]. Fig 4 shows the ThT fluorescence intensity of CDK6 in the pH range of

2.0–11.0. It is apparent that aggregation occurs at pH 2.0–4.0, while no aggregation is observed

at other pH levels. These observations are concurrent with other assays validating that CDK6

aggregation occurs in extremely acidic conditions.

Effect of pH on kinase activity

The enzyme assay was carried out to delineate the effect of pH on the functional aspects of

CDK6 as per previously published protocols [52, 60]. This assay involves the formation of a

green-colored complex that is measured spectrophotometrically at 620 nm. CDK6 shows max-

imum enzymatic activity in the pH range of 7.0–8.0, suggestive of the fact that it exists in its

native conformation. A significant decline in the enzymatic activity was observed moving

away from this pH range in both directions (acidic and alkaline). Fig 5 gives an overview of

the enzymatic activity of CDK6 at different pH. The maximum activity of CDK6 at pH 8.0 was

arbitrarily set as 100% to normalize the data. Our earlier spectroscopic observations revealed

that CDK6 maintains its native-like conformation over the alkaline pH range. Thus, this loss

in enzymatic activity in this alkaline pH range can be attributed to the ionization states of

active site residues, which further affect catalytic activity. In the pH range of 2.0–4.0, CDK6

forms aggregates that interfere in this assay and thus, the enzymatic assay was not recorded at

these pH conditions.

Conclusions

It was discovered in this study that pH affects the structure and functional activity of CDK6. It

was found that the pH of the solution influenced secondary and tertiary structural alterations

in CDK6. CDK6 has a disrupted secondary structure when exposed to extreme acidic condi-

tions (pH 2.0–4.0), resulting in the formation of aggregates in this pH range, according to our

findings. Consistent with this finding, maximum ThT fluorescence was observed in the

Fig 4. Aggregates characterization by ThT fluorescence. ThT fluorescence intensity was plotted as a function of pH

(2.0–11.0).

https://doi.org/10.1371/journal.pone.0263693.g004
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extremely acidic conditions confirming the formation of CDK 6 aggregates under this condi-

tion. CDK6 maintains native-like conformation with no secondary structural alterations in the

pH range of 5.0–8.0. CDK6 maintains its secondary structure over the entire alkaline range,

evident from similar CD spectra.

Fluorescence and UV spectroscopic analysis revealed that CDK6 has a completely disrupted

tertiary structure in the extremely acidic conditions. While slight alterations in the tertiary

structure of CDK6 are observed in mild acidic conditions. CDK6 maintains its tertiary struc-

ture in the alkaline pH range. Enzyme assay revealed that CDK6 showed maximum kinase

activity near physiological pH (pH 7.0–8.0), having an optimum pH value of 8.0. The change

in the structure of CDK6 based on the pH can be further useful to understand the disease con-

dition and cellular homeostasis to protein function under a variable range of pH conditions.
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