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Abstract—Quantum networking brings together several diverse
research areas, such as fiber-optic communication, quantum optics,
and quantum information, to achieve capabilities in security, secret
sharing, and authentication which are unavailable classically. The
development of practical fiber-based quantum networks requires
an understanding of the reach, rates, and quality of the entangle-
ment of distributed quantum states. Here, we present a theoretical
model describing how the magnitude and orientation of polariza-
tion dependent loss (PDL), a common impairment in fiber-optic
networks, affects the entanglement quality of distributed quan-
tum states. Furthermore, we theoretically characterize how PDL
in one fiber channel can be optimally applied in order to nonlocally
compensate for the PDL present in another channel. We present
experimental results that verify our theoretical model.

Index Terms—Optical fiber communication, quantum
entanglement.

I. INTRODUCTION

Q
UANTUM networks promise to offer functionalities un-

available classically by using distributed quantum entan-

glement as a resource [1]. Essential to the development of a

quantum network is the ability to create, manipulate, and dis-

tribute entanglement between distant nodes [2]. It would be de-

sirable to leverage the vast deployed fiber optics infrastructure

for entanglement distribution. However, entanglement is fragile,

and a greater understanding of how transmission through fibers

and fiber components affects entanglement quality is required

in order to successfully develop a fiber-based quantum network.

Specifically, for the distribution of polarization-entangled states,

polarization mode dispersion (PMD) and polarization depen-

dent loss (PDL) are the two principal effects which must be

accounted for [3]–[5].

While the PDL of the fibers itself is often low, PDL is com-

monly found in optical components, such as isolators, multiplex-

ers, and couplers, where the attenuations of the two orthogonal

polarization modes can differ. The effects of PDL in classi-

cal communication have been thoroughly investigated over the
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years [6]–[12]. However, PDL has only received limited atten-

tion in the domain of quantum communication and has mainly

been studied via the method of the antinormally-ordered quan-

tum characteristic function [13]. This is partially due to the

cumbersome nature of calculations involving two-photon states,

since the relative orientation of PDL elements in the fiber chan-

nel of each photon needs to be considered. We note, however,

that for polarization entanglement, a single PDL element is itself

an example of a more general operation known as local filter-

ing [14]–[20], in which an element called a filter preferentially

selects one mode of a superposition quantum state over the other.

Local filtering operations on entangled states have largely

been of interest due to their ability to probabilistically increase

the entanglement of a quantum state [14]–[17]. Entanglement

distillation of this type, for some pure and mixed states, has been

demonstrated experimentally [21]. In these studies, the filtering

elements are controlled, and the aim is to probabilistically in-

crease the entanglement of a given state. This is in contrast to

the situation in optical networks where the filtering elements,

in the form of PDL elements, are both randomly oriented and

subject to change with time, and cannot be fully controlled.

Here, we present a compact description of how PDL of any

orientation affects the entanglement of both pure and mixed

states of polarization-entangled photons in the Bell-diagonal

form. The Bell-diagonal states are of particular importance be-

cause they encompass the ideal Bell states as well as states

resulting from an ideal state which experiences various com-

mon impairments such as depolarizing noise, decoherence, and

application of PMD [22]–[23]. More specifically, we con-

sider a system comprised of an initial two-photon polarization-

entangled state where each photon is transmitted through a dif-

ferent channel which may contain PDL of arbitrary orientation

and magnitude. In the following, we analyze the relationship

between entanglement, PDL orientation, and PDL magnitude

for several classes of ideal and impaired states. Then we ex-

perimentally verify our theory using a fiber-based source of

polarization-entangled photons both with and without PMD

present. We further determine the optimal system configura-

tion that allows PDL acting in one channel of the system to

fully or partially compensate for the entanglement lost due to

PDL present in the other channel. We term this unique feature

of quantum systems nonlocal PDL compensation.

This paper is organized as follows. In Section II, we introduce

the general theory of PDL and obtain a simple expression for
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the entanglement of a two-photon polarization-entangled state

undergoing PDL of arbitrary orientation and magnitude. In this

section, we emphasize that all possible orientations of two PDL

elements, one in the channel for each photon of an entangled

state, can be parameterized into a single variable. In Section III,

we find the conditions which allow for the maximum recovery

of the entanglement lost due to PDL acting on one photon of

an entangled pair through the addition of another PDL element

acting on the other photon. In Section IV, we present an ex-

perimental demonstration of these results using a fiber-based

source of polarization-entangled qubits. Finally, we conclude in

Section V.

II. GENERAL THEORY

A. Entanglement Expressions

Polarization dependent loss (PDL) occurs when the transmis-

sion coefficient of a medium or a waveguide depends on the

polarization of the input light. This effect is quantified in deci-

bels as p = 10 log10 (Imax/Imin) where Imax and Imin are the

maximum and minimum transmitted intensities of light with

respect to all possible input polarizations. In general, the po-

larization state with maximum transmission can point in any

direction γ̂ in Stokes space, and has the corresponding PDL

operator [3]:

P = e−γ/2e
1
2 �γ ·�σ = e−γ/2(I2 cosh (γ/2) + (γ̂ · �σ) sinh(γ/2))

(1)

where �σ is a vector of the Pauli matrices, I2 is the two di-

mensional identity matrix, �γ = γγ̂, p = γ(20 log10e), and we

assume γ ≥ 0.

We are interested in assessing how the entanglement of

a two-photon polarization-entangled state is impacted by the

presence of PDL in the transmission channel of each pho-

ton. Ideally, states distributed for quantum information pro-

cessing tasks would be both pure and perfectly entangled.

The canonical examples of such states are the Bell states, de-

fined in the {H, V } basis as |Ψ±〉 = (|HV 〉 ± |V H〉) /
√

2 and

|Φ±〉 = (|HH〉 ± |V V 〉) /
√

2. With these definitions, we can

intuitively understand how PDL decreases the entanglement of

a quantum state. To begin, consider that if we were to mea-

sure the first photon of a |Φ+ 〉 state in the {H, V } basis, we

would find either outcome (H or V ) with equal probability.

However, if we were to first pass this qubit through a PDL el-

ement oriented such that it preferentially absorbs H polarized

photons, then clearly we would no longer detect either outcome

with equal probability. More specifically, after post selection,

meaning in the case when instances where a photon is absorbed

by the PDL element are ignored, the final state would become

|Φ′+ 〉 = α|HH〉 + β|V V 〉 with |α| < |β|, which is no longer a

Bell state.

Realistically, however, decoherence mechanisms in the trans-

mission channel can cause these states to mix. In this case, the

states are most easily described using a density matrix of the

form ρ =
∑

i pi |ψi〉〈ψi |, where pi is a classical probability and

|ψi〉 represents a pure quantum state. Specifically, it has been

shown that Bell states undergoing polarization mode dispersion

(PMD) become a particular type of mixed state known as a

Bell-diagonal state [22]–[23]. Hence, our analysis is focused on

these states.

Bell-diagonal states are those that can be written as

a mixture of the Bell states. Specifically, this means

that any Bell-diagonal state can be expressed as a con-

vex sum of the form ρBD = a1 |Φ+ 〉〈Φ+ | + a2 |Φ−〉〈Φ−| +
a3 |Ψ+ 〉〈Ψ+ | + a4 |Ψ−〉〈Ψ−|. We find that expanding these

states in terms of the Pauli matrices will be useful for what

follows. To this end, the Bell-diagonal states can alternatively

be expressed as [25]:

ρBD =
1

4

(

I2 ⊗ I2 +

3
∑

i=1

tiσi ⊗ σi

)

, (2)

where the σi define the Pauli matrices and⊗ indicates the tensor

product of the two Hilbert spaces, each associated with one

photon of the pair. The diagonal matrix T = diag(t1 , t2 , t3) is

referred to as the correlation matrix and plays an important role

in determining how PDL orientation affects the entanglement

of a state.

The entanglement between two quantum states can be quan-

tified in terms of the entanglement of formation, which is physi-

cally related to the number of maximally entangled states needed

as a resource to create a copy of a given state. For the special case

of two qubits, it has been shown that the entanglement of forma-

tion is a monotonic function of another entanglement measure,

which is often simpler to calculate but lacks a physical inter-

pretation, known as the concurrence [26]. The concurrence is

defined as C(ρ) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), where

the λi are the eigenvalues of ρ(σy ⊗ σy )ρ∗(σy ⊗ σy ), with

λ1 ≥ λ2 ≥ λ3 ≥ λ4 and σy given by the usual Pauli matrix. A

concurrence of 0 indicates that the state is separable, meaning it

has no entanglement, and a concurrence of 1 indicates that the

state is maximally entangled. The calculation of this quantity

for a two-qubit state undergoing arbitrary local filtration on each

qubit was performed in [18]. Adapting that result to the notation

of Eq. (1) and restricting ourselves to the Bell-diagonal states

of Eq. (2), we obtain the concurrence as:

C(ρ) =
C(ρ0)

cosh(γA ) cosh(γB ) + sinh(γA ) sinh(γB )κ
, (3)

where the �γA,B define the PDL in the two channels and ρ0 is the

state before PDL is applied: ρ ∝ (P A ⊗ P B )ρ0(P A ⊗ P B )†.
We define κ =

∑3
i=1 γAiγBiti , where γAi (γBi) are the com-

ponents of γ̂A (γ̂B ) along the Cartesian basis in Stokes space.

All dependence of Eq. 3 on PDL orientation is encapsulated in

κ alone. Much of the remainder of this paper is focused on un-

derstanding how κ changes with the relative orientation of PDL

elements, and how this affects the concurrence of the overall

state.

It is interesting to note that when PDL is present in only one

of the two quantum channels, the concurrence expression in

Eq. (3) simplifies to an orientation-independent form. Indeed,

setting one of the two PDL elements, in this case γB , to zero in

Eq. (3) results in:

C(ρ) =
C(ρ0)

cosh(γA )
. (4)



KIRBY et al.: EFFECT OF POLARIZATION DEPENDENT LOSS ON THE QUALITY OF TRANSMITTED POLARIZATION ENTANGLEMENT 97

Therefore, the entanglement in a system consisting of a Bell-

diagonal state and a single PDL element cannot be changed

through rotation of that PDL element alone. Intuitively, this

rotational invariance can be understood as a result of the de-

polarized nature of the individual photons in a Bell-diagonal

state.

We study the dependence of the concurrence on PDL ele-

ments (Eq. (3)) for three following special cases of the Bell-

diagonal states that are of physical importance. Those are Bell

states, Werner states, and rank-2 Bell-diagonal states. Werner

states result from the often physically-realized case of adding

completely depolarized noise to both photons of a Bell state.

Rank-2 Bell-diagonal states commonly arise from bit-flipping

errors, general coherence or, in some cases, from application of

PMD [23]. Now, we consider the corresponding elements ti of

the correlation matrix T when each of these classes of states is

written in the form of Eq. (2). The Bell states, which were in-

troduced above as |Ψ±〉 and |Φ±〉, satisfy |ti | = 1 for all i when

written in the form of Eq. (2). Werner states are conventionally

expressed as:

ρW = ν|χ〉〈χ| + 1 − ν

4
I4 , (5)

where |χ〉 is any one of the Bell states. In the form of Eq. (2), they

produce |ti | = ν for all i. Traditionally, Werner states are de-

fined with χ = Ψ−; here, however, we refer to the states defined

in Eq. (5) as Werner states since they are equivalent to traditional

Werner states up to local rotations and therefore behave simi-

larly in the following analysis. Finally, the rank-2 Bell-diagonal

states, also known as edge states [27], are expressed as:

ρR2 =
1 + CR2

2
|χ1〉〈χ1 | +

1 − CR2

2
|χ2〉〈χ2 |, (6)

where χ1 and χ2 are again any of the four Bell states, as long

as χ1 
= χ2 , and CR2 is the concurrence of the rank-2 state.

These states have a single component |ti | = 1, and the other

two |tj 
=i | = CR2 .

B. Dependence of Entanglement on Polarization Dependent

Loss Orientation

The dependence of concurrence on PDL orientation can be

understood through an examination of κ alone, since all orienta-

tion dependence of Eq. (3) is contained within κ. Therefore, the

range of values that κ can take for a given system determines

the range of concurrences that are accessible through local ro-

tations on that system, given an initial Bell-diagonal state and a

separate channel for each qubit with arbitrary PDL. In an effort

to characterize κ and the range of values it can take, we rewrite

κ in a vectorial form, allowing the coherence matrix to be in-

terpreted as an operator acting on the unit Stokes vectors of the

PDL elements:

κ =

3
∑

j=1

γAjγBj tj = (T γ̂A ) · γ̂B = ||T γ̂A || cos(θ), (7)

where || · || indicates the vector magnitude and θ defines the

angle between T γ̂A and γ̂B . We note that our choice to group

T and γ̂A in Eq. (7) is arbitrary, and we could instead chose γ̂B

Fig. 1. Concurrence as a function of PDL orientation (κ) and PDL magnitude
in channel A (pA ). Colored surfaces corresponds to Werner states with different
ν as indicated. In (a), the PDL of channel B is fixed at pB = 3 dB. In (b), the
magnitudes of the two PDL elements are kept equal.

for the following analysis. Since the Bell-diagonal states have

diagonal coherence matrices, the transformations given by T

can consist of both reflections and reductions in length along all

three axes in Stokes space.

We can now use a geometrical interpretation of Eq. (7) to find

the extreme values of κ. From Eq. (7), we see that the extreme

values depend on the magnitude of ||T γ̂A || and the orientation

of γ̂B with respect to T γ̂A , represented by the variable θ. The

magnitude of ||T γ̂A || is maximized when γ̂A is along the di-

rection in Stokes space corresponding to the largest |ti | value in

T , so that ||T γ̂A || = Max [|ti |]. If two of the |ti | equally take

the largest value, then γ̂A can point anywhere in the plane de-

fined by them. If all three |ti | are equal, then no orientation is

preferred. The extreme values of κ, which we denote as κE , are

therefore given by:

κE = ±Max [|ti |], (8)

where the ± corresponds to θ = 0, π. As mentioned in

Section II-A, Bell states satisfy the condition that all three

|ti | = 1; hence, it follows from from Eq. (8) that κE
Bell = ±1.

On the other hand, Werner states satisfy the condition that all

|ti | = ν, thus κE
W = ±ν. As for rank-2 Bell-diagonal states,

they have a single |ti | = 1 and two |tj 
=i | = CR2 . In this case,

the range of κ again returns to that of a Bell state and is given
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Fig. 2. Variation in concurrence of Werner states as a function of ν along lines
of κ = ±ν in Fig. 1. The red lines correspond to Fig. 1(a) and the blue lines to
Fig. 1(b), while the solid lines are for κ = −ν and the dashed are for κ = ν .

by κE
R2 = ±1, even though the state is mixed and imperfectly

entangled.

Now, we visualize how the range of κ impacts the concur-

rence of entangled states. In Fig. 1, we plot Eq. (3) as a function

of both PDL and κ. Colored surfaces represent different initial

states, each being a Werner state with ν = 1, 0.68, 0.44, 0.33.

The gradual progression of colors from green to blue corre-

sponds to decreasing ν and an increasing amount of noise. The

topmost green surface is the ideal scenario of the initial state

being a Bell state (ν = 1). In Fig. 1(a), the PDL magnitude in

channel B, notated in dB as pB = γB (20 log10e), is held fixed

at 3 dB, while the magnitude of the PDL in channel A, notated

in dB as pA , is varied from 0 to 6 dB. Fig. 1(b) shows similar

surface plots, but the magnitude of pA and pB are increasing

simultaneously such that pA = pB . The κ axes should be in-

terpreted as parameterizing all possible orientations of the two

PDL elements. The red line in Fig. 1(a) is along κ = −ν = −1
for the ν = 1 surface and physically corresponds to the case

where T γ̂A and γ̂B are anti-aligned. We see that the peak con-

currence value occurs along this red line near pA = pB = 3 dB.

Likewise, in Fig. 1(b) where pA = pB , the topmost surface cor-

responding to a Bell state returns to C = 1 for the entire κ = −1
(red) line. This nonlocal cancellation of two PDL elements is

the topic of section III.

Any realistic attempt to distribute Bell states is likely to in-

clude some noise. Intuitively, the effect of PDL and its orienta-

tion should become less pronounced in the presence of depolar-

ized noise, such as in the case of Werner states. Indeed, in both

panels of Fig. 1, it is apparent that the overall effect of PDL

alignment, as parameterized by κ, reduces as the Werner state

becomes more mixed. This is evident by an overall flattening of

the surfaces as ν decreases and by comparison of the red and

purple lines along the κ = −ν edges of each plot. The flattening

is represented more clearly in Fig. 2, where the difference be-

tween the maximum and minimum concurrences of Fig. 1(a)

and (b) along the κ = ±ν lines are plotted as a function of ν.

The dashed (solid) lines represent the κ = ν (κ = −ν) lines,

and the red and blue lines correspond to the system configu-

rations of Fig. 1(a) and (b), respectively. The dashed and solid

lines can be thought of as representing the cases where the two

PDL elements, one in each channel, nonlocally add together or

cancel each other out, respectively. We see that the dependence

of concurrence on PDL is relatively small in all cases, and that

the effect gets smaller as the state becomes noisier. Interestingly,

when ν = 1, which corresponds to a Bell state, the solid blue

line also goes to zero. This same effect can be seen in Fig. 1(a)

where pA = pB = 3 dB, and is the topic of the next section.

Therefore, the solid blue line shows that the concurrence of a

state becomes less dependent on PDL orientations as ν → 0 and

that two nonlocal PDL elements can be arranged such that they

do not reduce the concurrence when ν → 1.

III. NONLOCAL COMPENSATION OF POLARIZATION

DEPENDENT LOSS

In this section, we further explore how the concurrence of

a state is fully or partially restored when two PDL elements,

one acting on each qubit of the entangled state, are properly

aligned. We term this nonlocal PDL compensation and derive the

optimal magnitude of PDL that must be inserted into one channel

in order to recover the maximum amount of the concurrence

lost due to PDL in another channel. We further give explicit

expressions for the maximum amount of concurrence that can be

recovered with this strategy and describe under what conditions

the compensation is perfect.

It is well-known that, in the classical case, two partial po-

larizers of equal magnitude and orthogonal orientation placed

in series negate each other and act as pure loss. However, it is

somewhat surprising to envision two nonlocal polarizing ele-

ments, that is two elements in separate channels, acting as pure

loss in a similar fashion. As we describe below the nonlocal

compensation of PDL can be viewed in a manner analogous to

two polarizers placed in series with the cancellation mediated

by the nonlocal nature of the state itself.

A. Optimal Polarization Dependent Loss Element for

Nonlocal Compensation

Given a system configuration with a PDL of magnitude γA in

one channel, we determine the optimal magnitude γopt
B of a PDL

element inserted in the other channel, in order to maximize the

concurrence of the final state after each photon is transmitted

through its respective channel. To achieve this, we minimize the

denominator of Eq. (3) while assuming a fixed γA . Although

minimization can be performed simultaneously over both κ and

γB , it is not necessary. For all γA,B ≥ 0, cosh(γA ) cosh(γB ) >
sinh(γA ) sinh(γB ) ≥ 0. Therefore, since |κ| ≤ 1, the expres-

sion cosh(γA ) cosh(γB ) + κ sinh(γA ) sinh(γB ) is minimized

when κ is negative and takes an extreme value (κE ). Therefore,

the denominator of Eq. (3) only needs to be minimized over γB ,

assuming a fixed γA and the minimum possible κ = −|κE |.
To facilitate the minimization, we define the denominator

as a single variable function f(γB ) = cosh(γA ) cosh(γB ) −
|κE |sinh(γA ) sinh(γB ), and solve

df (γB )
dγB

= 0, resulting in:

γopt
B = tanh−1

(

|κE |tanh(γA )
)

. (9)
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Fig. 3. (a) Concurrence as a function of the magnitude of the compensating
PDL element pB for a specific Werner state. Colors denote a varying amount of
fixed PDL in channel A, pA . The vertical dashed lines indicate the optimal pB

value corresponding to maximum concurrence. (b) Optimal compensating value

pop t
B in channel B vs the magnitude of PDL pA in channel A for several Werner

states with an increasing amount of noise. Symbols in both plots correspond to
the optimal pB values for the ν = 4

5 case.

Therefore, optimal nonlocal compensation occurs when the

PDL elements are oriented such that κ = −|κE | and the com-

pensating element is tuned to the value γopt
B given in Eq. (9). An

inability to obtain either of these requirements results in a state

with concurrence less than the optimal case; however, the de-

pendence of concurrence on each of these parameters is slowly

varying, as seen in Figs. 1 and 2.

To demonstrate how the optimal magnitude depends on the

input state and how this affects the concurrence of the final

state, we return to the three example cases from before: Bell

states, Werner states, and rank-2 Bell-diagonal states. Using the

κE values found in Section II-B and assuming a fixed PDL of

magnitude γA in one channel, we find γopt
B = γA for Bell states

and rank-2 Bell-diagonal states, which concurs with the results

found in [28], [29].

Alternatively, for Werner states, we find that the magni-

tude of the optimal compensating PDL element is less than

that of the applied PDL element, and is given by γopt
W =

tanh−1 (ν tanh(γA )). This is illustrated in Figs. 3(a) and (b).

In Fig. 3(a), we plot the concurrence of the same Werner state

with ν = 4
5 for four different cases of fixed PDL magnitude in

channel A denoted by shades of blue (pA = 1, 1.5, 2, 2.5 dB),

each as a function of the magnitude of another PDL element in

channel B. The optimal pB for each fixed pA are denoted by the

vertical dashed lines and correspond to the peak concurrences.

The values of these peak concurrences are derived in the next

section. The optimal compensating value popt
B for the set of ap-

plied pA values considered in Fig. 3(a) ranges from about 0.8 dB

to 2 dB and is always less than pA .

In Fig. 3(b), we plot the magnitude (in dB) of the optimal

compensating element popt
B , as derived from Eq. (9), as a func-

tion of the applied PDL element pA . Lines of different shades

represent a family of Werner states with a gradually increasing

amount of noise. The line of ν = 4
5 corresponds to the Werner

states in Fig. 3(a). To better illustrate the connection between

the two plots, we note that the circles in Fig. 3(a) denote four

triplets of values for pA , popt
B , and C. We use the same symbols

and colors to indicate corresponding pairs of pA and popt
B in

Fig. 3(b). As an explicit example, we consider pA = 2 dB for

the Werner state with ν = 4
5 , as used in Fig. 3(a). For this point,

we see from Figs. 3(a) and (b) that the maximum concurrence

after nonlocal compensation occurs when pB = 1.59 dB. From

this figure, it is clear that the magnitude of the optimal com-

pensating element decreases as the Werner state becomes more

mixed.

B. Maximum Possible Concurrence After Nonlocal

Compensation

Using the optimal compensating elements derived in the pre-

vious section, we calculate the concurrence of the final state

after nonlocal compensation using Eq. (3). For Bell states, the

final concurrence after optimal nonlocal compensation is again

given by Copt
Bell = 1. Therefore, a Bell state which is degraded

by PDL in one channel can be brought back to a fully entan-

gled state with the insertion of an equivalent amount of properly

aligned PDL in the other channel. For the case of Werner states,

we find that:

Copt
W =

3ν − 1

2 cosh(γA )
√

1 − ν2 tanh2(γA )
, (10)

for ν > 1/3, meaning that the initial state is entangled. The

peak points of Fig. 3(a) correspond to the value of Eq. (10) for

each scenario. Finally, we find the surprising result that a rank-2

Bell-diagonal state with initial concurrence CR2 can be brought

back to this value via optimal compensation, i.e. Copt
R2 = CR2 .

Therefore, it is still possible to perform perfect nonlocal com-

pensation, despite the fact that the rank-2 state is imperfectly

entangled and mixed. This is a practically significant result be-

cause Bell states undergoing common decoherence mechanisms

in optical fibers become rank-2 Bell-diagonal states [23].

More generally, the concurrence of a Bell-diagonal state ρBD

after optimal nonlocal compensation is given by:

Copt
BD =

cosh(γopt
B )

cosh(γA )
C(ρBD ), (11)

where the ratio
cosh(γ o p t

B )

cosh(γA ) ≤ 1.
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Fig. 4. (a) Experiment schematics. (b, c) Concurrence as a function of κ and
applied PDL in channel A, pA . Symbols show experimental data, and surface
plots show theory. Blue denotes the presence and green denotes the absence of
an additional differential group delay of τ = 6.6 ps in channel A. The PDL
of channel B is constant, pB = 1.4 dB, in (b) and equal to that of channel A,
pA = pB , in (c).

IV. EXPERIMENT

A diagram of our experiment is shown in Fig. 4(a). Our fiber-

based testbed includes an entangled photon source (EPS) [30],

two detector stations (DS), and PDL emulating/compensating

modules (PDLA, PDLA2, PDLB) that are inserted into channels

A and B as needed. All of the modules are fully tunable in Stokes

orientation and PDL magnitude (0 dB − 7 dB). In addition to

PDL, one of the modules (PDLA2) also introduces a differential

group delay of τ = 6.6 ps.

Signal and idler photons are created by the EPS via four-

wave mixing by pumping a dispersion shifted fiber (DSF) with a

50 MHz pulsed fiber laser operating at 193.1 THz [31], [32]. The

DSF is arranged in the Sagnac configuration using a polarization

beam splitter (PBS), and a WDM demux placed at the output

of the Sagnac loop filters out the pump and separates photons

spectrally into 100 GHz-spaced ITU outputs [32]. The average

number of generated photon pairs per pulse is tunable within

a range of 0.001 − 0.1 [33], [34]. Detector stations consisting

of a polarization analyzer (PA) and an InGaAs single photon

detector (SPD) detect photons at the output of channels A and

B. The detectors have a detection efficiency of η ∼ 20% and

a dark count probability of ∼4 × 10−5 per gate. Automated

FPGA-based controller software performs full polarization state

tomography [35], [36] in order to determine the density matrix

of the state generated by the EPS.

To characterize our source, we connect both detector stations

directly back-to-back (B2B) to it, perform state tomography,

and then calculate the concurrence of the resulting density ma-

trix. The B2B concurrence is 0.925 ± 0.008. Noise photons

generated by Raman scattering in the DSF and pump leakage

into the entangled photon band are primarily responsible for

the decrease of the concurrence from unity [32], [37]. In order

to consider the practical case of a Bell state partially degraded

by PMD, we utilize a special PDL emulator (PDLA2) between

the EPS and detector station in channel A. This emulator has a

fixed differential group delay of τ = 6.6 ps in addition to vari-

able PDL. When applying PMD to channel A with PDLA2 (but

setting the PDL magnitude of PDLA2 to zero), the measured

state is a rank-2 Bell-diagonal state with a reduced concurrence

of 0.690 ± 0.010.

In order to verify the dependence of entanglement quality on

applied PDL derived in Section II, we start with an experimental

setup that has a variable PDL module inserted into channel A,

shown as the red PDLA box in Fig. 4(a), and a fixed PDL in

channel B given by pB = 1.4 dB. We set the PDL of channel A to

five different PDL magnitudes of 1.25, 2.55, 3.7, 5.1, and 6.3 dB

using PDLA. At each PDL value, the orientation of the PDL of

channel A in Stokes space is varied such that the the vector �γA

covers the Poincare sphere. The state’s concurrence C and the

variable κ are calculated for each setting from density matrices

obtained by performing state tomography. The resulting data

are plotted as green points in Fig. 4(b) along with a surface plot

that is similar to those presented in Fig. 1. The green surface is

calculated from Eq. (3) with an initial concurrence of C(ρ0) =
0.925, which is the experimentally-attained value with pA =
pB = 0. The chosen range of κ corresponds to the ideal case of

a Bell state: −1 ≤ κ ≤ 1.

Next, we replace the PDLA module with the module PDLA2

that has a fixed amount of first order PMD in addition to the

variable PDL. Following the same protocol as described above,

we obtain the data presented with the blue points in Fig. 4(b).

Here, the blue surface is also calculated from Eq. (3) and cov-

ers the same range of −1 ≤ κ ≤ 1, but it has an initial con-

currence of C(ρ0) = 0.690. The latter is the experimentally-

attained value of the concurrence for our rank-2 Bell-diagonal

state for pA = pB = 0. Here, PMD is addressed by considering

our state as a rank-2 Bell-diagonal state resulting from PMD

applied to one qubit of a Bell state. The applied PDL is then

considered after the application of PMD. A more rigorous treat-

ment of the interaction of PMD and PDL is planned for a future

project. For each of the two specific cases of the general Bell-

diagonal state, that is for a nearly perfect Bell state (green) and

for a rank-2 Bell-diagonal state (blue), our experimental data

is in excellent agreement with a calculation based on Eq. (3).

Thus, the data clearly support our theoretical results.

Now we modify our setup to utilize two variable PDL emu-

lators in order to demonstrate nonlocal PDL compensation, as

described in Section III. We revert back to the original setup

with no PMD; that is, PDLA and PDLB are inserted in channels

A and B respectively, but now we operate each emulator in a dif-

ferent manner. First, we set the magnitude of the PDL of channel

A to one of 15 different values ranging from 4.12–6.38 dB, and

we fix the orientation of the PDL element for each magnitude.

Then, we set the magnitude of the emulator PDLB to be equal

to the PDL of channel A. Next, we adjust the orientation of

PDLB to several different settings for each value of the PDL of

channel A using a polarization controller contained within the

module PDLB, and we perform tomography for each setting.

Once again, we calculate the concurrence C and the variable κ
from the resulting density matrices, and we plot these results

with green points in Fig. 4(c). For κ = −1, there is no decrease
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Fig. 5. Normalized concurrence C/Cm ax as a function of the DOP of photon
A for the data of Fig. 4(c). The same color scheme codes the absence (green) or
presence (blue) of PMD in channel A. The black line denotes the theory.

in concurrence for all magnitudes of pA = pB , thus demonstrat-

ing the nonlocal compensation described in Section III.

As our final setup modification, we once again replace the

PDLA module with the module PDLA2 which introduces PMD.

To investigate nonlocal PDL compensation for a rank-2 Bell-

diagonal state, we follow the same procedure described above

for 12 different settings of pA = pB ranging from 4.60–6.01 dB

and plot the results with the blue points in Fig. 4(c). Our ex-

periment proves that the initial concurrence of CR2 = 0.690 at

pA = pB = 0 is again largely restored for all experimentally

available PDL magnitudes, as long as pA = pB and κ = −1.

Finally, we consider an alternative means to determine the

optimal settings of PDLA and PDLB for nonlocal PDL com-

pensation using the reduced density matrices which describe

individual photons in the two-qubit entangled state. So far, we

have only considered maximizing the calculated concurrence,

a two-photon metric, in order to find the optimum orientation

of PDLB. Now, we examine the degree of polarization (DOP)

of an individual photon (calculated from the reduced density

matrix) of the entangled pair. The black line in Fig. 5 depicts the

theoretical normalized concurrence as a function of the DOP of

photon A. Now, consider all compensation data points shown

in Fig. 4(b). The green points in Fig. 5 show the normalized

concurrence vs the DOP of photon A for each of these points

taken without PMD. Likewise, the blue points in Fig. 5 show

the normalized concurrence vs. DOP of photon A for the data

set in which compensation was performed with PMD applied

to channel A via the emulator PDLA2. Here, the concurrence

values are normalized to the concurrence when pA = pB = 0,

such that the maximum value is given by C/Cmax = 1. Fig. 5

shows that as the DOP of photon A is decreased, the optimum

orientation of PDLB is approached, and the concurrence in-

creases, thus compensating for the effects of PDLA (or PDLA2).

The blue data of Fig. 5 are an explicit demonstration of an earlier

theory proposed in [17], [19], [20] that a two-photon mixed state

achieves its maximum entanglement under local filtering oper-

ations when the reduced density matrices become depolarized.

Furthermore, the data suggest that the depolarization of an indi-

vidual photon, found by tracing away one qubit of a measured

two-qubit density matrix, could serve as a form of feedback for

nonlocal PDL compensation.

V. CONCLUSION

We consider the deleterious effects of PDL in fiber-optic net-

works on propagating two-photon quantum states. Our rigorous

theoretical treatment encompasses a wide class of states known

as Bell-diagonal states. For these states, we establish the depen-

dence of the principal entanglement metric, the state concur-

rence, on PDL of arbitrary orientation and magnitude. We then

analyze the effects of PDL on particular subclasses of states that

could arise either from added depolarized noise or from deco-

herence during fiber propagation. Specifically, we examine the

behavior of Werner states, rank-2 Bell diagonal states, and ideal

Bell states. We further verify our theory experimentally for the

latter two cases. Finally, we examine how the PDL acting on

each photon of a two-photon quantum state interacts with each

other and how this interaction could lead to loss and recovery

of the entanglement of the two-photon state.
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