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Introduction Accumulation of impurities in the core of fusion plasmas hasdebilitating effect

on fusion reactivity; consequently a significant effort hasbeen spent to find conditions in which

core accumulation can be avoided. Additional central heating has experimentally shown to give

a flattening effect on impurity density profiles in the core, but the reasons are still not properly

understood. Recent work noted that impurity cross-field transport driven by electrostatic turbu-

lence depends on the poloidal distribution of the impurities [1, 2], and that poloidal asymmetries

may be a contributing factor to the avoidance of impurity accumulation. In this work the em-

phasis will be on the effect of radio frequency (RF) heating inthe plasma core and in particular

the study of inboard accumulation. TheE×B drift of the impurities in the presence of poloidal

asymmetries and its impact on impurity transport is studied. Impurity self-collisions are mod-

eled with a Lorentz operator and the gyrokinetic (GK) equation is solved using a variational

approach.

Model A mechanism that produces in-out asymmetries in minority ICRHheated plasma

cores is the increase of the minority density (we consider hydrogen) on the outboard side which

gives rise to an electric field that pushes the impurities to the inboard side [4]. Each parti-

cle species can be assumed to follow a Boltzmann distributionnα = nα0 exp(−eαφE/Tα) ≈
nα0 (1− eαφE/Tα), except the minority ions which are strongly affected by theRF heating.

eα is the charge andTα is the temperature of the species, andφE is the equilibrium potential.

In order to get a simple approximate expression for the poloidally varying potential it is as-

sumed that the linear expansion inZeφE/Tz of the Boltzmann distributed impurities is valid,

which is a reasonable approximation for experimentally relevant values ofZeφE/Tz. This im-

plies that the poloidal variation of the density on a flux surface ñα = nα− nα0 is given by

ñα/nα0 ≃ −eαφE/Tα. Assuming that the poloidal variation in the potentialφE is produced

by the poloidally asymmetric distribution of the heated minority ions, using quasineutrality we

obtain

nz

nz0
= exp

(
−ZeφE

Tz

)
= exp

(
− Zn̂H/ne0

(Tz/Ti)(ni0/ne0)+(Tz/Te)+(nz0Z2/ne0)

)
. (1)

Here, n̂H = n̂H(θ) represents the fraction of the hydrogen minority density which feels the

RF resonance and does not follow a Boltzmann distribution andφE is normalized so that
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ni0 +nH0 +Znz0−ne0 = 0. Since the exponent in Eq. (1) is negative, a maximum inn̂H cor-

responds to a minimum innz, hence outboard minority ion accumulation pushes the impurity

ions to the inboard side.

Applying ICRH with hydrogen minority species and with the resonance layer at the low field

side not intersecting the studied flux surface, the poloidalvariation of the potential is expected

to be sinusoidal to first order [5]. If the radial variation ofφE is ignored (i.e. toroidal rotation

neglected) we can motivate the followingansatzfor the equilibrium potential

ZeφE/Tz =−κcos(θ− δ) . (2)

Figure 1: κ as a function ofαT for car-

bon, argon and nickel withnH0/ne0 = 0.07,

nz0/ne0 = 2× 10−3, bc = 0.91, Ti = Tz =

0.85Te andr/R0 = 0.1.

For ICRH driven inboard impurity asymmetries

δ = π. We might expect that ECRH will result

in an outboard (δ = 0) accumulation of impuri-

ties, and accordingly we will present results with

both δ = 0 and δ = π. The asymmetry strength,

κ, depends on the ICRH resonant magnetic field

strengthbc = Bc/B0 (Bc and B0 are the mag-

netic field strengths at the resonance position and

the magnetic axis), on the minority temperature

anisotropyαT = T⊥/T‖ (Fig. 1) and minority con-

centrationnH0/ne. We will refer to ”in-out” and

”out-in” asymmetries as the situations when the maximum of the poloidally varying impurity

density is located at the high-field and low-field sides of theplasma, respectively.

We assume that the electrostatic fluctuations responsible for the cross-field transport do not

significantly affect the processes causing the poloidal asymmetries. The equilibrium electro-

static potential will be orderedeφE/Tα ≪ 1, but we allow forZeφE/Tz =O(1). We consider

an axisymmetric, large aspect-ratio torus with circular magnetic surfaces. The parallel dynam-

ics and the trapping of impurities due to∇‖B and∇‖φE are neglected, and for simplicity also

finite Larmor-radius effects are omitted. The non-adiabatic part of the perturbed distribution

functiongz can be obtained from the linearized gyrokinetic (GK) equation,

−i(ω−ωDz−ωE)gz − C [gz] =−i
Zefz0

Tz

(
ω−ωT

∗z
)

φ, (3)

where the notation is standard (see definitions in [3]), except for the new quantity,ωE , which

stems from theE×B drift in the equilibrium electrostatic field

ωE =− kθ

B

sθ

r

∂φE

∂θ
. (4)
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If nzZ
2/ne is of order unity or larger, impurity-impurity collisions dominate over collisions

between impurities and other species; thus it is sufficient to consider only the impurity self-

collisions. Since the motion of impurities is slow, momentum conservation can be neglected,

and we model impurity collisions,C [gz], by a Lorentz operator.

The Lorentz operator makes the distribution more isotropicin velocity space in a diffu-

sive way. The GK equation (3) contains anisotropy in the magnetic drift term, which can

be written in terms of Legendre polynomialsPl(ξ) where ξ = x‖/x denotes the cosine of

the pitch-angle andx = v/vTz represents velocity normalized to the thermal speedvTz =

(2Tz/mz)
1/2. SincePl(ξ) also are eigenfunctions of the Lorentz operator it is convenient to

write gz as a truncated Legendre polynomial series and derive an approximate variational solu-

tion gz (x,ξ) =
∑

n gn (x)Pn (ξ)≈ g0 (x)P0 (ξ)+g2 (x)P2 (ξ).

Using the quasilinear particle flux for impuritiesΓz ≃−(kθ/B)Im
[∫

d3v gz φ∗
]
, the normal-

ized zero-flux impurity density gradienta/L0
nz (the peaking factor) can be obtained from the

requirement that the flux surface average of the particle fluxvanishes〈Γz〉 = 0. Herea is the

outermost minor radius,Lnz is the density scale length and〈. . .〉= (1/2π)
∫ π
−π(. . .)dθ.

By employing the constant energy resonance approximation [v2
⊥+2v2

‖ → 4(v2
⊥+ v2

‖)/3] in

ωDz and expanding in the smallness of1/Z, an approximate analytical solution for the peaking

factor can be constructed. Returning to the GK equation (3) wenote thatωDz/ω, ωT
∗z/ω ∝

1/Z, while ωE can be as large as|ω|, seemingly independent ofZ. However our ordering

ZeφE/Tz ∼O(1) requires thatωE/ω is formally∼ 1/Z. Keeping only terms to the first order

in 1/Z we find that collisions disappear when taking the density moment, and an approximate

expression for the impurity peaking factor is given by

a

L0
nz

= 2
a

R
〈cosθ + sθ sinθ〉φ + sκ

a

r
〈θ sin(θ− δ)〉φ , (5)

where〈· · ·〉φ =
〈
· · · N |φ|2/ [(ωr−ωE)2 +γ2]

〉
/
〈
N |φ|2/ [(ωr−ωE)2 +γ2]

〉
and N (θ) =

exp[κcos(θ− δ)]. The second term in Eq. (5) stems from theE×B drift, and shows the explicit

dependence ons andκ.

Simulations The perturbed electrostatic potential and eigenvalues were obtained by linear

electrostatic gyrokinetic initial-value calculations with GYRO [7], assuming that they are un-

affected by the presence of a weak poloidal variation of the electrostatic potential and the

poloidally asymmetrically distributedtrace impurity species. In the simulations the following

local profile and magnetic geometry parameters were used:r/a = 0.3, R/a = 3, kθρs = 0.3,

q = 1.7, a/Lne = 1.5, Ti/Te = Tz/Te = 0.85, a/LTe = 2, a/LT i = a/LTz = 2.5, s = 0.22,

ρs/a = 0.0035 andν̂ei = 0.0058cs/a. Nickel (Z = 28) impurity was assumed to be present in
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trace quantities, in the sense thatZnz/ne ≪ 1 (nz/ne = 2×10−3 in the simulations). However

note thatZ2nz/ne∼ 1. Figure 2 shows how the peaking factor for nickel varies withasymmetry

strength and magnetic shear.

Conclusions The main results of the paper are summarized as follows. A poloidally asym-

metric equilibrium electrostatic potentialZeφE/Tz of order unity can yield a significant reduc-

tion of the impurity peaking factor. The asymmetry and magnetic shear are the two most impor-

tant parameters that govern the peaking of moderate and high-Z impurities. This dependence

is illustrated in Fig. 2, and its importance can be understood from the approximate solution in

Eq. (5) whereκ ands appear as explicit factors. Figure 2 also indicates that theE×B drift

frequency, in the poloidally varying electrostatic potential, is a major contributing factor to the

reduction of the peaking factor, since the change is small whenωE is neglected. Furthermore

it is clear that, fors ≥ 0, in-out asymmetries lead to a decrease in peaking factor, while out-

in asymmetries increase it. Other plasma parameters, such as collisionality, ion and electron

temperature gradients and electron density gradient do notinfluence the peaking factor signif-

icantly. Experimentally these results could be checked by magnetic shear scans in discharges

with low field side ICRH.

a. b

Figure 2:Peaking factor for nickel as a function of asymmetry strength (a) and shear (b). Symmetric

impurity density (red, solid), out-in asymmetry (blue, dashed), and in-out asymmetry (black, dotted).

Symmetric case benchmarked toGYRO results (red diamonds). In (a) green dash-dotted curve represents

in-out asymmetry withωE neglected. In (b) the analytical approximation is given for comparison.
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