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Abstract Graphene nanoplatelet (GNP) modified epoxy nanocomposites are becoming attractive

to aerospace due to possible improvements in their mechanical, electrical and thermal properties at

no weight cost. The process of obtaining reliable material systems provides many challenges,

especially at larger scale (a volume effect). This paper reports on the main fabrication stages of

GNP-based epoxy composites, namely (i) pre-dispersion, (ii) dispersion, and (iii) post-dispersion.

Each stage is developed to show the interest and potential it delivers for property enhancement.

Chemical modification of GNP is presented; functionalisation by Triton X-100 shows elastic

modulus improvements of the epoxy at low particle content (≤3%). The post-dispersion step as an

alignment of GNP into the epoxy by an electrical field is discussed. The electrical conductivity is

below the simulated percolation threshold and an improvement of the thermal diffusivity of 220%

when compared to non-oriented GNP epoxy sample is achieved. The work demonstrates how the

addition of functionalised graphene platelets to an epoxy resin will allow it to act as electrical and

thermal conductor rather than as insulator
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1 Introduction

Composite materials are used in many lightweight applications, mainly in transport (aerospace,

automotive) and energy (oil, gas & wind turbine) industries. Nanoparticles can be used to

produce composites in two ways: they can replace the traditional fibre reinforcement, or they

can be added to the traditional matrix reinforcement system. Carbon nanoparticles - such as

graphene, graphene nanoplatelets (GNP) or carbon nanotubes (CNT) - are well known for their

outstanding mechanical, thermal, electrical and optical properties. Graphene is a material

obtained by isolation of one sheet of graphite. The first characterisation of a single layer graphene

was completed by Geim and Nosovelov in 2007 [1]. Using the Bscotch tape^ method (mechan-

ical exfoliation), they proved theoretical properties of graphene such as graphene’s band structure

and its linear relation of dispersion. Since this discovery, further research was completed to

exploit the exceptional properties of this material [2, 3]. Graphene is a 2D material; if we

consider only one single layer graphene (SLG), it compounds of sp2 carbon atoms which form a

honeycomb structure. By hybridization of its atoms, SLG possesses a very high carrier charge (≈

250000 cm2/V.s) and thermal conductivity (≈ 3000 to 5000 W/mK). Due to its morphological

form, graphene has a Young’s modulus of 1 TPa tensile strength approaching 130 GPa tensile

strength with a density of 0.77 mg/m2 [4]. However, it is extremely difficult to produce

inexpensive graphene monolayers without defects, so derived forms of graphene are used with

lower properties, such as GNP. GNP are generally composed of ten to a hundred layers of

graphene, which leads to lower properties than SLG, but retains some of these including high

electron mobility, and high mechanical and thermal performance. The platelet shape of GNP

results in edges that are more readily susceptible to chemical modification for an enhanced

dispersion, and it provides lower thermal contact resistance, achieving a higher thermal conduc-

tivity when included in a polymer matrix. In terms of mechanical behaviour, GNP exhibit good

tensile modulus of the order of 1 TPa, but possess a lower bending resistance [5].

1.1 Fabrication Challenges

The main challenge in manufacturing reproducible nanocomposites is achieving a good

control at the nanoscale. To use nanocomposites in real applications, the network of nanopar-

ticles should be perfectly controlled during manufacture, so it is important to control the

dispersion and interaction between the reinforcement and matrix. There are many parameters

during manufacture that can affect the final properties of the nanocomposite. These include the

choice of dispersion technique, processing time, chosen curing cycle, type of nanoparticles,

ratio of nanoparticles to matrix, etc. [6–8]. The effects of changing each of these parameters,

and more, have been investigated over the last few years and are still not well understood [3,

9]. During manufacturing, it is possible to separate the process in three main categories: (i) pre-

dispersion, (ii) mechanical dispersion, (iii) and post-dispersion stage.

In the pre-dispersion manufacturing step, two sub-stages can be identified: (a) simulation,

and (b) functionalisation of nanoparticles. Using simulation in physics allows the number of

experiments to be reduced and thus time and cost for development at laboratory and industry

scale by linking theory and experimentation [10–16]. Functionalisation of nanoparticles, when

they are dispersed in an epoxy resin, could have two aims: improving the dispersion quality by

decreasing the interaction between nanoparticles [17–19], and improving the mechanical

properties of the composite by improving the interfacial bonding between matrix, nanoparti-

cles and micro-reinforcement [20–23]. When nanoparticles are dispersed in an epoxy resin,
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they have a tendency to re-agglomerate and create only weak bonds with the epoxy molecules

by Van der Waals interaction. When the composite is loaded, stronger bonds are required at the

interface (such as hydrogen bonds) for efficient load transfer between the epoxy and nano-

reinforcements [24]. Hydrogen bonds are formed between carboxyl groups in the epoxy

molecule and amino groups in the hardener molecule during polymerisation to form a strong

tri-dimensional network. Many studies have focused on using these chemical groups or their

derivates for the functionalisation of GNP to form stronger interfacial bonds. However, the

electrons transport is known to appear mostly on the surface of GNP or CNT [25], so the

surface functionalisation can decreases their electrical properties. The choice of functionalisa-

tion will depend of the required properties of the composites and its application.

The dispersion step is a crucial fabrication phase for nanocomposites since the tendency of

GNP to stack together and form agglomerate reduces their properties and thus the final product

[7, 26]. The mechanical dispersion of CNT has been widely studied [27, 28] and can be extend

to GNP due to their similar composition and structure.

The post-dispersion step involves control of the nano-network formation before or during

the curing process. The alignment of nanoparticles can change and enhance properties of the

nanocomposite and obtain preferential orientation properties. Nanoparticles within a polymer

often have a random orientation, which can cause random or anisotropic mechanical, electrical,

and thermal conductivity of the nanocomposite. Many applications of nanocomposites require

preferential orientation such as fracture toughness decreased [29] or deicing property in aircraft

[30]. To achieve this, it is important to easily process and control the nano-network formation

to manufacture composites with one or several preferential orientation (s) controlled by a

relatively simple process. Some studies have been conducted on the orientation of nanopar-

ticles in a matrix using different techniques such as infiltration [31], shear force [32],

mechanical stretching [33], electrospinning [34], in-situ polymerisation, or by use of a

magnetic or electric field [35].

Figure 1 shows the different steps of the manufacture of GNP/epoxy composites. Many

parameters are involve in the manufacture of advanced multifunctional composites based on

GNP/epoxy resin; The simulation requires higher development to link theory, to reduces time

and cost production. Reducing tries and time for development would allow researcher and

industry to understand and develop large scale nanocomposite such as wing or fuselage for

aircraft. Predict failure of nanocomposites and proof this failure by simulation and testing will

lead to remove the fear of composites in aerospace industry. Define a good functionalisation

depending of the product requirement will lead to a wide range of application, from hard joint

to high flexible composites with lower strength [36].

The dispersion parameters should be chosen based on the agglomeration tendency and the

level of dispersion/damages tolerated for the final nanocomposites. This, therefore, is highly

dependent on the initial properties of nanoparticles and matrix, and the interaction between

them (e.g. resin viscosity, induced temperature, size and shape of nanoparticles, functionali-

sation, etc.). The post dispersion treatment of these composites can bring high isotropy and

improvement of several properties such as better electrical conductivity [37], reduced fracture

toughness for fibre composites [38], but is also dependant on the previous manufacturing steps

used. In addition to the mentioned parameters, there are several such as temperature and

nanoparticle quality whose effect on the properties of nanocomposites has not been fully

investigated. This non-exhaustive list shows that each step of the manufacturing process

influences on the following step and final composites properties. To obtain a nanocomposites

with high specific properties, each parameter has to be perfectly controlled.
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Fig. 1 A non-exhaustive list of stages for the fabrication of GNP/epoxy nanocomposites
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This paper presents a review of the three steps of manufacturing graphene/epoxy nano-com-

posites. The possible pre-treatments of nanoparticles before dispersion are introduced, and their

influence on the final nanocomposite properties discussed. Then, the main dispersion techniques

and their parameters are described. To finish on the possibilities to align the nanoparticles after the

dispersion (as post-dispersion step) to obtain preferential direction properties. The mechanical

properties of functionalised GNP/epoxy composites show improvement of the interfacial bond,

and alignment ofGNP using an electrical field show an improvement in thermal diffusivity of 220%

compared to non-orientedGNP/epoxy nanocomposites. Raman spectroscopy and scanning electron

microscopy (SEM) are used to confirm the formation of chain structure. The influence of each

parameter, and its influence on the final properties of the composites are discussed. This work

confirms that the number of parameters and processes available to manufacture advanced multi-

functional graphene/epoxy nanocomposites presents many challenges as well as future applications.

2 Manufacture of Nano-Modified Epoxy Resin

2.1 Chemical Modification of Graphene Nanoparticles Before Dispersion

into the Epoxy

A potential way of improving the properties of graphene/epoxy nanocomposites is to add a

chemical group on the surface or the edge of the GNP. Graphene has a poor chemical interaction

with epoxy resin, and has the tendency to stack together with other graphene particles by Van der

Waals interactions; this reduces the quality of the dispersion and thus the final composite properties.

The addition of a chemical group onto the particles is called functionalisation. However, it is

important to distinguish partial functionalisation (edge functionalisation) with initial aim of

improving interfacial bonding between matrix and GNP. And addition of surfactant which is a

total surface functionalisation of GNP in a solvent to initially improve the dispersion quality.

2.1.1 Surfactant

Surfactants are molecules consisting of hydrophobic and hydrophilic groups. They reduce the

surface tension and improve compatibility between nanoparticles and solvent. Depending of

the nature of surfactant used, it may act by steric repulsion force, coulombic attraction,

physical adsorption or hydrogen bonding [39, 40]. Two categories of surfactant exist: (i) ionic

e.g. sodium dodecyl sulphate (SDS) [18], sodium dodecyl benzenesulfonate (NaDDBS) [41,

42]; and (ii) non-ionic e.g. Triton X-100 [17, 19].

Addition of a surfactant increases the solubility of the graphene in a solvent as well as

the compatibility between the epoxy resin and nanoparticles [40]. The physical adsorp-

tion of the chemical group induces less damages onto the particles than a classic

functionalisation which makes this chemical modification really attractive for graphene/

epoxy nanocomposites [24]. Only a few studies have been conducted on the treatment of

GNP with a surfactant [17, 18, 42]. However, due to the close structure between CNT

and GNP, previous studies made on CNT can be used as a base and inspiration for the

functionalisation of GNP. Some studies were made on the advantages of using one kind

of surfactant compare to the other [40, 42]. Both categories show similar results, but

ionic surfactant requires determination of the zero point of charge of the particles and to

modify their surface charges [19, 41]. The chemical structure of the surfactant, such as
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the polarity of the head group or the length of the alkyl chain, determines the influence

on the dispersion quality [42]. Bai et al. [43] found that the shorter the hydrophilic

segment of surfactant Triton X, the higher the suspendability of the nanoparticles, with

the best adsorption quality obtained with Triton-114. Richa et al. [40] studied four

different surfactants: Triton X-100, Tween 20, Tween 80, and SDS. Triton X-100 showed

the highest dispersion power over other surfactants due to its benzene ring, which

enhances the adsorption on nanoparticles by the π-π interaction. Another study by Islam

et al. [42] indicated that NaDDBS has better dispersion ability than Triton X-100. The

head group of the NaDDBS, smaller than the head group of the Triton-X, introduces

more charge repulsion and thus a better dispersion. Moreover, Gong et al. [44] found that

the addition of surfactant induced higher glass temperature transition, and elastic mod-

ulus by improving the interfacial bonding between the nano-reinforcements and the

epoxy resin. The improvement of the electrical and mechanical properties of the nano-

composites by Triton X-100 was also demonstrated by Geng et al. [20].

2.1.2 Functionalisation

To improve the mechanical properties of the nanocomposites, it is necessary to improve the

quality of the nanoparticle/epoxy interface. The most common and logical way is to bond the

surface of GNP with a functional group which matches the matrix [45]. Prolongo et al. [46]

revealed the importance of surface functionalisation by studying the effects on non-

functionalised GNP on the properties of GNP/epoxy nanocomposites. They showed that,

compared to neat epoxy, composites have a constant tensile modulus, and lower tensile

strength. The poor surface interaction between the particles and the matrix hinders the load

transfer from the epoxy to the reinforcements. Therefore, the nanoparticles act as stress

concentrators and deteriorate the mechanical properties of the epoxy. Despite the inert surface

of graphene, Sharma et al. [47] showed that some chemical groups can be reactive to it. The

effect of bromine functionalised GNP on the mechanical and electrical properties of compos-

ites was also studied [22]. The presence of bromine caused the formation of ionic and covalent

bonds with the matrix, improving the flexibility of the composites, and the electrical conduc-

tivity. However, some studies [25, 48–50] have shown that the surface functionalisation of

GNP can also decrease the electrical properties of the nanocomposites compared to when un-

modified GNP is used. As the electron displacement is known to occur mainly on the surface of

graphene, highly functionalising the surfacemight increase themechanical properties but decrease

the electrical properties of the final product. The functionalisation of nanoparticles is an important

pre-step in the manufacture of nanocomposites. It influences the final properties of nanocompos-

ites. Several studies [27, 45, 51–55] show modification in the mechanical or electrical properties,

and thus functionalised GNP can be used for a wide range of application, depending of the

specific requirements such as high tensile stress, flexural strength or high electrical conductivity.

2.2 Dispersion Methods

The dispersion of nanoparticles is the major step in the manufacture of graphene based

nanocomposites [6]. Due to their small dimension, nanoparticles possess a high surface

interaction and have a tendency to stack together and form agglomerates, decreasing the

properties of the nanocomposites. It is then necessary to use some dispersion techniques to

reduce the agglomerates and obtain a homogeneous solution for stable properties of the
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nanocomposites. Three main techniques are used to disperse GNP into epoxy: (i) sonication;

(ii) shear mixing; and (iii) three roll mill or calendar process.

Sonication uses the compression and decompression energy induced by ultrasound to break

the Van der Waals interactions between graphene nanoplatelets. This leads to a reduction in the

size of agglomerates and particles. However, sonication can introduce some defects into the

nanoparticles, which influence the final nanocomposites properties, and it cannot be used for

much longer than 30 min [8]. The variable parameters of this technique are the shape of the

probe, the amplitude (power), the time, and the temperature.

Shear mixing uses the shear forces induced by rotation of a propeller to break the

agglomerates and obtain a homogeneous solution despite inducing difficulties for the

degassing of the resin [6, 56]. The variable parameters of this technique are the time,

the propeller rotation speed, propeller geometry, and temperature.

The calendar process also uses shear force mixing. The first and last rolls rotate in the same

direction, and the middle roll rotates in the inverse direction. The gaps between rolls are

adjustable which allows regulation of the final dispersion of composite. However, the size of

GNP would be too small in relation to the minimum gap between two rolls. This fact leads to

not prevent a total agglomeration of GNPs and orientate slightly the larger agglomerate [57].

Often, a combination of two dispersion techniques has been used to obtain the best

dispersion quality [27, 28, 57, 58], however in some cases it is possible to obtain the same

result with only one technique of dispersion. [59]. Meanwhile, some results in the literature

showed variable techniques and results which are dependent of other parameters such as the

resin viscosity, initial size, shape and properties of the nanoparticles [60]. Dispersion of

nanoparticles by a mechanical technique see presents many challenges for obtaining reliable

results; it is necessary to overcome these challenges before attempting to reproduce the

processes on an industrial scale [3, 9].

3 Post-Dispersion: Alignment of Nanoparticles

To obtain the required properties, the GNP/epoxy mixture has to be homogeneous

and well dispersed before the curing process. However, some applications benefit

from alignment of the nanoparticles to improve preferential orientation properties.

Firstly, giving a preferential orientation to the nanoparticles leads to anisotropic

electrical and thermal conductivity; some studies enhanced the electrical conductivity

by 10 times or more in one direction, compared to the other two [37, 61]. This

orientation reduces the percolation threshold required for a nanocomposite to be

conductive. Increasing the length alignment in one direction reduces the number of

particles needed to create a path from one side of the composite to the other. This

allows a lower loading of nanoparticles to be used, thus decreasing the composite

cost and likelihood of re-agglomeration. In this paper, two techniques of alignment

are discussed: (i) electric field [25, 26, 37, 61]; and (ii) a magnetic field [62–69]

alignment.

3.1 Alignment by Electric Field

Martin et al. [70] studied the orientation of CNT in an epoxy resin under an electric field. They

noticed that inside an epoxy system, the surface of CNT is negatively charged, due to the basic
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character of the epoxy system. This charge induces an electrophoretic displacement under a

DC electric field. They found that the alignment was better under an AC field due to the

dielectrophoresis induced by the non-constant electric field and the Coulomb interaction

between the tips of the CNT. This interaction is due to the higher polarisation of the CNT in

the axis direction than the radial direction. Further studies have explored the influence of an

electric field on the alignment of CNT [25, 37, 61]. Larijani et al. [61] showed that in a

polycarbonate matrix the DC field only prevents the aggregation of CNT meanwhile the AC or

a magnetic field allows a well alignment. This alignment allows an anisotropic electrical and

thermal conductivity as well as improvement of tensile properties due to the load transfer

between the matrix and the nano-reinforcements. Wu et al. [37] studied the alignment of GNP

under an electric field and showed that the same behaviour could be observed as for CNT.

Under an AC field, the anisotropic shape of GNP induced their rotation along the direction of

the electric field, then the dipole interaction created by the non-constant field leads to an Bend-

to-end chain^ formation. With a controlled network they improved the electrical conductivity

by 7-8 orders of magnitude, the thermal conductivity up to nearly 60% and 900% for the

fracture toughness, compared to the neat epoxy [37]. To improve the alignment of particles by

applying an electric field, Prolongo et al. [25] studied the effect of surface functionalisation by

positive and negative charges. They found that both functionalisation led to a quicker and

better alignment with modified surface charges. However, when the CNT is wrapped by the

surfactant, the electrical properties of the composites decrease compared to a tip functionali-

sation of the CNTs.

The GNP alignment theory was developed by Wu et al. [37]. When the GNP are dispersed in a

dielectric matrix (i.e. epoxy resin), and subjected to a sinusoidal alternating electric field, the GNP

are polarised and gain a dipole moment due to the different dielectric properties of the GNP and the

epoxy resin. The induced polarisation and the electric field then interact together as a torque

(considering the GNP as oblate spheroids with a major radius a, and a minor radius b, the shape

anisotropy inducing a higher polarisation moment along a than the b axis) [37]:

T e ¼ E
!

� μ!¼ E⊥ � μ−E � μ⊥ ð1Þ

WhereE∥=E× sin θ andE⊥ =E× cos θ on theGNP and induce their rotation along the electric field

direction. The symbol ∥ and ⊥ refer respectively to the graphene plan direction and out of plane.

They also developed a model which determines that the time rotation is dependent on the frequency

of the applied electric field, the initial angle θ0 between theGNPmajor axis and the electric field and

the drag force applied by the resin (which is dependent of the resin viscosity). After the orientation

the GNP are submitted to a new torque [37]:

T e ¼ q � 2asinθ ð2Þ

Where q is the electric charge present at the ends of the platelet. This torque tends to attract two edges

of GNP with different charges (positives and negatives) and leads to an Bend-to-end connection^.

The time, and the speed of the chain formation is dependent of the applied field frequency, the resin

viscosity, and the number of charges on the GNP.

3.2 Alignment by a Magnetic Field

Several researcher explored the orientation of CNTs or GNPs under a magnetic field

[37, 62–69, 71, 72]. When a very strong magnetic field (≈ 7–10 T) is applied, the
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nanoparticles have the tendency to align themselves along the direction of the

magnetic field. The reason of this alignment is the difference of the parallel (χ∥)

and perpendicular (χ⊥) diamagnetic susceptibilities of the CNTs [73]. As jχ⊥j > jχ∥j,

the CNTs have a tendency to align with the magnetic field if the applied magnetic

force is strong enough to overcome the thermal energy and the Brownian motion

induced by the thermal effect. For GNP particles, as | χ⊥ | (out of plane) is either

superior to | χ∥ | (in plane) [74] the same phenomenon should be observed. In the

case of a magnetic field or an electrical field, different parameters play a role in the

alignment and displacement of the particles in a liquid. The main parameters are the

interactions between the particles, the field (magnetic or electric), the viscosity of the

resin, the time of the process, and the inter-particles interaction. To improve and

facilitate the orientation of nanoparticles, it is necessary to minimise the nanoparticles

contents and interaction between them. The field required to align them can present

challenges; using a high voltage field requires a lot of energy, complex setup, and

specific health and safety precautions. Using a less viscous matrix allows to decrease

the field required to align the reinforcements [66] but would not be suitable for

aerospace applications. To obtain this requirement, it is possible to use a low viscosity

resin or preheat the resin before, with or without the addition of the hardener. When

the hardener is added to the resin, the temperature should be high enough to reduce

the viscosity without starting the curing process. The major axis of research to

decrease the field applied, is to functionalise the CNT or GNP with specific charges

or magnetic particles. In the case of a magnetic field, a magnetic (nano) particles has

to be bonded/functionalised on the nano-reinforcement to increase the interaction with

the field. Several techniques have been developed to functionalise the nanoparticles,

for example, using magnetite as magnetic material [67–69], which has some advan-

tages as low cost, easy fabrication process, and avoid more oxidation.

4 Experimental Methods

4.1 Dispersion of Nanoparticles

Grade M25 xGnP® graphene nano-platelets were purchased from XG Sciences, consisting of

short stacks of graphene sheets in a planar form. The average thickness of 18 layers of

graphene is 6–8 nm, and a typical surface area of 120 to 150 m2 with average diameters of

25 μm. The epoxy resin (Araldite LY564) and hardener (Aradur 2954) were provided by

Huntsman. Triton X-100 ((C2H4O)nC14H22O) was purchased by Sigma Aldrich. Surfactant

was added onto the GNP by dissolving the Triton X-100 in the acetone and sonicated with the

GNP for 30 min. The epoxy was then added and the mixture was mixed at 3000 rpm for 2h.

Then, the hardener was added to the mixture, degassed in a vacuum woven and poor in a

mould and cured.

4.2 Alignment of Nanoparticles

For the alignment, an electric field was applied using a function generator Tektronix AFG 3052 to

apply a wide range of frequency and a power range from 0.01 up to 10 Vpp. The voltage generator
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was coupled with one amplifier to allow a higher voltage peak of up to 1200 V to be applied. The

preparation of sample for alignment was almost the same except that the GNP was sonicated in the

epoxy for 30 min without acetone or Triton X-100.

4.3 Mechanical Testing

Differential Scanning Calorimetry (DSC) was made with Q100 DSC (TA Instruments, USA) to

measure modification of glass transition temperature of GNP/epoxy composites. The temperature

was increased from 20°C to 200°C twice at 10°C/minute. Tensile properties were measured using

Instron Machine. Samples were tested at a crosshead speed of 10mm/min at room temperature.

Seven samples were tested for each formulation.

4.4 Measurement of Electrical and Thermal Properties

The electrical characterisation was made by two point probe method with a Multimeter

Keithley 2000. Infrared (IR) thermography was used to measure the thermal diffusivity (α)

of the sample. An external heat source (two flash lamps, delivering a combined pulse of

approximately 6 kJ over a duration of 10.6 ms) heats the front face of the sample while an IR

camera (Thermosensorik GmbH, Germany) records the thermal radiation (temperature) of the

rear surface of each pixel.

5 Surfactant: Dispersion and Mechanical Results

5.1 Reference Samples: raw GNP/Epoxy

The Young modulus and ultimate tensile strength (UTS) of un-treated GNP/epoxy nanocom-

posites with different loading of GNP is shown in Fig. 2a and b. Following the expectation, the

modulus increases linearly with the amount of nanoparticles until 3 wt% but decreases at 5

wt%. This decrease might be due to the agglomeration of nanoparticles acting as stress

concentrator. Moreover, the viscosity of the resin increases with the amount of particles which

decreases the quality of the dispersion/homogenisation of the nanocomposites. In contrast, the

UTS decreases with the GNP content (70.44 MPa for pure epoxy samples compared to

37.48 MPa for epoxy with 5wt% GNP). This confirms the poor interfacial bonding between

the epoxy and nanoparticles. These results are similar to Wang et al. [75] and King et al. [76]

Fig. 2 a Modulus and b strength of GNP based epoxy nanocomposites for different loading of GNP (wt. %)
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although the value was slightly higher than is found in this paper. This may be due to the

curing process, the dispersion method, or the specific type of GNP used, confirming that every

single modification in the manufacture of GNP based epoxy nanocomposites have an impact

of the mechanical properties.

5.2 Effect of Surfactant on the Dispersion Quality

The structure of Triton X-100 is comprises a benzene ring, hydrophilic segment and

hydrophobic segment as described in Fig. 3. The hydrophilic segment interacts with

epoxy. Benzene rings and hydrophobic groups tend to interact with GNP, as described

by Geng et al. for CNT [20]. The hydroxyl, ether and epoxy groups within the epoxy

molecule have strong polarity and surfactant have a hydroxyl group, which facilitate

the formation of hydrogen bonding between epoxy and surfactant. Benzene ring in

surfactant can adsorb on the surface of GNPs because of the π-π interaction between

them. Triton X-100 may act as a bridge between two main composite components so

that it is harder for GNP to stack with each other.

GNPs can be wrapped by the surfactant molecules. When the concentration of surfactant is

high, GNP and surfactant forms micelle. Following some experiment not shown in this paper,

the best ratio GNP: Triton X-100 was found to be 1:15. The surfactant has to cover the

maximum available surface of the GNP to make bonds with the matrix. However, an excess of

surfactant leads to the dilution of the epoxy resin and thus decreases the mechanical properties

of the nanocomposites.

The effect of surfactant on the dispersion quality can be visually observed in Figs. 4, 5 and

6. Without Triton X-100, the GNP sediments within a day at the bottom of the pot are clearly

shown. However, the functionalised GNP does not show any sedimentation after 24 h due to

the steric repulsive force introduced by the surfactant which are stronger than the Van der

Waals interaction between GNP particles.

5.3 DSC Measurements: Impact on Glass Transition Temperature

The DSC was used to measure the glass transition temperature (Tg) of the nanocomposites.

The measurements indicate that the modified-GNP/Triton X-100/epoxy composites have Tg
decreased by almost 40°C (106.28°C compared to 144.15°C for the neat epoxy). As the Triton

X-100 molecules are smaller than the epoxy resin molecules, modified GNP (micelles) leave

more free volume for the long polymer chains in the resin and increase the likelihood for

bonding to them. The polymer chains will bond quicker to other chains or to the Triton X-100,

Fig. 3 Schematic of the effect of Triton X-100 molecule in GNP/epoxy nanocomposites
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leading to a decreased Tg. The surfactant effect on Tg confirms that the epoxy resin is well

bonded with the Triton X-100.

5.4 Triton-/GNP/Epoxy Samples

TheGNP and TritonX 100were added to the epoxy in a ratio of 1:15 byweight. Figure 7 shows the

Young’s modulus and ultimate tensile strength (UTS) of the nanocomposites made with

functionalised GNP. This results follow the same trend as the un-functionalised GNP nanocompos-

ites. However, the modulus starts decreasing at 3 wt % instead of 5 wt%. This might be due to: (i)

increasing the amount of GNP changes the viscosity of the mixture so the same level of function-

alisation on the GNP surface was not achieved using the same parameters; (ii) the volume of

modified GNP is larger than before modification, reducing the possibilities of cross-linking during

the curing process, which then reduces the mechanical properties of the nanocomposites.

Until 1 wt%, both the stiffness and UTS have been improved by the functionalisation of GNP,

suggesting that the interfacial bond between the epoxy and the functionalised GNPs is stronger than

that of raw GNP with epoxy. Moreover, due to the higher dispersion quality, no agglomerates are

Fig. 4 Dispersion state of GNPs in acetone without the dispersion technique at a t=0; b t=10 min; c t=1h and d

t=24h

Fig. 5 Dispersion state of GNPs in acetone after sonication for 30 min at a t=0; b t=10 min; c t=1h and d t=24h
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present within the composites. The decrease in mechanical properties at 3 wt% confirms that

complete functionalisation ofGNPwas not achieved, and that cross-linking of the resin is influenced

by the presence of the partially modified GNP. The un-functionalised GNP may act as a stress

concentrator which induces defects in the nanocomposites. This conclusion confirms that the

manufacture of nanocomposites can be affected by changing one parameter such as the loading

of nanoparticles. This modification requires adaptation of the dispersion method to obtain the best

composites properties. Figure 8 shows that the dispersion of GNP (0.5 wt%) in epoxy with the

surfactant is better than that of GNP in 3 wt% GNP/epoxy sample containing the surfactant. The

higher presence of black areawithin the 3wt% sample confirm that the partially functionalisedGNP

agglomerated. Their agglomeration left more free volume not accessible to the long polymer chain.

These empty volume acts as a stress concentrator which explain the inferiormechanical properties of

surfactant-treated 3 wt% GNP/epoxy sample.

6 Post-Dispersion Results With Alignment

It is possible to improve further the properties of nanocomposites by aligning them using an

electrical field after dispersion, but before curing. Alignment is done using a frequency of

100 kHz with 1000 Vpp amplitude with a square signal to encourage dipole formation and

Fig. 6 Dispersion condition of GNPs in acetone with aid of Triton X-100 after sonication for 30 min at a t=0; b

t=10 min; c t=1h and d t=24h

Fig. 7 a Modulus and b strength of treated-GNP based epoxy composites
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interaction between the GNP particles within the resin. A schematic of the set-up is shown in

Fig. 9. This alignment process was applied to samples between 30 to 50 mm.

Several steps were completed before it was possible to form a conductive path of nano-

particles. The minimum required electrical field was found to be around 11 kV/m depending

on the distance between electrodes on the preliminary optical slide experiments. In-situ optical

microscopy allowed observation of the movement of GNPs in the liquid epoxy resin at

different frequencies.

At 10 Hz, a progressive alignment of GNP is observed as depicted in Fig. 10. The

formation of a chain-like graphene network in the direction of the applied electric

field is clearly shown. A network of aligned GNP began to develop after approxi-

mately 1 min of exposure to the electric field. A well-defined chain-like structure of

GNP extending between the positive and the negative electrodes formed after 7 min.

This alignment process is the result of dipole–dipole interaction between the GNPs

Fig. 8 SEM images of fracture surface of a 0.5 wt% and b 3wt% of GNP: Triton-100/epoxy

Fig. 9 Schematic of electrical set-up for nanoparticle alignment
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and the electric field. Due to the opposite charges at their ends, they gradually stretch,

move closer and connect end-to-end, forming these chain-like structures. These

aligned samples were not electrically conductive.

At 100 kHz, a different reaction happened and lead to a quasi-instantaneous

alignment of nanoparticles as described in Fig. 11. At 11min 39 s, the process of

alignment start, then all the GNP in the liquid epoxy started to move very quickly to

form at 12min01s thick aligned bundles of GNP. Moreover, all of these samples were

electrically conductive. It’s likely that the energy provided at 100 kHz was high

enough to form end-to-end connections and overcome the repulsion due to the

presence of oxygen at the edge of GNP. Once these parameters had been defined it

was possible to begin experiments on bulk samples and characterise aligned GNP

based epoxy nanocomposites.

Fig. 10 Optical micrographs of the progression of the alignment of 1 wt% of GNP in epoxy resin during the

application of the square AC electric filed at 10 Hz. Comment: the recorded area is 4 mm

Fig. 11 Optical micrographs of the instantaneous alignment of 1wt% of GNP in epoxy resin during the

application of the square AC electric field at 100 kHz. Comment: the recorded area is 4 mm
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6.1 Characterisation of Alignment Through Fracture Surface Analysis

The scanning electron micrographs of the fracture surface of the 1 wt% GNP/epoxy nano-

composites without the application of an electric field is shown in Fig. 12. As expected, the

GNPs are randomly oriented and distributed, with different sizes. The fracture surface follows

the geometry of the GNP showing that the interfacial bonding was weak without surfactant

treatment, the presence of more black area confirms that the agglomeration was higher without

the surfactant. Figure 13 shows the microstructure of 1 wt% of GNP/epoxy nanocomposites

following exposure to the electric field at 100 kHz. Most of the GNPs are well aligned, very

close to being parallel to the applied electric field direction. Voids and dispersed multi-layered

GNPs are also observed. The appearance of the voids could be due to the relatively high

stresses generated during the post-dispersion and curing processes. The electric field has

aligned the particles and the dipole interaction has enabled the particles to form end-to-end

connections, leading to a straight path of GNP.

6.2 Electrical Conductivity of Nanocomposites

Table 1 gives the measured values for electrical conductivity on GNP/epoxy composites. Non-

aligned raw GNP and Triton X-100 epoxy samples were both electrical insulator, contrary to some

values showed in the literature, this fact is probably due to the poor quality ofGNPused during these

experiments but, also confirms the theoretical result obtained by simulation where the required

weight loading was 8.53% of GNP [77]. These loading of GNP was chosen to have the maximum

GNP with a low viscoelasticity. Moreover, the treatment with surfactant, did not improved the

electrical conductivity. Aligned samples were all conductive and the percolation threshold was

obtained under the simulation values, confirming that the alignment of GNP reduces the amount of

particles required. However the result, do not follow the theory, increasing the loading of particles

should increase the electrical conductivity of composite and the conductivity in the direction of the

applied field should be higher than out of plane. Several parameters might be involved in these

results: (i) the higher electrical conductivity out of the applied field direction is potentially due to the

high current passing though the sample when the conductivity was obtained. This high current

induced damages though the chain structures, and decreased their conductivity while the intercon-

nection out of plane were preserved. (ii) The lowest conductivity with 5 wt.% of nanoparticles is

Fig. 12 SEM images of fracture surface of non-aligned GNP based epoxy composite (1 wt%): GNP show

independent direction and no specific connection between each other
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possibly due to the formation of bigger fillers (due to the dispersion), which have properties closer to

graphite than graphene, inducing a reduction of the electrical conductivity though the composites.

To obtain expected electrical conductivity for the final composite, an adaptation of the

applied electrical field power and time of application should be used depending of the loading

of particles.

6.3 Effect of Alignment on the Thermal Properties of Composites

The thermal diffusivity of the composites was measured using active infrared thermography.

The thermal properties of a nanocomposite is determined by the phonon propagation, as the

phonon scattering is not the same between two particles and between the particles and the

matrix (resin), the presence of agglomerates of nanoparticles will lead to the apparition of Bhot

spot^. The phonon scattering is better in the plane of graphene and between two graphene

particles than between the particles and the matrix, due to the phonon mismatching [78].

Contrary to the electrical conductivity, the thermal conductivity does not possess a percolation

threshold and should increase proportionally with the content of GNPs or nanoparticles [78].

Table 2 shows that the thermal diffusivity is higher in the direction of the applied field,

confirming that the GNP were oriented in direction of their plane. As the phonon scattering is

higher along the plane of the GNP, the thermal conductivity will be higher when the GNP have their

planes oriented in the same direction and connect with each other, acting like an Beasy^ path for the

phonons. The difference is clear for the sample with 5 wt% of GNP where the electrical field was

applied (i.e. aligned). The mean value of the diffusivity is equal to α = 6.5 × 10− 7m2/s and

α= 2.9 × 10− 7m2/s on the panel where the particles were not oriented. This corresponds to an

Table 1 Electrical conductivity (S.m−1) of samples depending on the loading of GNP

Direction of measurement Loading of GNP

1 wt.% 2 wt.% 5 wt.%

Along the applied electric field 1.05 × 10−6 3.90 × 10−4 1.71 × 10−7

Out of the applied field direction 8.05 × 10−5 5.52 × 10−4 9.07 × 10−5

Non oriented samples Insulator Insulator Insulator

Fig. 13 SEM images of fracture surface of aligned GNP based epoxy composite (1 wt%): chain of GNP though

the composite along the applied electric field
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improvement of 225%of the thermal conductivity for an oriented panel than a non-oriented samples

with 5 wt% of GNPs.

These experiments show that the post-dispersion step in the manufacture of nanocomposites can

have a significant influence on the final properties of the material. Despite a good enhancement of

these properties, several parameters such as the type of particles, the temperature, the viscosity of the

mixture, and the loading of particle, etc. have an impact on this post-dispersion step and thus on the

final properties of the nanocomposites, requiring adjustment in each case to produce reliable

composites.

6.4 Raman Spectroscopy to Characterise the Alignment of GNP/Epoxy

The Raman spectroscopy was done using a Renishaw InVia Raman microscope, using a spot

laser size within 1 to 2 μm. The three peaks commonly used to characterise the graphene and

its derivatives are called the G peak (≈1581 cm‐ 1) associated with the longitudinal vibration of

the carbon atoms; the D peak (≈1310 cm‐ 1) associated with defects such as functionalisation,

edge effect; and 2D peak (≈2680 cm‐ 1) called the defect free peak of graphene. These peaks

for the GNPs used in the experiment are shown in Fig. 14a.

The broadening of the G and D peaks indicates the presence of some defects on the

graphene nanoplatelets such as oxygen groups. As the oxygen is highly electronegative,, its

presence may explain the tendency of the GNP to move from the positive to the negative

electrode during the experiment. The presence of the 2D peak confirms that the platelets

Fig. 14 Raw Raman spectrum: a GNP powder; b neat epoxy

Table 2 Thermal diffusivity (m2/s) of samples depending on the loading of particles

Direction of measurement Loading of GNP

1 wt% 2 wt% 5 wt%

Along the applied electric field 3.3 × 10−7 4.1 × 10−7 6.5 × 10−7

Out of the applied field direction 2.5 × 10−7 3.5 × 10−7 –

Non oriented samples 1.9 × 10−7 – 2.9 × 10−7
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consist of 15–20 layers of graphene. In Fig. 14b, the Raman spectrum of the resin is covering

almost all the characteristic peaks of the GNP.

After fitting, the peaks of the Raman spectrum of the GNP were defined. It is possible to see

that the bi-Gaussian function used for the fitting of the curves was not perfect due to the

asymmetry of the peaks and the baseline. From the G and D peaks, even with the fitting, it was

almost impossible to obtain some information about the alignment of nanoparticles inside the

resin. However, after analysis some information can be deduced from the 2D peak. This peak

is located at ≈ 2665 cm‐ 1 on the Raman spectrum of raw GNP. The 2D peak (≈2665 cm‐ 1)

disappeared when the Laser beam was along the GNP chain structures aligned by the applied

electric field as shown in Fig. 15.

Figure 16 shows the fitting of the 2D peak for 1 wt% and 2 wt% of GNP out of the applied

field direction and the fitting for 5 wt% of non-oriented GNP. When the laser beam is directed

out of the applied field direction the 2D peak is present as well as in the non-oriented samples.

The absence of 2D peak confirms a chain structure along the incident beam. The GNP aligned

and connected in the direction cannot enter in resonance and so the 2D peak is not visible. This

peak is specific of low defect graphene; each connection between GNP acts as a defect along

the structure, removing the presence of the 2D peak compared to in a non-aligned sample or

out of the applied field direction.

7 Concluding Remarks and Perspectives

Pre-dispersion, dispersion and post dispersion steps of the manufacture of GNP/epoxy com-

posites have been developed. The choice of possibilities to modify, improve and obtain

enhanced properties by the addition of GNP to the epoxy resin are infinite and leaves as limits

only imagination and technical process.

The pre-dispersion step allows the initial properties of the nano-reinforcement to be

influenced, leading to improved interfacial bonding with the matrix, and thus of the final

Fig. 15 Absence of the graphene 2D peak in the direction of the applied field for a 1 wt%, b 2 wt% and c 5 wt%

of GNP

Fig. 16 Presence of the graphene 2D peak out of the direction of the applied field for a) 1wt% of GNP, 2wt% of

GNP and for 5wt% of non-oriented GNP
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properties of the composite. However, affecting the initial particle properties could also

decrease some properties of the final composite. Each parameter has to be taken into account

during the functionalisation, such as the loading of particles included in the final composite.

The functionalisation process cannot be the same for a composite at low weight fraction as that

for a high weight fraction system. The dispersion is improved by the presence of surfactant by

modification of interaction between GNP and DSC with mechanical measurement confirmed

improvement of the bond between nano-reinforcement and matrix.

The choice of dispersion method and its parameters remain essential in the manufacture of

these composites and play a determinant role in their properties. Even if not fully developed in

this study, the parameters of dispersion should be adapted depending on several variables such

as the loading of particles, the temperature induced by the dispersion or even the volume of

composite prepared.

The post dispersion treatment shows impressive improvements in electrical and thermal

properties of the composite (up to 220% increase in thermal diffusivity at 5 wt%), and allows

anisotropic properties to be obtained, making these materials suitable for specific applications

such as de-icing or lightning strike protection if applied to aircraft skin. Raman spectroscopy

and SEM confirmed the formation of Bchain^ structures along the direction of the applied

field. However, this requires use of a strong electrical or magnetic field which can add to the

production cost.

Besides the controllable parameters of the manufacture, many other factors can also

influence the composite properties such as the purity of nanoparticles, the storage condition

of constituents, the temperature and humidity during fabrication, scale (size) effects, in

addition to the curing and cooling cycles. These parameters have not been studied within

the body of this work, and leave yet again many possibilities and variables in the manufacture

of GNP based composites with tailored properties.
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