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Abstract 

Orowan equations predicting the strengthening of non-basal slip systems in hexagonal 

crystals are derived for rationally distributed, shear resistant precipitates of typical morphologies 

and orientations. These equations may be employed for any hexagonal crystal, but application is 

made specifically to hexagonal close packed Mg, where alloy development is presently quite 

active. Particular focus is placed on discerning the effect on 〈 〉 dislocations, and generally 

speaking, 〈 〉 slip is most potently strengthened by prismatic plate shaped precipitates, as 

was shown previously for basal and prismatic slip. If strengthening is the primary goal, prismatic 

plate shaped precipitates appear ideal. Because the motion of 〈 〉 dislocations has been 

repeatedly emphasized as crucial for preserving ductility, it may be of interest to consider. 
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1. Introduction 

Precipitation hardening is a promising mechanism for developing high strength 

magnesium alloys [1, 2, 3, 4, 5]. In common precipitation hardenable Mg alloys, the precipitate 

types and morphologies have been studied extensively by experimental methods, including the 

quantitative characterization of size and distribution [6, 7, 8]. The theoretical evaluations of the 

© 2016. This manuscript version is made available under the Elsevier user license 
http://www.elsevier.com/open-access/userlicense/1.0/



2 
 

strengthening effects of precipitates on basal and prismatic slip systems were developed by Nie 

[9] and Robson [10], respectively, based on the Orowan mechanism.  

Whereas the activation of basal slip is associated with the microscopic yield stress, even 

in randomly textured cast material, the slip activity of non-basal slip of 〈 〉 and 〈 〉 

dislocations affects the flow stress and hardening behavior at higher strain levels [11]. Recently, 

it has been confirmed that the 1012  twins in Mg alloys contain abundant 〈 〉 dislocations 

due to the dislocation transmutation mechanism [12, 13]. It is therefore of interest to study the 

strengthening effect of precipitates on the non-basal 〈 〉 slip systems. The 〈 〉 slip 

system was reported to be strengthened only modestly by the prismatic plates in a WE43 alloy 

via in-situ neutron diffraction and plasticity modeling [11], and weakly affected by c-axis rods in 

Mg-5%Zn single crystals examined via micropillar compression tests [7]. A quantitative 

evaluation is needed in order to predict and compare the relative strengthening effects of 

differently shaped precipitates. 

For precipitates of different phase and size, the entire population of precipitates does not 

always fall in the single regime of dislocations cutting or bowing. Quantifying the strengthening 

effect due to either mechanism necessitates geometric parameters such as the inter-particle 

spacing and precipitate size encountered by gliding dislocations on the slip plane [14]. If 

dislocations are able to cut through precipitates, it is often assumed that the slip plane is 

continuous for dislocation with identical Burgers vector between matrix and precipitate [1]. Such 

assumption was made for the evaluation of basal dislocation cutting prismatic precipitate plates 

[1], but it is difficult to assess the situation for non-basal dislocations due to the lack of structural 

information regarding their propensity to shear precipitates. The current paper presents the 

Orowan equations for the non-basal slip systems in Mg alloys, due to rationally distributed, shear 

resistant precipitates of typical morphologies and orientations. Note that the general forms of 

these equations, which may be employed for any hexagonal crystal, are presented in the paper. 

However, application is made to Mg, where alloy development is presently quite active. 

Furthermore, the geometric parameters derived here, e.g. center-to-center distance of precipitates, 

are also applicable for any subsequent, quantitative evaluation of the strengthening effect of 

shearable precipitates. 
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2. Orowan strengthening 

The increase in the critical resolved shear stress (CRSS) of a slip system due to 

dispersoids is given by 

Δ
√

ln , (1) 

where Δ  is the increase in CRSS of the selected slip system due to precipitation strengthening, 

 is the shear modulus,  the Burgers vector of dislocation,  the Poisson ratio,  the effective 

planar inter-particle spacing,  the mean planar diameter of the precipitate, and  the core 

radius of dislocation, which is conveniently assumed as  in this work. In Eq. (1),  and  vary 

with the shape and orientation of the precipitate with respect to different slip planes. They are 

invariant if precipitates are in spherical shape, i.e. isotropic strengthening arises. Assuming 

uniform diameter  and a triangular array distribution on the slip plane, the increment in CRSS 

due to spherical precipitates with volume fraction  is [9] 

Δ
√ . .

ln . 	
. (2) 

In this work, four types of commonly observed precipitates in Mg alloys are considered: 

(1) 1010  prismatic plates, (2) 1120  prismatic plates, (3) 0001  basal plates and (4) 0001  

c-axis rods. The resultant increments in CRSS (Δ ) of the non-basal slip systems are estimated, 

including the slip of 〈 〉 dislocations on second-order pyramidal (Py-2) planes 1122  and 

first-order pyramidal (Py-1) planes 1011 , as well as 〈 〉 dislocations on Py-1 planes and first-

order prismatic (Pr.) planes 1010 . 

The plate- and rod-shaped precipitates are assumed to have uniform diameter  and 

thickness/ length  at volume fraction . According to Fullman [15], the number density of 

precipitate per volume  and per area  are calculated by Eq. (3) and (4), given below.  is 

the probability a plane intersects a precipitate, and it equals sin  for plates and cos  for 

rods, where  is the angle between the normal direction of slip plane and that of precipitate habit 

plane or rod axis direction.  is thusly obtained for plates and rods as presented in Eq. (5) 

	  (3) 

	 	 /4 (4) 

sin ;		 cos  (5) 
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The relations between the planar number density  and planar center-to-center distance 

of precipitates , and thereafter  and effective inter-particle spacing  depend on the 

distribution of the projections of the intersected precipitates on slip plane. As will be introduced 

subsequently, in some cases there are more than one planar variant of the intersected precipitates 

on a selected slip plane. For the purpose of comparison and representation of all planar variants 

of precipitates, an equilateral triangular array distribution on slip plane is assumed, and  takes 

the value of the mean average of the distances between the nearest neighbor precipitates. 

The projections of the intersected plate- and rod-shaped precipitates on the slip plane are 

represented by three shapes: rectangle, circle and ellipse. An effective length of the intersected 

precipitate is calculated as the mean planar diameter  in the logarithmic term of Eq. (1). 

 

2.1 1010  precipitate plates  

2.1.1 Second-order pyramidal slip plane 1122  

Figure 1(a) and (b) present schematically the fact that projections of the intersected 

1010  plate precipitates on 1122  slip planes have two variants in rectangular shape. Firstly, 

there are two values of the angle ( ) between the precipitate habit plane and the slip plane, 

namely  between 1100  and 1122	 , and  between 1010 , 0110  and 1122	 . While 

the mean planar diameter of the precipitates is the same for all variants, /4	 , the 

projected planar thickness is different, / sin . Secondly, the major axes of the 

projections of the precipitates constitute an isosceles triangle with base angle . It leads to 

different planar inter-particle spacings  and . Consequently, gliding dislocations on the slip 

plane experience two types of precipitates with different dimensions and inter-particle spacings. 

The two sets of values are accounted for by assigning the probabilities of 2/3 and 1/3. The 

geometric parameters ,  and  vary for different cases of intersecting precipitate habit plane 

and slip plane. Equations for calculation in hexagonal lattices with various /  ratios are 

provided in the Appendix. The values of these geometric parameters for the /  ratio of Mg are 

specifically listed in Appendix, Table 1, and will be used in the rest of the paper.  
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Figure 1. Precipitate plates on 1010  planes are intersected by slip plane (a) 1122  and (c) 
1011  respectively. (b) Projection of the intersected precipitates on the 1122  plane. (c) 

Projection of the intersected precipitates on the 1011  plane. The precipitates are assumed to 
distribute in an equilateral triangular array on the slip plane. 
 

 For the geometry depicted in Figure 1(b), the planar center-to-center distance of 

precipitates  and two shortest inter-particle spacings  and  are expressed as 

√

, (6) 

° √ / ° 	 , (7) 

cos 	 	 , (8) 

and the effective inter-particle spacing takes the mean average value 

. (9) 

The effective length of the intersected precipitate is calculated as 

	 	 	 	 . (10) 

This set of equations applies to all the cases where prismatic precipitate plane is intersected by 

pyramidal slip plane. 

 In the case of Py-2 slip intersecting 1010  oriented precipitates, 90°, 42.5° 

and 42.24° in Mg, the planar inter-particle spacings are calculated as 

0.932 	 0.280	 2.313	 , (11) 
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0.932 0.581	 0.995	  and (12) 

0.9317 0.3802	 1.8737	 , (13) 

and the increment in the CRSS of 〈 〉 dislocation slip on Py-2 plane is  

Δ
√ . . 	 . 	

ln . √ . (14) 

 

2.1.2 First-order pyramidal slip plane 1011  

The geometry of 1010  precipitate planes intersected by Py-1 slip is depicted in Figure 

1(c) and (d). The equations Eq. (6-10) are employed with angular values 28.1°, 

63.8° and 74.8°. The planar inter-particle spacings are 

0.949 	 0.473	 2.631	 , (15) 

0.949 0.206	 1.075	  and (16) 

0.949 0.384	 2.113	 ,  (17) 

and the increment in the CRSS of 〈 〉 or 〈 〉 dislocation slip on Py-1 plane is  

Δ
√ . . 	 . 	

ln . √ . (18) 

 

2.1.3 Prismatic slip plane 

When plate-shaped precipitates on the 1010  planes are intersected by the prismatic slip 

(Figure 2a and b), there is no dependence on /  ratio (i.e. the relations can be immediately 

applied to Mg, Ti, Zr or any other hexagonal crystal). The projections of the intersected 

precipitates have two variants: a rectangle with length /4	  and thickness 

/ sin 60° 1.155	 , and a disk with diameter . Assuming an equilateral triangular array 

distribution of the intersected precipitate on slip plane, the particle center-to-center spacing is 
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√ 	

	 √ 	
1.650

.
 (19) 

The planar inter-particle spacings ,  and the averaged  are 

, (20) 

√
 and (21) 

1.650
.

0.595	 0.385	 . (22) 

The effective length of the intersected precipitate is calculated by 

0.635√ 0.333	  (23) 

and the increment in the CRSS of 〈 〉 dislocation slip on prismatic plane is 

Δ
√ .

.
. 	 . 	

ln . √ . 	
. (24) 

 

 

Figure 2. Precipitate plates on (a) 1010  planes and (c) 1120  planes are intersected by slip 
plane 1010  viewing perpendicular to the 0001  basal plane. (b) Projection of the intersected 
1010  precipitates on the slip plane. (d) Projection of the intersected 1120  precipitates on the 

slip plane. The precipitates are assumed to distribute in an equilateral triangular array on the slip 
plane. 
 

2.2 1120  precipitate plates 

For precipitate plates on the 1120  planes, their projected intersections on Py-2 or Py-1 

slip planes also involve two variants with different sizes and directions, the geometry is similar 

to that depicted in Figure 1. As such, equations Eq. (6-10) are employed by using their respective 

angles to compute the CRSS increment. 
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2.2.1 Second-order pyramidal plane 1122  

The interplanar angles and the base angle of the isosceles triangle are 31.6°, 

64.8° and 73.2°, the planar inter-particle spacing is calculated from 

0.935 	 0.465	 2.458	 , (25) 

0.935 0.228	 1.058	  and (26) 

0.935 0.386	 1.991	 ,  (27) 

and the increment in the CRSS of 〈 〉 dislocation slip on Py-2 plane is  

Δ
√ . . 	 . 	

ln . √ . (28) 

 

2.2.2 First-order pyramidal plane 1011  

The angles between planes and the base angle of the isosceles triangle are 90°, 

40.2° and 39.2°, the effective planar inter-particle spacing is calculated as 

0.944 	 0.259	 2.397	 , (29) 

0.944 0.609	 0.979	  and (30) 

0.944 0.376	 1.924	 , (31) 

and the increment in the CRSS Of 〈 〉 or 〈 〉 dislocation slip on Py-1 plane is 

Δ
√ . . 	 . 	

ln . √ . (32) 

 

2.2.3 Prismatic slip plane 

 The projections of the intersected plate-shaped precipitates on 1120  planes by first-

order prismatic slip planes are parallel rectangles (Figure 2c and d). Since the precipitate habit 

planes intersect the slip plane at two angles 90° and 30° (which are independent on 
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/  ratio), there are two variants whose length and thickness are given by /4	 , 

/ sin . The expressions for  and  are as follows. 

√ 1.166  (33) 

sin 60° / / 	 cos 60°  (34) 

 (35) 

0.605 1.346	 	 	 	 0.389 0.262  (36) 

The mean planar diameter of the obstacle is calculated using Eq. (10), and the increment in the 

CRSS of 〈 〉 dislocation slip on prismatic plane is 

Δ
√

. . 	 	 	 	 . .

ln . √ . (37) 

2.3 0001  precipitate plates 

2.3.1 Second-order pyramidal slip plane 1122  

 When the basal plates are intersected by the pyramidal slip planes, the intersections on 

the slip plane are parallel rectangles. An example is presented in Figure 3(a) and (b) for the case 

of basal plates intersected by Py-2 plane. The intersections have the same length /4, and 

thickness / sin . The generic expressions for  and  are  

√
, (38) 

sin 60° cos 60° , (39) 

	 , and (40) 

. (41) 

The mean planar diameter of the obstacle is calculated by 

	 	  (42) 

 In the case of basal plates intersected by Py-2 plane, 45.6°, we obtain 
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	 0.564 1.212	 	 0.869	 	 0.375 0.262  and (43) 

Δ
√

. . 	 	 . 	 	 . .

ln . √ . (44) 

 

2.3.2 First-order pyramidal slip plane 1011  

In this case, employing the same set of equations Eq. (38-42), and using the angle 

51.1°, the effective planar inter-particle spacing and increment in CRSS are given by 

	 0.518 1.067	 	 1.649	 	 0.360 0.262  and (45) 

Δ
√

. . 	 	 . 	 	 . .

ln . √ . (46) 

 

 

Figure 3. (a) Precipitate plates on 0001  planes and (c) 0001  rods are intersected by slip 
plane 1122 . (b) and (d) are projections of the intersected precipitates on the slip plane. The 
precipitates are assumed to distribute in an equilateral triangular array on the slip plane. 
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2.3.3 Prismatic slip plane 

The prismatic slip planes are perpendicular to the basal precipitate plane, i.e. 90°, 

the expressions for  and Δ  are 

	 0.403 0.733	 	 	 0.317 0.262  and (47) 

Δ
√

. . 	 	 	 . .

ln . √ . (48) 

 

2.4 0001  precipitate rods  

2.4.1 Second-order pyramidal slip plane 1122  

 The probability of c-axis rods being intersected by the inclined pyramidal slip plane is 

cos , the expressions for  follows Eq. (5). As shown in Figure 3(c) and (d), the 

intersections of rods on slip plane are of elliptical shape, which is approximated by a circle [15] 

with the diameter 

. (49) 

Assuming a triangular array distribution of precipitates on the slip plane, the expressions for  

and  are 

√
 and (50)	

. (51) 

 In the case of c-axis rods intersected by Py-2 plane, 45.6°, we obtain 

1.139 1.196	  and (52) 

Δ
√ . . 	

ln . 	
. (53) 
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2.4.2 First-order pyramidal slip plane 1011  

 When the c-axis rods are intersected by Py-1 slip plane, the same set of equations Eq. 

(49-51) applies,  and Δ  are calculated by 

1.202 1.263	  and (54) 

Δ
√ . . 	

ln . 	
. (55) 

 

2.4.3 Prismatic slip plane 

The c-axis rods precipitate are parallel to the prismatic slip plane, the probability of 

intersection is given by , and the projection of the intersected precipitates on slip plane has 

a rectangular shape with length  and width /4	 . It has the similar planar 

geometry as the basal precipitate plates intersected by prismatic slip plane (Figure 3b). Using 

90° in Eq. (38) gives 

√
0.952  . (56) 

Substituting / sin  in Eq. (39) by , and  in Eq. (40) by , we obtain 

sin 60° cos 60° , (57) 

 and (58) 

0.403 0.576	 0.274	 	 0.317 0.333	 . (59) 

The increment of CRSS is 

Δ
√

	 . . 	 . 	 	 . . 	

ln . √  (60) 

 

3. Strengthening of slip systems by each type of precipitate 

 The formulae developed above show that the increment in the CRSS of a selected slip 

system by each type of precipitates has a distinct dependence upon the precipitate volume 
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fraction , diameter  and thickness (or length) . Figure 4 presents the strengthening effects of 

the four types of precipitates on all the slip systems in Mg alloys with respect to volume fraction 

. At a given volume fraction, the CRSS increment of a slip system due to each type of 

precipitate is normalized by that due to a spherical precipitate of the same volume fraction. The 

calculations were performed for two aspect ratios 10 and 50 ( /  for plate and 

/  for rod), and the volume of each individual precipitate at all values of  and  is kept at a 

constant value. For example, at 10, the dimensions of 20	nm, 2	nm for plate or 

4.3	nm, 43	nm for rod as experimentally characterized in some Mg alloys [6, 17]. are 

employed. Precipitates may overlap on the slip plane with increasing volume fraction, especially 

at large aspect ratio. In that case, the data is truncated in the plot, e.g. in Figure 4(g). For the 

purpose of comparison, the strengthening effects of the precipitates on the basal slip system were 

included, following the formulae provided in [9]. 

The plots in Figure 4 show that, in general, non-spherical precipitates are stronger 

strengtheners than spherical ones, with the exceptions of basal plates against basal slip system, 

and c-axis rods against the prismatic slip system (Figure 4c, d at 10 and g, h at 50). The 

weaker strengthening effects in the latter two cases arise from the lower probability of the 

precipitates being intersected by slip plane, since their directions of larger dimension are parallel 

to the slip plane. For the same reason, larger aspect ratios of basal plates and c-axis rods result in 

weaker strengthening for basal and prismatic slip systems respectively, as in contrast to other 

combinations of precipitate and slip system, whose normalized CRSS increments are larger at 

50.  

Among the four precipitate morphologies, the prismatic plates generally produce higher 

normalized CRSS increment. The geometric models in the previous section suggest that because 

of the multiplicity of prismatic planes, the projection of the intersected precipitates are rectangles 

at different angles, they can potentially form closed zones on slip plane, therefore lead to rapidly 

increasing value of Δ  with increasing  and  of precipitates. It was envisioned by Nie that a 

continuous network of prismatic and basal precipitate plates can divide a grain into blocks and 

therefore contribute to achieving high strength [1]. In the case of basal plates and c-axis rods, the 

projections on slip plane are parallel rectangles or ellipses, there is always a relatively open area 

between rows of parallel rectangles for easier dislocation glide even at large  or  values when 

precipitates may overlap at the tip of rectangles (Figure 1b compared to Figure 3b). The CRSS 
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increments due to basal plates and c-axis rods increase slowly with volume fraction, at a similar 

rate as spherical precipitates, therefore the normalized Δ  changes only slightly in the plots (e.g. 

Figure 4c and d). 

 

 

Figure 4. Variation of the normalized Δ  with volume fraction for five slip systems strengthened 
by (a) and (e) 1010  plate, (b) and (f) 1120  plate, (c) and (g) 0001  plate, (d) and (h) 
0001  rod. The slip systems are represented by curves in different colors as indicated in (g). 

Two aspect ratios of precipitates are used 10 (a-d) and 50 (e-h).  
 

The Orowan strengthening effects of precipitates on prismatic slip system have been 

investigated by Robson [10, 18]. The modifications in the current model for prismatic slip 

system as compared to that of Robson include the adoptions of (1) a triangular array distribution 

of precipitate on slip plane and (2) the averaged  of the nearest neighbors of precipitates. The 

results show that the prismatic 〈 〉 slip system is strengthened the most effectively by 1010  
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plates in comparison to spherical particles. Between the two types of prismatic plates, 1010  

plates produce invariantly larger CRSS increment for prismatic slip as compared to 1120  

plates, for all the volume fraction and aspect ratios used. This is similar to the comparison 

between the effects of 111  and 100  plates on impeding the 111  slip system in fcc 

structured metals (e.g. Al alloys [16]). In both crystal structures, the plates lying on the slip plane 

are the more effective strengthener. The c-axis rods result in the lowest normalized CRSS 

increments. It is partly due to the small particle size used in the current calculation: 4.3	nm 

and 43	nm at 10. Robson [18] showed that with a larger effective particle size, the c-

axis rods are the least effective among the four types of precipitates at low volume fraction and 

become the strongest at high volume fraction. On the other hand, the average  is used in this 

work rather than the smallest one. It can be expected that at large aspect ratio or volume fraction, 

the rods have very small end to end spacing which leads to rapid increase in Δ  if considering 

only this distance. 

The pyramidal 〈 〉 and 〈 〉 slip systems are strengthened more effectively by 

prismatic plate precipitates, and the least by 0001  basal plates. The 〈 〉 dislocations on 

two pyramidal planes experience similar CRSS increments by each type of precipitate at a given 

volume fraction. The difference arises from the slightly different geometric factors in the 

expression of Δ  (e.g. Eq. (14) and (18)). When the volume fraction is very small, the c-axis rods 

have a larger probability of being intersected by the slip plane, they introduce larger CRSS 

increment than prismatic plates. 

 Figure 4 suggests that prismatic plates generally produce higher normalized CRSS 

increments. The following is an example of how to employ the relationships contained within 

this paper. In Mg alloy, WE43-T5 plate (hot rolled and artificially aged), precipitate plates on 

both prismatic planes as well as globular precipitates are present [19]. In what follows, the 

resultant absolute CRSS increment of all slip systems are evaluated with a fixed precipitate 

volume, as a function of volume fraction. As shown in Figure 5, the pyramidal 〈 〉 slip 

systems obtain the largest CRSS increment, followed by basal, pyramidal and prismatic 〈 〉 slip 

systems in sequence. It should be noted that the larger increment in 〈 〉 slip systems is 

simply due to the larger magnitude of the Burgers vector, as compared to those involving 

dislocations with 〈 〉 Burgers vector. In fact, with the same Burgers vector, Py-1 〈 〉 slip system 

gains a slightly lower CRSS increment than the basal 〈 〉 slip system (compare the blue curves 
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and green curve in Figure 5). At large volume fractions, e.g. 3%, the CRSS increments for 

〈 〉 slip systems are larger than 200 MPa, and those for basal and prismatic slip systems are 

144 MPa and 114 MPa respectively. Whereas these values indicate a high strength improvement 

solely due to Orowan hardening, a caveat is put forward that the effective volume fraction of the 

strengthening precipitates may be much lower than the global volume fraction measured 

experimentally [19]. On the other hand, the size limit of shear resistant precipitates is unclear for 

certain phases, so the values may exceed the strengthening capability of precipitate. 

 

4. The 〈 〉 dislocation slip in the 1012  twin in Mg alloys 

 It has been shown in the Mg alloy AZ31 compressed along the rolling direction, that the 

activated 1012  twins contain abundant 〈 〉 dislocations resulting from the dislocation 

transmutation mechanism [13]. Whereas the slip activity of these dislocations affects 

significantly the hardening behavior of the material [12], the strengthening of the 〈 〉 slip 

systems inside twin due to the aforementioned precipitates is discussed subsequently. Following 

the notations in [13], the 1012  twin contains only 〈 〉 dislocations due to the 

transmutation mechanism. Taking the  dislocation as an example, by using the lattice 

correspondence matrix developed by Niewczas [20] and neglecting the small rotation (~4°) that 

the precipitates undergo during twinning [3, 10], the following conclusions can be drawn. 

Figure 6 presents the strengthening effects of the four types of precipitates on the first 

order and second order pyramidal 〈 〉 slip systems inside twin. The Py-1, 〈 〉 slip 

systems are strengthened the most effectively by 1010  plates, the least by basal plates. It 

experiences larger CRSS increments than the Py-2, 〈 〉 slip systems by a given type of 

precipitates, except for basal plates. For Py-2, 〈 〉 slip systems, 1010  plate and basal 

plates are the most effective strengtheners. And there is a transition volume fraction above which 

the 1010  plates become better strengthener. Taking into account the strengthening effect of 

precipitates in matrix, it suggests that the 1010  plates overall lead to the largest CRSS 

increments for dislocation slip in both matrix and twin. Note that Robson et al. [18] performed a 

similar analysis for basal slip within twins already and they found that it is the most effectively 

strengthened by basal plates, followed by prismatic plates, and the least by c-axis rods. 
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Figure 5. CRSS increment of slip systems due to Orowan strengthening by 1010  and 1120  
plate and spherical precipitates, as observed in Mg alloy, WE43-T5 [19]. The three precipitate 
morphologies are represented by marker shapes circle, square and no marker respectively. The 
five slip systems are represented by different colors of markers and dashed lines. Plate size is 

20	nm and 2	nm, spheres have the same volume as plate precipitates. 
 

 

Figure 6. Variation of the normalized CRSS increment with the volume fraction of four 
precipitates, whose aspect ratio  is 10. The slip systems considered inside twin comprise the 
transmuted 〈 〉 dislocations on first order (Py-1) and second order (Py-2) pyramidal planes. 
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5. Conclusions 

In the current work, the Orowan equations for non-basal slip system were developed, 

based on the assumption of a triangular array distribution of precipitates on slip plane and the 

adoption of the average inter-particle spacing . On one hand, this scheme takes into account the 

probability of a dislocation experiencing different obstacle variants and spacings. On the other 

hand, it may deviate from the real case where the effective inter-particle spacing may be much 

more variable and there are other values which are important [3], e.g., an edge 〈 〉 dislocation on 

prismatic plane will likely bow out at the smallest end-to-end spacing of c-rods (  in Figure 3b), 

and a screw 〈 〉 dislocation will be obstructed by the larger spacing . In this case, one should 

select the appropriate inter-particle spacing rather than the weighted average. The relationships 

in this paper provide researchers with the necessary starting point for these more detailed 

considerations. In a recent crystal plasticity modeling work on Mg alloy WE43 [19], the 

equations were incorporated to quantitatively evaluate the strengthening effects of different 

precipitate geometry on various slip modes, and achieved good agreement with the macroscopic 

hardening. 

Calculations using the provided formulae suggest that the 〈 〉 slip systems are 

generally strengthened the most effectively by 1010  and 1120  prismatic precipitate plates. 

Only at very low volume fraction (< 0.4 Vol.%), c-axis precipitate rods become the more 

effective strengthener. For example, if the prismatic precipitate plates have the size of 

20	nm and 2	nm at volume fractions below 5%, they introduce the largest CRSS increment 

to 〈 〉 slip system, followed by basal and prismatic slip systems in sequence. This large 

effect on 〈 〉 slip owes largely to the large Burgers vector of the dislocations. 

Assuming the effect of twinning shear is negligible since it only rotates the precipitates 

by about 4°, the effects of differently shaped precipitates on the 〈 〉 slip inside the 1012  

twins were evaluated by transforming the slip systems inside twin to those in the matrix. This 

analysis suggests that overall the 1010  precipitate plates introduce the largest CRSS increment 

to 〈 〉 dislocation slip on first and second order pyramidal planes inside twin. 

Finally, although the precipitates discussed in the current work stem from Mg alloys, the 

equations are applicable for other hcp metals (e.g. Ti and Zr), if the precipitates with the same 

morphologies are present. 
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Appendix 

The angle  between two planes 	 	 	  and 	 	 	  are calculated by 

equations in [21]. 

cos 4	 	
1
2

/3 

where  is the lattice constant, / , and  is the interplanar spacing of planes calculated 

from 
/

. 

 

Table 1. The angles between the precipitate plane and slip plane in Mg ( / 1.624). The inter-
planar angles are calculated by using the equations above. 

Precipitate 
– slip plane 

Angle between planes 
Base angle of the isosceles 
triangle formed by the 
intersected precipitates 

1010  - 
1122  

90°  
1100  to 1122	  

42.5°  
1010  and 0110  to 1122  

42.2° 
 

acos
1/2

2 1

 

1010  - 
1011  

28.1°  
0110  to 0111  

63.8°  
1010  and 1100  to 0111  

74.8° 
 

acos
1/2

1
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1010  - 
1010  

0° * 
1010  to 1010  

60° * 
0110  and 1100  to 1010  

60° * 

1120  - 
1122  

31.6°  
1120  to 1122	  

64.8°  
1210  and 2110  to 1122	  

73.2° 
 

acos

√3
2

9
4 3

 

1120  - 
1011  

90°  
2110  to 0111	  

40.2°  
1120  and 1210  to 0111  

39.2° 
 

acos
3 4 /2

3
 

1120  - 
1010  

90° * 
1210  to 1010  

30° * 
1120  and 2110  to 1010  

60° * 

0001  - 
1122  45.6° 60° * 

0001  - 
1011  51.1° 60° * 

0001  - 
1010  90° 60° * 

*: the angle is independent of /  ratio. 
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