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Abstract

Accurate prediction of the functional impact of genetic variation is critical for clinical genome 

interpretation. We systematically characterized the transcriptome effects of protein-truncating 

variants (PTVs), a class of variants expected to have profound impacts on gene function, using 

†To whom correspondence should be addressed rivas@well.ox.ac.uk, tlappalainen@nygenome.org, 
macarthur@atgu.mgh.harvard.edu.
*Contributed equally to this work

Supplementary Materials:
Materials and Methods
Figures S1-S42
Tables S1-S7
References (28–56)
Data Files S1

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2016 May 08.

Published in final edited form as:
Science. 2015 May 8; 348(6235): 666–669. doi:10.1126/science.1261877.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data from the Genotype-Tissue Expression (GTEx) and Geuvadis projects. We quantitate tissue-

specific and positional effects on nonsense-mediated transcript decay, and present an improved 

predictive model for this decay. We directly measure the impact of variants both proximal and 

distal to splice junctions. Furthermore, we find that robustness to heterozygous gene inactivation is 

not due to dosage compensation. Our results illustrate the value of transcriptome data in the 

functional interpretation of genetic variants.

Genetic variants predicted to shorten the coding sequence of genes – termed protein-

truncating variants (PTVs) – are typically expected to have large effects on gene function. 

These variants are enriched for disease-causing mutations (1, 2), but some may be protective 

against disease (3). However, PTVs are abundant in the genomes of healthy individuals (4), 

indicating that they often do not have major phenotypic consequences. In addition, while 

PTVs are often described as loss-of-function (LOF) variants, in most cases their precise 

molecular impact has not been characterized, and in other cases show gain-of-function 

effects (1). Clinical interpretation of PTVs will thus require direct characterization of their 

biochemical effects.

We catalogue predicted PTVs and their transcriptomic impact in 462 healthy individuals 

with DNA and mRNA sequencing (RNA-seq) from lymphoblastoid cell lines (LCLs) in the 

Geuvadis study (5, 6), and 173 individuals with exome sequencing and RNA-seq from a 

total of 1,634 samples from multiple tissues in the Genotype-Tissue Expression (GTEx) 

study (S1, 7, 8). Each GTEx individual has RNA-seq data from 1–30 tissues, with 9 tissues 

having >80 samples. We defined PTVs (4, Table S1) as single nucleotide variants (SNVs) 

predicted to introduce a premature stop codon or to disrupt a splice site, small insertions or 

deletions (indels) predicted to disrupt a transcript’s reading frame, and larger deletions that 

remove the full protein coding sequence (CDS) (S2, Figs. 1, S1, S2). We identified 13,182 

candidate PTVs using Phase 1 data of the 1000 Genomes Project (9) of the 421 individuals 

included in the Geuvadis RNA-seq project, as well as 4,584 candidate PTVs in the GTEx 

data, for a combined total of 16,286 candidate variants (Table S2).

We measured total gene expression levels in reads per kilobase of exon per million mapped 

reads (RPKM), allele-specific expression (ASE) detecting different expression levels of two 

haplotypes of an individual, and split mappings across annotated exon junctions to quantify 

splicing (S3, S4). Transcripts containing common PTVs are more weakly expressed and 

more tissue-specific than transcripts that do not contain common PTVs (S5, Figs. S3–7), 

consistent with previous work (4).

PTVs that generate premature stop codons may trigger nonsense-mediated decay (NMD). 

Such variants are often recessive and may protect against detrimental phenotypic effects but 

also may cause disease via haploinsufficiency (1). Variants that escape NMD may create a 

truncated protein with dominant-negative or gain-of-function effects (1). We compared 

transcript levels between the PTV and the non-PTV alleles within the same individual (S6, 

4, 5, 10) for a total of 1,814 PTVs (S6, Figs. S8–12, Table S3) and validated the allelic ratios 

obtained from RNA-seq data (Figs. S13–18, Table S4, 11). We also generated a method to 

assess the ASE effect of frameshift indels (S6, Figs. S8–12) which were not previously 

examined (5, 10) due to the technical challenges of mapping bias (12–14).
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Allelic count data were analyzed with a Bayesian statistical method to address whether a 

variant exhibits ASE in a given tissue and whether this signal is shared across multiple 

tissues of the same individual (S7, Figs. S19–26, 15). We observe a higher proportion of 

strong or moderate allelic imbalance in rare and singleton nonsense SNVs compared to 

common nonsense variants (54.3%, 55.4%, and 35.7%, respectively), suggesting that rare 

PTVs are more likely to trigger NMD (Fig. S19).

Rare nonsense SNVs predicted to trigger NMD according to the 50bp rule (S7, 16) have a 

larger proportion of ASE than SNVs that escape NMD (69.5% vs 31.9% respectively), and 

both classes demonstrate ASE more often than synonymous variants (7.9%, P < 0.001 

across all comparisons, two-proportion z-test, Fig. 2A). A higher proportion of ASE is also 

observed for frameshift indels predicted to trigger NMD (52.1%) compared to those 

predicted to escape NMD (30.6%) and at higher levels than that predicted for in-frame 

indels (18.4%, Fig. 2B). Testing alternative simple distance rules showed that the 50bp rule 

has the highest predictive value (Fig. 2C).

We next generated an improved predictive model for no ASE versus strong/moderate ASE 

for all nonsense SNVs (S7). Our model predicts NMD better than the 50bp rule, with an 

Area Under the Curve (AUC) = 80.8% (95% CI 77.3–84.4%) compared to 50bp rule AUC = 

72.9% (69.3–76.5%) (Figs. 2C, S21, S22). Our results provide a quantitative estimate of the 

value of NMD predictions, and illustrate that the 50bp rule (16) remains a valuable heuristic. 

Nonetheless, our model improves NMD prediction, allows a more flexible analysis of the 

probability that a variant will trigger NMD from variant data (Fig. S21) and provides data 

for understanding the molecular mechanisms of NMD (Fig. S22).

The GTEx study design allows us to study variation in NMD across tissues. We applied a 

Bayesian hierarchical model (S7, 15) to rare nonsense variants predicted to trigger NMD, 

according to the 50bp rule, with ASE data from at least two tissues. We estimate that 30.5% 

of these nonsense variants have no ASE in any tissue, and 48.3% and 3.3% have moderate 

or strong ASE across all tissues, respectively. Finally, 17.9% have heterogeneous effects 

across tissues, and 8.1% of ASE effects are specific to a single tissue (Figs. 2D-F, S23–26). 

The tissue-specificity of NMD implies that the same protein-truncating variant may have 

different effects across tissues, which could contribute to tissue-specific effects of disease-

causing mutations (17).

We examined if heterozygous carriers of PTVs exhibit compensatory up-regulation of the 

functional allele, which could contribute to tolerance of PTVs and partially explain the 

widespread haplosufficiency of human genes (18). Dosage compensation has been reported 

to correlate with gene expression levels (19) and occur in over 80% of deleted genes in 

Drosophila melanogaster (20). To minimize the impact of genotyping error we focused only 

on biallelic whole-gene deletions with strong experimental support and manual curation (S2, 

Figs. S27–29). We first analyzed the few examples of common whole-gene deletion 

polymorphisms (S8). For 5/6 of these genes an additive model relating gene expression to 

gene copy number provided a better fit than a dominant model, providing no evidence for 

dosage compensation (Table S6). Additionally, heterozygous carriers of rare deletions also 

had consistently decreased expression of the respective gene compared to the population 
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median (P =1.37 × 10−5, one-sided binomial test of 11 rare PTV deletions in 25 genes, Figs. 

S27–28). Similar results were obtained for 53 nonsense PTVs with strong ASE signals (P = 

2.90 × 10−9, one-sided binomial test; Figs. S30–31). These results suggest that full dosage 

compensation is rare for human genes.

Disruption of splicing can result in changes in protein structure either via in-frame changes 

in exon structure or by introducing a premature stop codon (21). Splicing variant annotation 

tools typically focus only on the two bases at either end of a spliced intron, “essential splice 

sites” (22) despite the fact that more distant sites are also known to affect splicing (21, 23, 

24).

Variation around splice junctions tends to be rare (MAF ≤ 0.01). We standardized the 

population distribution of each splice-junction quantification per tissue, and grouped 

variants by their distance from their respective donor and acceptor sites. We then analyzed if 

individuals carrying variants in these positions differ from the population in the 

quantification of the splice junction and the proximal exon and intron (Fig. 3A-D).

In the Geuvadis data set, up to 79% of variants in the four essential splice site loci cause 

splice disruptions (P < 0.01; Fig. 3A; GTEx results Figs. S33–37). We also find evidence of 

splice disruption from variants outside these regions, especially at position 1–5bp of intronic 

donor splice sites, 1bp into the adjacent exon, and also more distally −including the −24 

position from the acceptor site, which likely reflects the branch-point position required for 

pre-mRNA splicing (25).

These patterns are consistent with other estimates of functional effects (Fig. 3E), depletion 

of common variants in exome sequencing data sets (Fig. 3F, 26), and a higher prevalence of 

disease-causing mutations (Fig. 3G). Analyses of common variants did not capture these 

patterns of enrichment (Table S7, Figs. S38–40, S9). Our posterior probability estimates for 

sites with significant alternative distributions (P < 0.05) provide a resource for analyses 

(Figs. S41–42, S9–10).

By drawing on data from a wide range of adult tissues across 635 individuals we provide a 

systematic assessment of the impact of predicted protein-truncating variants on the human 

transcriptome. Furthermore, this study indicates that nonsense-mediated decay has 

heterogeneous effects across tissues and how to better detect splice-disrupting variants 

outside the “essential” sites at the splice junction.

We find no evidence for widespread dosage compensation maintaining normal expression 

levels of genes affected by heterozygous PTVs. This, together with the fact that most human 

genes are haplosufficient (18), suggests that homeostatic mechanisms at the cellular level, 

possibly as proposed in the theory of dominance (27), maintain biological function in the 

face of heterozygous, or even homozygous (4), inactivation of human genes.

The resource made available with this study provides a starting point for cataloging variants 

affecting protein function, but larger data sets will be required to increase our power to 

predict molecular consequences of variants from sequence data alone. These results 

highlight the benefits of direct RNA sequencing of either patient tissue or genetically 
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engineered cell lines for interpretation of genetic variation, and suggest that personal 

transcriptomics will become an important complement to genome analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic overview of the study. We prepared an integrated DNA and RNA sequencing 

data set by combining the pilot phase of the GTEx project of 173 individuals with up to 30 

tissues per individual (total = 1634 samples) and the Geuvadis project of lymphoblastoid cell 

line (LCL) DNA and RNA sequencing in 462 individuals. From these data, we analyzed the 

effect of predicted proteintruncating genetic variants on the human transcriptome, including: 

a) nonsense single nucleotide variants (SNVs); b) frameshift indels; c) large deletion 

variants; and d) splice-disrupting SNVs.
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Fig. 2. 
Allele-specific expression analysis. A. Proportion of rare SNVs with allele-specific 

expression (ASE) for synonymous variants (n = 25,233) and nonsense variants predicted to 

escape (n = 158) or trigger (n = 287) nonsense-mediated decay (NMD). B. Proportion of 

rare indels with ASE for inframe (n = 355) and frameshift indel variants predicted to escape 

(n = 77) or trigger (n = 129) NMD. Due to different quality filters, the proportions are not 

directly comparable to those in panel A. C. ROC curve for predicting NMD with binary 

classification defined as no ASE (= escape) and moderate, strong, or heterogeneous ASE (= 

trigger). The filled circles show the specificity and sensitivity for NMD prediction with 

alternative simple distance rules (inset). D. Multi-tissue ASE classification for rare nonsense 

variants predicted to trigger NMD (n = 287). E. Example of ASE data across 6 tissues for a 

heterozygous carrier of the nonsense variant rs149244943 in gene PHKB (phosphorylase 

kinase, beta) classified as having heterogeneous ASE effects across the seven tissues. We 

confirmed that this effect is not driven by a common tissue-specific eQTL. F. Example of 

ASE data across 16 tissues for a heterozygous carrier of the nonsense variant rs119455955, a 

disease mutation for recessive late-infantile neuronal ceroid lipofuscinosis in gene TPP1 

(tripeptidyl peptidase I), classified as having moderate ASE across all tissues. For all plots 

95% confidence intervals are shown.
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Fig. 3. 
Splicing disruption. A. Proportion of variants disrupting splicing at each distance +/− 25bp 

from donor and acceptor site, (* P < 0.05, ** P < 0.01, *** P < 0.001; green for P < 0.05; 

upper limit of 95% CI is shown; P value evaluated using the estimated proportion of variants 

supporting the alternative distribution x the effect size of the alternative distribution). B. 

Classification of splice disruption events: exon skipping (low exon quantification value, no 

impact on intron quantification), exon elongation (high intron quantification value, no 

impact on exon quantification), and mixture (high intron and low exon quantification 

values). C. Diagram of donor and acceptor splice junctions and sequence logo of represented 

sequences. D. Effect size estimates (in standard deviations from the population distribution; 

95% CI is shown) of the variants on splice junction quantification value. E. Median GERP 

of all variants F. Distribution of common variants identified in an independent exome 
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sequencing study of 4,500 Swedish individuals. G. Distribution of reported disease-causing 

variants in ClinVar.
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