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Abstract The stability and resolution of iterative PIV

image analysis methods is investigated. The study focuses

on the effects of stabilization by means of spatial filtering

when implemented into the iterative process. Two filtering

approaches are studied: predictor and corrector filtering

respectively. A family of convolution filters is proposed,

which allows to vary the filtering strength in a systematic

way and primarily affects the system stability and to a

smaller extent its spatial response. A critical value for the

filter parameter is identified which guarantees the stability

of the iterative process. A theoretical analysis is provided

that determines the asymptotic properties of the iterative

method with varying filter parameters. The study is com-

pleted with a numerical assessment and concludes with an

application to real experiments, showing the consequence

of an incorrect implementation of the iterative scheme

under experimental conditions.

1 Introduction

PIV iterative image interrogation methods are nowadays a

common adopted choice due to the significantly augmented

measurement capabilities. The computer power currently

available at affordable costs allows researchers to perform

multiple interrogation steps for a single recording within the

minute. The most important advantages of multi-grid tech-

niques are the increase of dynamic range eliminating the

constraint of the � rule for the in-plane motion (Keane and

Adrian 1993) and an increasedmeasurement precision (Soria

1996; Westerweel et al. 1997; Scarano and Riethmuller

1999). The introduction of the iterative sub-pixel window

shift technique (Lecordier 1997) showed that an important

improvement could be obtained also in terms of measure-

ment sub pixel precision. The iterative window deformation

method (Huang et al. 1993; Jambunathan et al. 1995) opened

theway to the development ofmore sophisticated algorithms

able to cope with flows exhibiting a large velocity gradient

minimizing correlation peak broadening. The most impor-

tant improvement brought to the technique was in terms of

the velocity gradient dynamic range (Fincham and Delerce

2000; Scarano and Riethmuller 2000a). However, the prop-

erties of the iterative interrogation process, expressed as the

stability and the spatial resolution of the converged results

were not well understood. Consequently the interrogation

process required a user-determined criterion to terminate the

analysis. Nogueira et al. (1999) reported about the possible

unstable behaviour of iterative cross-correlation interroga-

tion when performed with the image deformation technique

and proposed a strategy how to avoid the instability. During

the worldwide PIV challenge II (Stanislas et al. 2005), the

issue of the iterative image deformationmethod stability was

repeatedly raised due to the large number of researchers and

system manufacturers adopting iterative interrogation

methods with implementations varying among the different

developers. The worldwide PIV challenge III showed that

nowadays the image deformation technique could be con-

sidered as part of the standard interrogation method.

This discussion motivates the authors to investigate the

stability (Scarano 2004) and the spatial resolution of iter-

ative methods based on cross-correlation analysis and

image deformation from a fundamental standpoint. The

work focuses in particular on the effect of spatial filtering
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of the velocity distribution to prevent the amplification of

velocity fluctuations at specific wavelengths during the

iterative interrogation. This procedure is commonly adop-

ted in the research community (Lecordier and Trinité 2003;

Scarano 2004), therefore the low-pass filtering procedure

and filter properties are investigated to establish a better

knowledge when designing and developing iterative inter-

rogation algorithms.

The first part of the paper is devoted to the theoretical

analysis of the iterative process corresponding to cross-

correlation predictor–corrector interrogation. The model

including the filtering procedure is then assessed by means

of computer simulated PIV recordings with known sinu-

soidal displacement properties.

The theoretical and numerical investigation focuses on

one-dimensional signals representing a generic flow situa-

tion where a spatial wavelength dominates in one direction,

for example shear layers or shock waves. Flow situations

where the spatial wavelengths are of the same order in all

directions (isotropic turbulence, vortices) are studied by

means of two-dimensional signals.

The results are verified with the application to a turbu-

lent flow over a backward facing step. The tests performed

under experimental conditions allows to state how much

can be inferred from numerical assessment when noise

terms cannot be neglected (out-of-plane motion, back-

ground light, CCD noise).

2 Iterative interrogation with image deformation

The iterative analysis of PIV recordings can be schemati-

cally described as being composed of two parts (Scarano

and Schrijer 2005):

(1) Multi-grid analysis where the interrogation window

size is progressively decreased. This process elimi-

nates the � rule constraint and it usually ends when

the required window size has been reached.

(2) Iterative analysis at a fixed window size (and grid

spacing). This process allows to further improve the

accuracy of the image deformation (Nogueira et al.

1999; Scarano 2000) and to a certain extent allows to

enhance the spatial resolution of the measurement.

The present investigation is concerned solely with the

iterative analysis. In its essence the process can be

described by a predictor–corrector loop as schematically

represented in Fig. 1. The iterative equation in its simplest

form reads as:

V~
kþ1

¼ V~
k
þ C~

kþ1
; ð1Þ

where V
k indicates the velocity field resulting from the

evaluation at the kth iteration and is used as predictor for

the following iteration. The correction term C
k
= (cu, cv)

is the vector determined by cross-correlating the

deformed images: C~
k
¼ Ika � Ikb : The deformed images

are obtained from the original images Ia, Ib according to

the relation:

Ika x; yð Þ ¼ Iaðx� ukd=2; y� vkd=2Þ

Ikb x; yð Þ ¼ Ibðxþ ukd=2; yþ vkd=2Þ:
ð2Þ

here ud,vd is the image deformation displacement at loca-

tion (x,y) commonly obtained interpolating the predictor

displacement V
k onto a pixel grid. The most common

choice for the displacement interpolation is bi-linear

(Huang et al. 1993; Jambunathan et al. 1995; Scarano and

Riethmuller 2000a) which is also used in the current

investigation. Higher order functions have also been con-

sidered (Fincham and Delerce 2000; Lecordier and Trinité

2003), which may in principle improve the accuracy of

image deformation. In all cases where sub-pixel image

transformation is required (sub-pixel window shift and/or

window deformation), the images have to be interpolated

for re-sampling at non-integer pixel positions. The topic is

extensively discussed by Astarita and Cardone (2005), who

conclude that high-order interpolators are necessary to

achieve higher accuracy, although high noise levels may

reduce the relative improvements obtained for high order

interpolators (Astarita 2006). In the current study image

interpolation is performed using a sinc interpolation with

an 11 9 11 pixel kernel size.

The approach as described in the block diagram of

Fig. 1 may appear very logical and its simplicity makes it

straightforward to implement, which probably justifies why

it has been broadly adopted in the PIV community. How-

ever it will be discussed why this approach is incomplete

and may lead to inaccurate results.

Fig. 1 Block diagram of the

iterative image deformation

interrogation method
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2.1 Theoretical stability analysis

It has been shown (Nogueira et al. 1999; Scarano 2004;

Astarita 2006) that the iterative process is intrinsically

unstable and the result may diverge unless the image pro-

cessing is interrupted at an early stage. The instability can

be investigated by looking at the nature of the cross cor-

relation process. The particle displacement obtained by

image cross correlation is shown to be similar in applying a

moving average filter to the exact displacement field when

the correlationwindow contains sufficient particles (Scarano

and Riethmuller 2000a). Therefore the frequency response

of the cross correlation process is equivalent to that of a

moving average filter having a kernel size equal to the

window size. This frequency response is given by the sinc

function, which is depicted Fig. 2.

Here l* is the normalized window size, which is the

linear window size divided by the signal wavelength

l* = WS/k. When l* ? 0, the window size is small with

respect to the signal wavelength. Conversely when

l* ? ?, the window size is large with respect to the signal

wavelength. The response function becomes negative for

certain values of l*. Applying this observation to the cross

correlation process means that at certain wavelength

intervals, having a negative response, the cross correlation

result will be opposite to the actual displacement. For an

iterative approach this means that the process is potentially

unstable and may diverge at these specific wavelengths.

Therefore when regarding the frequency response of the

conventional single-step PIV cross correlation process, the

instability in the process is produced at intervals having

negative values (Nogueira et al. 1999) which are located

between 1 and 2, 3 and 4 and so on.

As mentioned before, the frequency response of single-

step cross-correlation analysis is equivalent to the sinc

function for which the largest negative value is found close

to l* = 1.5. Therefore in a PIV process, wavelengths 2/3 of

the window size will be amplified provided the employed

overlap factor is larger than 50% so that the wavelength

can be represented (although affected by modulation). This

can be illustrated by analysing a synthetic PIV recording

where the two exposures have a zero relative displacement.

A small amount of uncorrelated noise (0.4% pixel noise) is

added. The iterative PIV interrogation returns after 20

iterations the result depicted in Fig. 3. Here the most

amplified waves are clearly visible and the wavelength

coincides with 2/3 of the interrogation window size

(l* = 1.5).

This aspect has already been studied and different

solutions are possible. Image weighting functions such as

Gaussian or LFC (Nogueira et al. 1999, 2001; Astarita

2007) may reduce or eliminate the mentioned instability by

means of eliminating the sinc negative sidelobes, however

at the cost of lower effective image number density. This is

counterbalanced using relatively large correlation kernels

(e.g. 64 9 64) but still keeping a small distance between

adjacent windows. In a recent study from Nogueira et al.

(2005) it is stated that large windows are needed to achieve

an accurate representation of the weighting function on the

discrete pixel grid. The resulting overlap factor implies that

a large number of computations have to be performed.

A comparison of the image weighting approach with the

vector data filtering discussed in this paper was performed

in Schrijer and Scarano (2006). Here it was found that the

modulation as well as rms errors were reduced, however at

the cost of a considerable increase of computational time.

Fig. 2 Cross correlation frequency response: sinc function

Fig. 3 Iterative PIV result after 20 iterations for a zero displacement

velocity field (0.4% pixel noise)
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3 Stabilization through spatial filtering

Another approach consists in the analysis by cross corre-

lation without window weighting, however applying a

spatial filter (low-pass) to the velocity field. The interesting

aspect of this approach resides in the limited computational

effort. The velocity field spatial distribution can be filtered

at several points within the iterative process (Fig. 4), where

the different choices yield a specific behaviour of the

iterative method.

The filtering process can be described as a convolution

operation applied to the pixel-grid velocity field (either Vk

or Ck). It can be mathematically represented as:

F~ðV~Þ ¼

ZZ

W

f n; gð ÞV~ n� x, g� yð Þdndg: ð3Þ

The operation returns a filtered version of the velocity

vector field F(V). Where f is the filter and W is the linear

filter kernel size.

It will be shown that the purpose of the filter is to pre-

vent the growth of velocity fluctuations at unstable

wavelengths. It should be kept in mind that excessive fil-

tering would result in a highly stable process, however this

will be at the cost of reduced spatial resolution. Con-

versely, no or insufficient filtering will not damp the

instability growth with poor convergence of the iterative

process and a low accuracy measurement. Therefore the

influence of the filter properties such as size and shape on

the stability and spatial resolution should be carefully

assessed.

In the current study the predictor filtering and corrector

filtering approaches are investigated, both strategies are

further outlined in the following sections.

3.1 Predictor filtering approach

As the name already suggests the velocity predictor is fil-

tered in the iterative loop before image deformation, as

shown in the block diagram of Fig. 4. The iterative equa-

tion in this case can be written as:

V~
kþ1

¼ F~ðV~
k
Þ þ C~

k
: ð4Þ

Introducing the spatial response of the chosen convo-

lution filter rf, the exact value of the particle images

displacement V0 and the characteristic response of the filter

used for the image weighting rc [which is equal to sinc(l*)

for a top-hat window] the iterative equation can be further

reformulated as:

V~
kþ1

¼ rf � V~
k
þ rc � ðV~0 � rf � V~

k
Þ: ð5Þ

3.2 Corrector filtering approach

When applying corrector filtering the direct result of cross

correlation is subject to the filter and the iterative equation

can be written as:

V~
kþ1

¼ V~
k
þ F~ðCk~ Þ: ð6Þ

Following the approach similar to predictor filtering the

iterative equation becomes:

V~
kþ1

¼ V~
k
þ rc � rf � ðV~0 � V~

k
Þ: ð7Þ

Equations (5) and (7) for predictor and corrector filtering

are analogous to those proposed by Nogueira et al. (1999,

2005) except for the introduction of the filtering term rf.

It may be anticipated that the filter has a larger influence

when it is implemented in the predictor mode since it

directly acts on the previously measured displacement field

while the corrector filter only acts on the update term and

thus affects the result indirectly.

3.3 Parametric filter approach

To avoid a multi-parametric analysis of the system

behaviour in relation to the filter properties a family of

filters is introduced having a fixed kernel length. The filter

shape depends on a single parameter chosen such that the

entire range of filtering possibilities, from the Dirac delta

function to the moving average (MA) can be covered,

whereas the filter kernel size is kept constant. However, the

filter shape might not be the optimal one for a given fil-

tering strength.

The one-dimensional formulation of the filter is descri-

bed by the following equation:

Fig. 4 Block diagram of the

iterative image deformation

interrogation method with

filtered predictor and filtered

corrector options
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f1DðnÞ ¼ C1

l

2

� �z

� nj jz
� �

; ð8Þ

where C1 normalizes the filter integral to unit value. The

kernel window size is given by l and it has been chosen

equal to the PIV interrogation window size. When z ? 0

the filter approximates a Dirac delta function, which

corresponds to the case of no filtering. For increasing

values of the parameter z the filter shape becomes fuller, as

shown in Fig. 5 left. When z ? ?, the function

approximates a top-hat filter with the same dimension as

the interrogation window, although the filter is still equal to

0 at the edges. At z = 1 the filter represents a triangular

function. The filtering strength therefore increases with z

and it is expected that for higher values of z the filter

becomes increasingly effective in damping instabilities,

however at the cost of a lower spatial resolution. The

corresponding two-dimensional filter is given by the

following expression (see Fig. 5 right):

f2Dðn; gÞ ¼
C2

l
2

� �z
� nj jz

� �

for nj j � gj j

C2
l
2

� �z
� gj jz

� �

for nj j\ gj j

	

ð9Þ

with C2 being the normalization coefficient.

As stated in the ‘‘Introduction’’, the two-dimensional

signals are representative of flow fields with spatial fluc-

tuations along both directions where no direction

dominates. To limit the number of free variables in the

present study, two-dimensional cases are considered with

signals having the same wavelength in both x and y

directions kx = ky = k.

The filters used in the theoretical approach are intro-

duced as continuous functions therefore eliminating the

error due to spatial discretization. The spatial response rf of

the one-dimensional filter is given in Fig. 6 left. Repeating

once more the definition of the normalized window size l*

(spatial frequency) as the ratio of the filter window size

(which is equal to the PIV interrogation window size) and

the velocity spatial distribution wavelength (WS/k). Clearly

for z ? ?, rf approaches the sinc(l*) function. As z is

decreased, the modulation decreases. When z ? 0, the

modulation becomes constant at a value of 1 (rf ? 1)

approaching the ideal impulse response (no modulation).

The two-dimensional filter spatial response (Fig. 6 right)

has similar characteristics to the one-dimensional. Since

the wavelengths are equal in x and y directions, the filter

spatial response only depends on l*. The modulation

increases with z and approaches 1 for z ? 0.

Subsequently the filter spatial response is used to obtain

a theoretical estimate of the effect of the parameter z on the

asymptotic properties of the iterative process. The analysis

focuses primarily upon the stability and spatial resolution

of the iterative process and is used to gain insight into the

effects of the filtering on the iterative process.

3.4 Non-linear filtering approach

The additional case of a non-linear filter is investigated. It

is implemented in the predictor step. The iterative equation

reads as:

V~
kþ1

¼ F~regr V~
k


 �

þ rc � V~0 � F~regr V~
k


 �h i

ð10Þ

where Fregr(V
k) represents the velocity field filtered by

means of a second order two-dimensional least squares

regression with a kernel size l equal to the interrogation

window size WS. The advantage of this filter is a favour-

able combination of noise reduction behaviour and low

spatial modulation. Due to the non-linearity of the filter it is

not possible to infer its spatial response, therefore it is not

included into the theoretical discussion. However it will be

compared to the linear filters in the numerical and experi-

mental assessment.

Fig. 5 Convolution filter family, one-dimensional (left) without normalization coefficients and two-dimensional (right)
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3.5 Theoretical stability analysis

To indicate the stability of the process, the ratio between

consecutive updates is used. Similarly to what is proposed

by Nogueira et al. (1999), the expression for the stability

coefficient e with respect to a generic velocity vector

component u reads as:

e �
ukþ1 � uk

uk � uk�1
: ð11Þ

when 0 B e\ 1 the ratio of updates is monotonically

decreasing ensuring a stable process. If -1\ e\ 0 the

process is still stable, however sign reversal occurs in the

value of the updates (oscillations of decreasing amplitude).

rf and rc can be obtained from previous definitions con-

sidering that rc = sinc(l*) and rf = f(l*) (see Fig. 6). The

stability of the process therefore depends only on the value

of l* and on the properties of rf, which again are deter-

mined by the parameter z.

In the case of predictor filtering the stability criterion

can be derived combining Eqs. (5) and (11):

e ¼ rf � 1� rcð Þ: ð12Þ

The behaviour of the stability coefficient in case of pre-

dictor filtering is shown in Fig. 7 for a one-dimensional

signal and in Fig. 8 for a two-dimensional one.

For normalized wavelengths smaller than 1 (l*\ 1) all

filters are expected to be stable. When applying top-hat

filtering (z = ?) the instability parameter varies from

positive to negative values. Decreasing the values of z the

parameter e increases indicating that the process becomes

less stable. When z is decreased from 10-2 to 10-3 the

process goes from stable to unstable for signals containing

wavelengths smaller than the window size (l*[ 1).

Eventually this means that the presence of noise which

minimum wavelength ultimately only depends on the

vector spacing will destabilize the process.

The dependence of the stability coefficient on the filter

parameter z for the two-dimensional case is similar to the

one-dimensional case, except for the fact that 0 B e B 1

for all choices of the parameter z. This indicates that for

two-dimensional waves with equal wavelengths in x and y

direction, the process is expected to be always stable

irrespective of the wavelength.

The parameter e yields not only information on the

stability of the process; it also indicates the rate of con-

vergence. The smaller the absolute value of e the faster the

process converges. Therefore the fastest convergence is

expected for the top-hat filter.

The stability criterion for corrector filtering can be

obtained combining Eqs. (7) and (11):

e ¼ 1� rf � rcð Þ: ð13Þ

This is graphically represented in Fig. 9 for a one-dimen-

sional signal and in Fig. 10 for a two-dimensional one.

Fig. 6 Convolution filter spatial response, one-dimensional (left) and two-dimensional (right)

Fig. 7 Stability coefficient as a function of the normalized window

size l* for different values of the predictor filter strength for the one-

dimensional case
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From Fig. 9 it can be seen that, similar to the predictor

case, when l*\ 1 (wavelengths larger than the window

size) the process is stable for all filters because 0 B e B 1.

At l* = 1 the spatial response of the cross correlation

process is rc = 0, therefore e = 1 irrespective of the cor-

rector filter strength (see Eq.13). For wavelengths smaller

than the window size, l*[ 1, all filters are found to be

unstable except for the top-hat filter.

However, anticipating the numerical results, for z[ 1

the susceptibility to destabilization is expected to be small

since the corrector filtering approach only acts indirectly on

the final result.

In case of the purely two-dimensional signal the sta-

bility coefficient is 0 B e B 1, which is similar to the

two-dimensional predictor filtering, showing that also in

this case there are no stability issues for two-dimensional

waves with similar wavelengths along x and y direction.

When comparing the stability coefficient for the pre-

dictor and corrector filtering it can be inferred that the

convergence rate (the inverse of the stability coefficient) in

case of corrector filtering is always lower compared to

predictor filtering.

3.6 Spatial resolution

In the following section the spatial resolution of the itera-

tive process is studied by analysing the modulation effect.

Considering the stable range, l*\ 1, the iterative equation

can be rewritten with the asymptotic limit that

limk!1 ukþ1 � uk
� �

¼ 0 to obtain the asymptotic amplitude

response.

Introducing the limit into Eq. (5) results in the asymp-

totic amplitude response for predictor filtering:

u1

u0
¼

rc

1� rf þ rc � rf
: ð14Þ

In the limit case that rf ? 1 (z ? 0), u?/u0 ? 1 is

obtained, i.e. no modulation. Although this behaviour

would yield the highest spatial response, the above dis-

cussion on stability excludes this possibility. When rc ? 1

(l* ? 0, the wavelength is large compared to the window

size), the modulation effect vanishes and the velocity

fluctuation amplitude tends to the exact value.

The amplitude modulation increases with the parameter

z (Figs. 11, 12). However, it is remarkable that even the

response for z ? ? is significantly less modulated with

respect to a moving average filter. This behaviour is due to

the iterative implementation of the interrogation process.

Fig. 8 Stability coefficient as a function of the normalized window

size l* for different values of the predictor filter strength for the two-

dimensional case

Fig. 9 Stability coefficient as a function of the normalized window

size l* for different values of the corrector filter strength z for the one-

dimensional case

Fig. 10 Stability coefficient as a function of the normalized window

size l* for different values of the corrector filter strength z for the two-

dimensional case
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Which makes the window deformation approach advanta-

geous with respect to the window shift technique, which

behaves as a moving average filter (Scarano and Rieth-

muller 2000a). For example, in case of a one-dimensional

signal the -3 dB cut-off value (u?/u0 = 0.5) is shifted

from l* = 0.6 for a single pass method to l* = 0.7 for the

iterative process at z = ? and to l* = 0.83 for the iterative

process at z = 10-2. Furthermore, it can be seen that the

improvement due to the iterative implementation of the

interrogation process in terms of amplitude modulation is

especially large for small l*. Similar conclusions can also

be drawn for the two-dimensional signal case.

Using the above analysis it is now possible to select an

appropriate value for the parameter z such to optimize the

filtering process. This can be further illustrated by

observing that the modulation decreases when decreasing z

therefore a value of z as low as possible is desired. How-

ever, when z B 10-3 the process is found to be unstable for

certain wavelengths (see Sect. 3.5), eventually causing the

process to become unstable independently of the signal

wavelength, due to the presence of high frequency noise.

Therefore z = 10-2 seems close to an optimum: it offers a

stable process, with a good rate of convergence and high

spatial response. In the rest of the discussions this value of

z = 10-2 will be referred to as the critical z for predictor

filtering or zc,p. It should be remarked here that the choice

of the filter shape is not unique and similar behaviour may

have been achieved with a different base function for the

filter. However, the main conclusion is that when z is

smaller than a given value the effective filter width is

below the necessary value to damp unstable wavelengths.

In case of the corrector filtering process (Eq. 7) the limit

assumption results in an asymptotic amplitude response,

which is identical to one for all wavelengths and irre-

spective of the filter strength:

u1

u0
¼ 1: ð15Þ

This means that theoretically the corrector filtering process

does not suffer from modulation effects. Although this

behaviour may seem strange at first, it can be understood

when realizing that only the update (corrector) is filtered.

This means that the error caused by the modulation is

corrected in the next step of the iterative process, where the

update is again subjected to filtering. In this way the pro-

cess asymptotically converges to the non-modulated value.

However, when increasing the corrector filter strength z

the convergence rate decreases, therefore the smallest

possible value for z should be chosen. As in the predictor

filtering case a lower bound concerning the z parameter

should be given by the stability analysis. However, it was

found that all filter strengths resulted in an unstable pro-

cess. As also mentioned in Sect. 3.5, the susceptibility to

destabilization can be neglected for z C 1, therefore

zc,c = 1 is proposed as the critical z for corrector filtering.

The choice for this value is justified in the numerical

assessment.

4 Numerical assessment

A theoretical analysis based on linear filtering analogy has

been performed in Sect. 3 in the hypothesis that the cross-

correlation interrogation yields the noise-free local average

of the particle displacement over the window.

A numerical assessment is presented in this section,

where computer generated PIV recordings are processed

with known image and displacement properties. In this way

the linear filter hypothesis can be removed. Moreover

Fig. 11 Predictor filtering asymptotic amplitude response for the

one-dimensional case

Fig. 12 Predictor filtering asymptotic amplitude response for the

two-dimensional case
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one-dimensional as well as two-dimensional cases will be

considered. The particle images are generated using Monte

Carlo simulation. The mean particle image size is

dp = 2.5 pixels with a standard deviation of 0.2 pixels.

The particle image density is 0.1 particles per pixel, which

yields approximately 100 particles within a window of

31 9 31 pixels. The mean particle peak intensity is 2,000

with a standard deviation of 300 counts. Two displacement

fields are used in the assessment: a one-dimensional sinu-

soidal shearing motion with a varying wavelength from

620 to 30 pixels and a two-dimensional sinusoidal dis-

placement resulting in a vortex-like flow-field covering the

same wavelength range as in the one-dimensional case. The

equation for the two-dimensional case reads:

uðx; yÞ ¼ U0 sin 2px=kð Þ sin 2py=kð Þ
vðx; yÞ ¼ V0 cos 2px=kð Þ cos 2py=kð Þ

: ð16Þ

The maximum particle displacement is equal to 1 pixel

(U0 = V0 = 1) in the one-dimensional and the two-dimen-

sional cases. The images are analysed with the WIDIM

algorithm (Scarano and Riethmuller 2000a) with the

modification that the filter parameter z (Eq. 9) can be

varied. The interrogation window size is 31 9 31 pixels

and an overlap factor of 90% is chosen to minimize the

error due to spatial discretization. The correlation results

are again linearly interpolated onto a pixel grid on which

the filter is applied to further reduce discretization effects.

Similar to the theoretical assessment, the filter window size

has been chosen equal to that of the PIV image interro-

gation window. With the current settings the numerical

assessment covers a normalized wavelength range from

0.05 to 1.0 since this is the specific area of interest for PIV

interrogation algorithms.

The results are given in terms of amplitude modulation

and root mean square (rms) fluctuations. The modulation is

obtained by calculating the area under a half-sinusoid wave

obtained by the interrogation process and comparing this to

the area under an exact half-sinusoid wave. For a one-

dimensional signal this can be mathematically represented

by:

U

U0

l�ð Þ ¼

R k=2
0

Uðl�; xÞdx

kU0=p
; ð17Þ

where U is the displacement obtained from the interroga-

tion process, U0 is the actual maximum displacement

amplitude and k is the signal wavelength under

consideration.

The rms error is obtained from the interrogation process

result. The rms is determined at each location in a wave (by

using multiple realizations) and is averaged over a com-

plete wavelength. In case of a one-dimensional signal the

expression is given by:

rms l�ð Þ ¼
1

K

X

K

k¼1

PN
n¼1 uðl�; k; nÞ � uðl�; kÞ½ �

N

" #1
2

: ð18Þ

where n is the wave realization number with N total

realizations, k is the integer position on the vector grid in

the wave and K is the integer wavelength. K and k are

linked to the spatial position x and wavelength k by:

x ¼ k
k � 1

K � 1

� �

: ð19Þ

4.1 Predictor filtering

4.1.1 One-dimensional sinusoidal displacement

with varying wavelength

Figure 13 illustrates the development of the spatial

response after several iterations. The iterative process

appears to be stable for z C zc,p (zc,p = 10-2). It converges

very slowly for z = 10-3 and is overshooting for z = 10-4

(U/U0[ 1 at iter = 10). For z\ zc,p and l*\ 0.5 the

modulation gain is small when decreasing the filter

strength. The expected gain in terms of spatial resolution

going from the top-hat case (z ? ?) to the critical case

Fig. 13 Spatial response of cross-correlation analysis for a one-dimensional sinusoidal displacement as a function of the normalised window size

l* and for different values of the predictor filter parameter z (solid lines are the corresponding theoretical curves)
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z = zc,p is in qualitative agreement with the theoretical

prediction. Assessing the non-linear regression filter it can

be seen that it performs similar to the z = 10-3 linear filter.

The variation of rms error with increasing iteration number

is given in Fig. 14 left and middle, which is a good indi-

cator for the stability of the process. At l* = 0.05 the rms

error is constant for z[ zc,p, converges slowly for z = zc,p
and diverges for the case z ? 0. Although all filters are

stable at this wavelength according to Fig. 7, high fre-

quency fluctuations (due to noise by for example round off

errors) cause the unstable behaviour present for z\ zc,p
(see Sect. 3.5). At l* = 0.5 the situation is less pronounced

as for l* = 0.05, this is because of the increased modula-

tion. However, when z = 10-4 the process is still unstable.

In Fig. 14 right, the rms error is given as function of l* at

the 4th iteration. It can be observed that the rms error

increases with l* and decreases with increasing filter

strength. Finally it is found that the non-linear regression

filter generally has a lower rms error as expected, Fig 15.

4.1.2 Two-dimensional sinusoidal displacement

with varying wavelength

The results obtained from the two-dimensional displace-

ment field are similar to the one-dimensional case except

for the fact that the slope of all curves tends to zero towards

l* = 1. Decreasing the parameter z, also decreases the

modulation. For l*\ 0.2 the modulation is independent of

the filter parameter. Looking at the rms as a function of the

iteration number (Fig. 16 left and middle), the situation is

exactly the same as in the one-dimensional case. When

observing the rms values for l*\ 1 at iteration 4 (Fig. 16

right) it is seen that for z C zc,p, the rms error does not

depend on the filter parameter. For z\ zc,p the rms

increases with decreasing z. Finally, for the two-dimen-

sional case it was found that the regression filter is

comparable with the z = 10-2 filter and also exhibits

overall low rms values.

This confirms that the filter with z = 10-4 is unstable.

For z = 10-3 the behaviour of the rms with increasing

iterations shows that the filter is marginally stable since

only a slow convergence is found. At z = 10-2 the filter is

found to be stable. This confirms the theoretical analysis.

Table 1 shows the value of l where the measured dis-

placement drops below the -3 dB point for the total error.

In this case the total error is computed as the Euclidean

norm of the modulation and rms effects. It should be

retained in mind that the total error also contains a com-

ponent that is a function of the wave amplitude (which is

1 pixel in this assessment). It is however useful to combine

Fig. 14 RMS error of cross-correlation analysis for a one-dimensional sinusoidal displacement as a function of the number of iterations and

predictor filter parameter (left and centre) or as a function of the normalized window size l* and predictor filter parameter z (right)

Fig. 15 Spatial response of cross-correlation analysis for a two-dimensional sinusoidal displacement as a function of the normalised window

size l* and for different values of the predictor filter parameter z (solid lines are the corresponding theoretical curves)

936 Exp Fluids (2008) 45:927–941

123



both components of the error for sake of compactness. The

one-dimensional and two-dimensional signals give similar

results; only the cut-off normalized window size is reduced

for the two-dimensional case, which is expected. Overall it

is found that the cut-off point is increased (higher l*) with

decreasing filter strength. The regression filter is found to

yield the same cut-off point as the predictor filter with

z = 10-3, which, however is marginally stable. Finally the

cut-off point for the sinc function is included which cor-

responds to the single-pass or window-shift interrogation

processing, clearly showing the benefits of iterative

processing.

4.2 Corrector filtering

4.2.1 One-dimensional sinusoidal displacement

with varying wavelength

The spatial response of the corrector filtering process is

given in Fig. 17. Looking at the theoretical curves (solid

lines) it can be seen that as the iterations progress the

modulation decreases. When comparing this to the

numerical assessment (symbols), it is found that this holds

for filter strength z[ 5. For weaker filter strengths, the

process overshoots when increasing with iterations. The

extent of the overshoot however decreases with increasing

filter strength. Observing the evolution of the rms values

with iteration number (Fig. 18 left and middle) shows that

for z\ zc,c the process diverges.

At iteration 4 (Fig. 18 right) the rms error increases with

l*. For a given l* the rms decreases with the filter strength,

this decrease is rather strong for z\ zc,c and becomes

weaker for z[ zc,c. Overall the situation is similar to the

predictor filtering case, Fig. 19.

4.2.2 Two-dimensional sinusoidal displacement

with varying wavelength

For l*\ 0.2 the modulation is found to be independent of

the filter parameter z. The modulation decreases with the

filter strength z and a minimal overshoot is found for

z = 10-4. From Fig. 20 left and middle, it can be seen that

the filters with z\ zc,c show an increase of rms error with

iteration, for z C zc,c the rms values are found to decrease

with the iteration number. The increase in rms with l* at

iteration 4 (Fig. 20 right) is similar to the one-dimensional

case. For z C zc,c the rms is very weakly dependent on the

filter strength (almost constant) while it strongly increases

for decreasing z when z\ zc,c. The above observations

concerning the modulation are found to be consistent with

the theoretical analysis. The rms error diagrams showed

that the process is stable for z = 1 and unstable for

z = 10-2.

Finally the -3 dB total error criterion is summarized in

Table 2. As in the predictor filtering case, the cut-off point

increases with decreasing filter strength z. Again the

increase in cut-off point is found when going from one-step

(sinc) to iterative processing.

When comparing the cut-off point obtained from pre-

dictor to corrector filtering it is found that the corrector

filter yield the best results. This can be attributed to the

better modulation response, however one should keep in

Fig. 16 RMS error of cross-correlation analysis for a two-dimensional sinusoidal displacement as a function of the number of iterations and

predictor filter parameter (left and centre) or as a function of the normalized window size l* and predictor filter parameter z (right)

Table 1 Normalized window size l* at -3 dB total error cut-off point for predictor filtering (after four iterations)

l* z = 10-4 z = 10-3 z = 10-2 z = 10-1 z = ? regr sinc

One-dimensional 0.79 0.77 0.72 0.70 0.64 0.78 0.60

Two-dimensional 0.57 0.55 0.51 0.50 0.45 0.53 0.44
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mind that the rms values are generally larger for the cor-

rector filter and that it is more susceptible to instabilities.

5 Experimental assessment

To assess the filtering approaches under real experimental

conditions, PIV images of the water flow over a backward

facing step are used (Scarano and Riethmuller 2000b). The

flow facility is a gravity driven closed circuit water tunnel.

The inlet channel has a 100 9 240 (h 9 w) mm2 cross-

section before expansion. The backward facing step height

is h = 20 mm and the expansion ratio is 1.2. A double

cavity pulsed Nd:Yag laser (*120 mJ/pulse) was used as

light source. LATEX particles (dp *25 lm) are used as

seeding. An example of the flow field is given in Fig. 21.

The scattered light was acquired by means of a PCO

sensicam CCD camera having 1,280 9 1,024 pixels (12

bits) which was cropped to 1,280 9 320 pixels. The time

separation between the laser pulses was Dt = 5 ms.

Fig. 17 Spatial response of cross-correlation analysis for a one-dimensional sinusoidal displacement as a function of the normalized window

size l* and for different values of the corrector filter parameter z (solid lines are the corresponding theoretical curves)

Fig. 18 RMS error of cross-correlation analysis for a one-dimensional sinusoidal displacement as a function of the number of iterations and

corrector filter parameter (left and centre) or as a function of the normalized window size l* and corrector filter parameter z (right)

Fig. 19 Spatial response of cross-correlation analysis for a two-dimensional sinusoidal displacement as a function of the normalised window

size l* and for different values of the corrector filter parameter z (solid lines are the corresponding theoretical curves)
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Experiments were conducted at Reh = 5.0 9 103, with a

free-stream velocity of U
?

= 12.5 cm s-1. The overall

field of view is 160 9 40 mm2 (magnification is 0.054).

For the statistical analysis 200 images were used. The

interrogation window size was set to 31 9 31 pixels with

an overlap factor of 80%.

In Fig. 22, the results for the different filtering approa-

ches are reported, the scales are equal to Fig. 21.

The comparison of the results shows little difference

between the different choices (predictor or corrector filter,

values of z), except for a clearly diminished resolution due

to excessive filtering when the top-hat filter is applied to

the predictor (Fig. 22 topright where for example the local

velocity maximum is modulated in the recirculation zone

behind the step). Conversely, the unfiltered analysis

(Fig. 22 topleft) shows an increased noise.

In Figs. 23 and 24, respectively the horizontal and

vertical velocity components are given on a line that

crosses the shear layer at x = 2.5 cm. These figures clearly

show the increased modulation for the moving average

predictor filter. They also show the instability for the non-

filtered (local) process resulting in the amplification of

initial disturbances resulting in a wavy pattern around the

expected shear layer profile (Fig. 23).

Finally in Figs. 25 and 26, the rms values of the vertical

velocity component at respectively y = 3 and x = 10 cm

are shown. Except for the local and the moving average

predictor filter (pz?) all methods return similar rms

values. In case of the local method the rms values are

increased due to the unstable nature of the method. On the

other hand when using the moving average predictor, the

rms values are attenuated because of excessive smoothing.

In Table 3 this is also expressed as the mean rms value

over the profiles given in Figs. 25 and 26. Here it can be

seen that the local method gives a 10% increase in rms

values while the moving average predictor results in a 5%

attenuation of the rms fluctuations.

6 Conclusions

The stability and resolution of iterative PIV image analysis

with spatial filtering methods have been investigated

theoretically by means of linear filter analogy, subsequently

a numerical and experimental assessment was performed.

The numerical study focuses on sinusoidal one-dimensional

waves representing flow fields where a wavelength domi-

nates in one direction (shear layers, shock waves) and

purely two-dimensional waves where the wavelength is

equal in all directions (isotropic turbulence, vortices). The

discussion shows that for iterative image deformation

methods without image weighting and overlap factors

higher than 50% it is essential to introduce a low-pass filter

within the iterative cycle to avoid the amplification of

unstable wavelengths. A family of filters has been intro-

duced of a form that the filter shape could be varied with a

single parameter and covering the two opposite cases of

Fig. 20 RMS error of cross-correlation analysis for a two-dimensional sinusoidal displacement as a function of the number of iterations and

corrector filter parameter (left and centre) or as a function of the normalized window size l* and predictor filter parameter z (right)

Table 2 Normalized window size l* at -3dB total error cut-off point

for corrector filtering (after four iterations)

l* z = 10-4 z = 10-2 z = 1 z = 5 z = ? sinc

One-dimensional 0.79 0.76 0.75 0.73 0.71 0.60

Two-dimensional 0.57 0.55 0.53 0.52 0.50 0.44

Fig. 21 Averaged PIV result for the flow over the backward facing

step
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Dirac pulse and top-hat filter shape. The filter size was

chosen to be equal to the PIV interrogation window size.

Two filtering approaches were studied; predictor filtering

where the filter acts on the measured displacement and

corrector filtering where the filter is applied to the update

term. The filter and interrogation window size used in the

Fig. 22 Analysis of PIV

recordings with different

filtering approaches. Mean

velocity magnitude over 200

recordings after four iterations,

scale is the same as in Fig. 21

Fig. 23 Average horizontal velocity component on the line

x = 2.5 cm

Fig. 24 Average vertical velocity component on the line x = 2.5 cm

Fig. 25 Rms of the vertical velocity component on the line y = 3 cm

Fig. 26 Rms of the vertical velocity component on the line

x = 10 cm
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investigation was 31 9 31 pixels. Finally also a non-linear

filter was introduced in the predictor filtering approach.

The main result from the theoretical discussion and

numerical assessment is a critical value (minimum) for the

filter parameter: for predictor filtering below z = 10-2

poor convergence is to be expected and for lower values

the process is unstable. The critical value for corrector

filtering is found to be z = 1. The spatial resolution

depends less strongly on the filter parameter, however one

result stands clear: an important gain in the -3 dB cut-off

frequency is obtained going from a single-pass interroga-

tion to the iterative interrogation.

The corrector filtering strategy was found to yield an

appreciably better spatial resolution with respect to the

predictor filtering, however at the cost of higher rms values

and lower convergence rate. The regression filter showed

good modulation characteristics, combined with low rms

values.

The experimental assessment confirmed the theoretical

prediction and numerical assessment. The analysis of the

PIV recordings of the flow over a backward facing step

clearly documents the effects of noise amplification in case

of insufficient or disabled predictor filtering as well as

attenuation effects caused by excessive filtering. It was

found that the measured rms fluctuations were overpre-

dicted by 10% for unstable processes while for excessive

filtering the rms fluctuations were decreased by 5%.
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