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Abstract— Several proposals have been made for congestion-
sensitive pricing of the Internet. One key implementation obsta-
cle for these dynamic pricing schemes is the necessity of frequent
price updates whereas the structure of wide area networks does
not allow frequent price updates for many reasons, such as round-
trip-times are very large for some cases. As the networks allow
infrequent price updates, more control is achieved by the pricing
schemes with more frequent price updates. So an important issue
to investigate is to find a maximum value for the interval (i.e. pric-
ing interval) over which price updates occur, such that the level
of congestion control can remain in a desired range. This paper
presents our modeling and analysis work for the length of pricing
intervals. To represent the level of control over congestion, we use
correlation between prices and congestion measures. After devel-
oping approximate models for the correlation, we find and prove
that the correlation degrades at most inversely proportional to an
increase in the pricing interval. We also find that the correlation
degrades with an increase in mean or variance of the incoming
traffic.

Index Terms—Network Pricing, Congestion Pricing, Quality-of-
Service, Congestion Control

I. INTRODUCTION

One proposed method for controlling congestion in wide area
networks is to apply congestion-sensitive pricing [1], [2]. Many
proposals have been made to implement dynamic pricing over
wide area networks and the Internet [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]. Most of these schemes aimed
to employ congestion pricing. The main idea of congestion-
sensitive pricing is to update price of the network service dy-
namically over time such that it increases during congestion
epochs and causes users to reduce their demand. So, implemen-
tation of congestion-sensitive pricing protocols makes it neces-
sary to change the price after some time interval, what we call
pricing interval.

Clark’s Expected Capacity [3] scheme proposes long-term
contracts as the pricing intervals. Kelly’s Proportional Fair Pric-
ing (also called as packet marking) scheme [5] proposes shadow
prices to be fed back from network routers which has to happen
over some time interval. MacKie-Mason and Varian’s Smart
Market scheme [6] proposes price updates at interior routers
which cannot happen continuously and have to happen over
some time interval. Odlyzko’s Paris Metro Pricing scheme
[8] proposes fixed prices for different sub-classes of network
service, but congestion-sensitivity of the prices can only be
achieved by updating them over some time interval. Wang and
Schulzrinne’s Resource Negotiation and Pricing (RNAP) [9]
framework proposes to locally update the prices at each router
which has to happen over some time interval.
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There are numerous implementation problems for dynamic
or congestion pricing schemes, which can be traced into pricing
intervals. We can list some of the important ones as follows:

� Users do not like price fluctuations: Currently, most ISPs
employ flat-rate pricing which makes individual users
happy. Naturally, most users do not want to have a net-
work service with a price changing dynamically. In [15],
Edell and Varaiya proved that there is a certain level of
desire for quality-of-service. However, in [16] and [17],
Odlyzko provides evidence that most users want simple
pricing plans and they easily get irritated by complex pric-
ing plans with frequent price changes. In other words,
users like a service with larger pricing intervals.

� Control of congestion degrades with larger pricing inter-
vals: Congestion level of the network changes dynami-
cally over time. So, the more frequent the price is updated,
the better the congestion control. From the provider’s
side, it is easier to achieve better congestion control with
smaller pricing intervals.

� Users want prior pricing: It is also desired by the users
that the service price must be communicated to them be-
fore it is charged. This makes it necessary to inform the
users before applying any price update. So, the provider
has to handle the overhead of that price communication.
The important thing is to keep this overhead as less as pos-
sible, which can be done with larger pricing intervals.

Hence, length of pricing intervals is a key issue for the im-
plementation of congestion pricing protocols. In this particular
work, we focus on modeling and analysis of pricing intervals
to come up with a maximum value for it such that the level of
congestion control remains in an acceptable range. Beyond this
range, pricing could be used to regulate demand, but it becomes
less useful as a tool for congestion management. The rest of
the paper is organized as follows: In Section II, we first explore
steady-state dynamics of congestion-sensitive pricing with a de-
tailed look at the behavior of prices and congestion relative to
each other. We then develop and discuss approximate analytical
models for the correlation of prices and congestion measures in
Section III. In Section IV, we validate the models by simula-
tion experiments and present results. Finally, in Section V we
discuss implications of the work and possible future directions.

II. DYNAMICS OF CONGESTION-SENSITIVE PRICING

This section investigates behavior of congestion prices and
congestion measures relative to each other in a steady-state sys-
tem. A sample scenario is described in Figure 1. The provider
employs a pricing interval of � to implement congestion-
sensitive pricing for its service. The customer uses that service



Fig. 1. A sample customer-provider network.

Fig. 2. Congestion measures relative to prices in a steady-state network.

to send traffic to the destination through the provider’s network.
The provider observes the congestion level, �, in the network
core and adjusts price, �, according to it. Note that � and �
are indeed functions of time (i.e. ���� and ����), but we use
� and � throughout the paper for simplicity of notation. The
provider can observe the network core over small time inter-
vals, i.e. a few round-trip-times (RTTs). To understand effect
of pricing interval to the dynamics of congestion-sensitive pric-
ing, we look at the relationship between � and � over time.

Assuming that we have continuous knowledge of congestion
level, �, we can represent the dynamics of congestion-sensitive
pricing as in Figure 2. Figure 2 represents the steady-state re-
lationship between � and � for two different pricing interval
lengths, �� � ��. The price, �, varies around an optimum
value, ��. The important issue to realize is that congestion
control becomes better if the similarity between the price and
congestion level is higher. Because of the implementation con-
straints explained in previouse section, the price cannot be up-
dated continuously. This results in dissimilarity between the
price and congestion level. Intuitively, if the correlation be-
tween the prices and the congestion measures is higher, fidelity
of control over congestion becomes higher. Again by intuition,
the correlation becomes smaller if the pricing interval is larger.

Another important issue is the price oscillation caused by the
discontinuous price updates. As the pricing intervals get larger,
the oscillation in price also gets larger. This, in effect, leads to
oscillation in user demand (i.e. traffic). So, larger oscillations
in price are expected to cause larger oscillation and higher vari-
ance in incoming traffic. Then, more oscillated traffic causes
more oscillated congestion level. This behavior is represented
in Figure 2 with the case that ��� ���� and ��� � ���.

Fig. 3. Prices and congestion measures for subsequent observation intervals.

III. ANALYTICAL MODEL FOR CORRELATION OF PRICES

AND CONGESTION MEASURES

A. Assumptions and Model Development

Assume the length of pricing interval stays fixed at � over �
intervals. Also assume the provider can observe the congestion
level at a smaller time scale with fixed observation intervals, �.
Assume that � � �� holds, where � is the number of observa-
tions the provider makes in a single pricing interval. Assume
that the queue backlog in the network core is an exact measure
of congestion. [18]

We assume that the customer has a fixed budget for network
service and he/she sends traffic according to a counting pro-
cess, which is a continuous time stationary stochastic process
��	�,	 � � with first and second moments of 
� and 
� respec-
tively. In reality, 
� is not fixed, because the customer responds
to price changes by changing its 
�. However, since we assume
steady-state and fixed budget for the customer, it is reasonable
to say that the customer will send at a constant rate over a large
number of pricing intervals. Let ��� be the number of packet
arrivals from the customer during the � th observation interval
of th pricing interval, where  � ���� and � � ����. So the
total number of packet arrivals during the th pricing interval
is �� �

��
������. Also assume that the packets leave after

the network service according to a counting process, which is a
continuous time stationary stochastic process ��	�,	 � � with
first and second moments of �� and �� respectively. Let ���
be the number of packet departures during the �th observation
interval of th pricing interval, where  � ���� and � � ����. So
the total number of packet departures during the th pricing in-
terval is �� �

��
��� ���. Assuming that no drop happens in the

network core, the first moments of the two processes are equal
in steady-state, i.e. 
� � ��, but the second moments are not.

As represented in Figure 3, let �� be the advertised price and
��� is the congestion measure (queue backlog) at the end of the
�th observation in the th pricing interval. In our model we need
a generic way of representing the relationship between prices
and congestion. We assumed that the congestion-sensitive pric-
ing algorithm calculates the price for the th pricing interval
according to the formula1

�� � ���� �� ������� (1)

where ���� ��, pricing factor, is a function of pricing inter-
val and observation interval defined by the congestion-sensitive
pricing algorithm itself. In our modeling, we assume that ���� ��
is only effected by the interval lengths, not by the congestion
measures. Notice that this assumption does not rule out the
effect of congestion measures on the price, rather it splits the
effect of congestion measures and interval lengths to the price.
We will use � instead of ���� �� for the rest of the paper just for

�Note that this is a simplifying formula for tractability, and does not fully
express all aspects of congestion pricing.



notation simplicity. Within this context, the following equations
hold:

��� � ��� �

����
���

��� � ��� �

��
���

���� � ���� (2)
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���

��� � ��� (3)

where  � �. Reasoning behind Equations 2 and 3 is that the
queue backlog (which is the congestion measure) at the end of
an interval is equal to the number of packet arrivals minus the
number of packet departures during that interval.

Let the average price be � and the average queue backlog
be �. By assuming that the system is in steady-state we can
conclude that the following equation is satisfied

� � �� (4)

Since the system is assumed to be in steady-state, we can as-
sume the initial (right before the first pricing interval) conges-
tion measure equals to the average queue backlog, i.e.

��� � � (5)

We want to approximate the model of correlation between �
and � according to the above assumptions. We can write the
formula for correlation between � and � over � pricing intervals
as

����� �
������ ����� ����� ��

������ ������ �������� ������ ��
(6)

assuming that total of � packet arrivals and � packet departures
happen during the � rounds. We can calculate the numerator
term in Equation 6 as follows:
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By applying Equations 1, 4 and 5 into Equation 7 we can get
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Then by applying Equations 2 and 3 into Equation 8, we derive
the following
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where �� �
�

���� � ���
� �

�
�

�
� ��� 	��� � ������ �

���, � � ���� � and � � ���� �.
Similarly, we calculate the terms in the denominator of Equa-

tion 6 and get the followings:
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where �� �
�
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�

�
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	 ��� 	������������	�

��	�, � � ����, � � ����.
Now we can relax the condition on � and � by summing out

conditional probabilities on Equations 9, 11, and 10. Specifi-
cally, we need to apply the operation
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������� ���
�� ���� (12)

for all  � ���� and � � ����, where �
�� ���� is ������ �
��� 
���� � ����. This operation is non-trivial because of the
dependency between the processes ��	� and ��	�, and it is
not possible to reach a closed-form solution without simplify-
ing assumptions. After this point, we develop two approximate
models by making simplifying assumptions.

1) Model-I: Although the arrival and departure processes
are correlated, there might also be cases where the correlation
is negligible. For example, if the distance between arrival and
departure points is more, then the lag between the arrival and
departure processes also becomes more which lowers the cor-
relation between them. So, for simplicity, we assume indepen-
dence between the arrival and departure processes and derive
an approximate model. The independence assumption makes
it very easy to relax the condition on � and �, since the joint
probability of having ���� � ��� and ���� � ��� becomes
product of probability of the two events. After the relaxation,
we then substitute �� � 
� because of the steady-state condi-
tion, and get the followings:
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Let ��� be the variance of the arrival process and � �
 be the

variance of the departure process. By substituting Equations
13, 15, and 14 into 6 we get the correlation model for the first n
rounds as follows:

����� �
�

���
��
�
���

�

� � 
������� ��� ���
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(16)

2) Model-II: To make a more realistic model, we try to de-
velop a model where the arrival and departure processes are not
considered independent. We consider the system as an � � �
queueing system with a service rate of �. Notice that � is dif-
ferent from the parameters �� and �� which are first and second



moments of ��	�. We now try to derive the joint probability as
follows:

�
�� ���� � �
��
� ���� �
��

(17)

where �
��
� ������ � ���� and ���� �
��

� ������ �
��� ����� � ����. Notice that �
��

is probability of having ���

events for the Poisson distribution with mean 
��. However, it
is not that easy to calculate ���� �
��

, since probability of hav-
ing ��� departures depends not only on the number of arrivals
��� but also the number already available in the system which
is �������. Let ! be the random variable that represents the
number available in the system, then we can rewrite ���� �
��

as
follows:

���� �
��
�

��
���������������

���� �
�� �������� � �������� (18)

where �������� � ��! � ��������. Observe that the mini-
mum value of ������� can be ��� ���, because the condition
��� � ��� � ������� must be satisfied for all time intervals.
In Equation 18, �������� is known for a steady-state � � �
system. Let " � 
� �, then �������� � �� � "�"������� . [19]
However, calculation of ���� �
�� �������� is not simple, because
the ��� arrivals may arrive such that there is none waiting for
the service. Fortunately, this is a very rare case for a loaded sys-
tem. So, we can formulate ���� �
�� �������� for the usual case as
if all the ��� arrivals happenned at the beginning of the interval
�. Within this context, we now derive ���� �
�� �������� .

Let ���� be an Exponential random variable with mean � �,
and ����� �� be an Erlangian random variable with mean � �.
Then, we can formulate the probability of having � � � depar-
tures in time � as follows:

���� �� � �

� �

�

������� �� # �� ��� ������ # �� ��� $�

(19)
Now, we can formulate the CDF of ���� �
�� �������� as follows:

������ � ��� ���� 
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����
���

���� �� � (20)

Notice that �� �� � � � � � ����� # ��. By using the CDF
formula in Equation 20, we then find pmf as ���� �
�� �������� �
������ � ��� ���� 
 ��������������� � ��������� 
 ��������.
Afterwards, we apply the operation in Equation 18. After going
through all the explained derivations above 2, we finally derive
���� �
��

as:
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� (21)

Even though we have found a nice solution to ���� �
��
in

Equation 21, it does not allow us to get a closed-form model for
the correlation after the relaxation operation in Equation 12. In
order to get a closed-form correlation model, we approximated

�Derivations are available in the Maple file at
http://networks.ecse.rpi.edu/˜ yuksem/intervals/derivation.mws

3 the summation term in Equation 21. We did get a closed-
form correlation model after the approximation. But, it is not
possible to provide it in hardcopy format 4 because it is a very
large expression. However, we will provide numerical results
of the model later in Section IV.

B. Model Discussion

Since Model-II is a very large expression, we only discuss
Model-I. Assuming that the other factors stay fixed, the corre-
lation model in Equation 16 implies three important results:

1) The correlation degrades at most inversely proportional
to an increase in pricing intervals (� ): For the smallest �
value (i.e. 1), denominator of Equation 16 will have ���
as a factor which implies linear decrease in the correla-
tion value while the pricing interval, � � ��, increases
linearly. Notice that its effect will be less when � is larger.

2) Increase in traffic variances (��
� and ��) degrades the

correlation: From Equation 16, we can observe that the
correlation decreases when the variance of the incoming
or outgoing traffic increases.

3) Increase in traffic mean (
�) degrades the correlation:
Again from Equation 16, we can see that the correla-
tion decreases while the mean of the incoming traffic in-
creases.

These above results imply that lower pricing intervals must
be employed when variance and/or mean of the traffic starts
increasing. We validate these three results in Section IV by ex-
periments. Note that the model reveals non-intuitive effect of
traffic mean on the correlation. Also, observe that the model
incorporates not only the effect of pricing intervals on the cor-
relation, but also the effects of statistical parameters (e.g. traffic
mean and variance).

As previously mentioned, the correlation between prices and
congestion measures is a representation of the achieved control
over congestion. Congestion-sensitive pricing protocols can use
such a model to maintain the control at a predefined level by
solving the inequality ����� � ����
�� for �, which defines
the length of the pricing interval. If feedback from the other
end (i.e. egress node in DiffServ [20] terminology) is provided,
then such a model can be implemented in real-time. � �

 can be
calculated by using the feedbacks from the other end, and � �

�

and 
� can be calculated by observing the incoming traffic.

IV. EXPERIMENTAL RESULTS AND MODEL VALIDATION

A. Experimental Configuration

We use Dynamic Capacity Contracting (DCC) [21] as the
congestion-sensitive pricing protocol in our simulations. DCC
provides a contracting framework over DiffServ architecture.
The provider places its stations at the edge routers of the Diff-
Serv domain. The customers can get network service through
these stations by making short-term contracts with them. The
provider station provides a variety of short-term contracts to
the customer and the customer selects the contract which max-
imizes his/her utility. During the contracts, the station receives
�The approximation is available in the Maple file at

http://networks.ecse.rpi.edu/˜ yuksem/intervals/approximations.mws.
�It is available in the Maple file at http://networks.ecse.rpi.edu/˜ yuk-

sem/intervals/the model.mws.



congestion information about the network core at a time-scale
smaller than contracts. The station uses that congestion infor-
mation to update the service price at the beginning of each con-
tract. The short-term contracts in DCC corresponds to the pric-
ing intervals in our modeling.

In ns [22], we simulate DCC with varying pricing intervals
(i.e. contract lengths). There are 5 customers trying to send
traffic to the same destination over the same bottleneck with a
capacity of 1Mbps. Customers have equal budgets and their to-
tal budget is 150 units. We observe the bottleneck queue length
and use it as congestion measure. The observation interval is
fixed at � � ���� and RTT for a customer is 	���. We in-
crease the pricing interval by incrementing the number of ob-
servations (i.e. �) per contract. We run several simulations and
calculate correlation between the advertised prices during the
contracts and the observed bottleneck queue lengths.

Customers send their traffic with mean changing according to
the advertised prices for the contracts. We assume that the cus-
tomers have fixed budgets per contract with additional leftover
from the previous contract. The customers adjust their sending
rate according to the ratio � � where � is the customer’s bud-
get and � is the advertised price for the contract 5. Notice that
since the customers’ budget is fixed, the average sending rate
of the customers is actually fixed on long run, which fits to the
fixed average incoming traffic rate assumption in the model.

B. Results

In this section, we present several simulation results for vali-
dation of the model and the three results it implies.

Figures 4-a and 4-b show mean and variance of the bottle-
neck queue length. We can see significant increase (at least lin-
ear) in mean and variance of the bottleneck queue as the pricing
interval increases linearly. Furthermore, Figure 4-c shows the
change in the coefficient of variation for the bottleneck queue
length as the pricing interval increases. Note that an increase in
the coefficient of variation means a decrease in the level of con-
trol. We can observe that the coefficient of variation increases
as the pricing interval increases until ���, and stays fixed there
after. This is because the congestion-sensitive pricing protocol
looses control over congestion after a certain length of pric-
ing interval, which is ��� in this particular experiment. These
results in Figures 4-a to 4-c validate our claim about the degra-
dation of control when pricing interval increases. Furthermore,
they also show that dynamic pricing does not help congestion
control when the pricing interval is longer than a certain length.

To validate the model, we present the fit between our corre-
lation models and experimental results we obtained from above
mentioned simulation configuration. Figures 5-a and 5-b repre-
sent the correlations obtained by inserting appropriate param-
eter values to the model and corresponding experimental cor-
relations, respectively for the cases � � � and � � 	. We
observe that Model-II fits better than Model-I, which is mainly
because of the dependency consideration between arrival and
departure processes. Notice that the model is dependent on the
experimental results because of the parameters for incoming

�Note that the ratio � � ��� maximizes customer’s surplus given that
his/her utility is ���� � � ������.

and outgoing traffic variances (i.e. � �
� and ��), pricing fac-

tor (i.e. �), and mean of the incoming traffic (i.e. 
 �). We first
calculate the parameters ��

�, �� , � (ratio of average price by
average bottleneck queue length) and 
� from the experimental
results, and then use them in the model.

We now validate the three results implied in Section III-B.
Figures 5-a and 5-b show that the correlation decreases slower
than � � when the pricing interval (i.e. �) increases linearly.
This validates the first result. Figure 5-d represents the effect
of change in the variance of incoming and outgoing traffic (i.e.
��� and ��) on the correlation. The horizontal axis shows the
increase in variances of both the incoming and outgoing traf-
fic. The results in Figure 5-d for different values of � obviously
show that an increase in traffic variances causes decrease in the
correlation. This validates the second result. Finally for val-
idation of the third result, Figure 5-c represents the effect of
change in the mean of the incoming traffic (i.e. 
�) on the cor-
relation. We can see that increase in 
� causes decrease in the
correlation. Another important realization is that the correlation
is more sensitive to variance changes than mean changes as it
can be seen by comparing Figures 5-c and 5-d.

Before concluding this section, we would like to stress on the
relationship between the correlation and the level of congestion
control. As we previously stated, Figures 5-a and 5-b show the
effect of increasing pricing intervals on the correlation for dif-
ferent values of�. We can see that the correlation value stays al-
most fixed after the pricing interval reaches to ���. Also, Figure
4-c shows the coefficient of variation for the bottleneck queue
length in the experiments. Remember that coefficient of varia-
tion for the queue length represents the level of congestion con-
trol being achieved. We observe in Figure 4-c that it reaches to
its maximum value (approximately 1) when the pricing interval
reaches to ���, which is the same point where the correlation
starts staying fixed in Figures 5-a and 5-b. So, by comparing
Figure 4-c with Figures 5-a and 5-b, we can observe that the
correlation decreases when the level of congestion control de-
creases, and also it stays fixed when the level of congestion
control stays fixed. This shows that the correlation can be used
as a metric to represent the level of congestion control.

V. CONCLUSIONS AND DISCUSSIONS

We investigated steady-state dynamics of congestion-
sensitive pricing in a customer-provider network. With the idea
that correlation between prices and congestion measures is a
measurement for level of congestion control, we modeled the
correlation. We found that the correlation decreases at most in-
versely proportional to an increase in pricing interval. We also
found that the correlation is inversely effected by the mean and
variance of the incoming traffic. This implies that congestion-
sensitive pricing schemes need to employ very small pricing in-
tervals to maintain high level of congestion control for current
Internet traffic with high variance [23].

From the models and also from the simulation experiments
we observed that the correlation between prices and conges-
tion measures drops to very small values when pricing inter-
val reaches to 40 RTTs even for a low variance incoming traf-
fic. Currently, we usually have very small RTTs (measured by
milliseconds) in the Internet. This shows that pricing intervals
should be 2-3 seconds for most cases in the Internet, which is
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not possible to deploy for many reasons such as low speed lines.
This result itself means that deployment of congestion-sensitive
pricing over the Internet is highly challenging.

The results obviously show that there will be need for in-
termediate middle-ware components (i.e. intermediaries) be-
tween individual users and ISPs, when ISPs deploy congestion-
sensitive pricing for their service. These middle-ware compo-
nents will be expected to lower price fluctuations such that price
changes will be possible implement over low speed modems.
This scenario suggests that congestion-sensitive prices can be
implemented among ISPs to control congestion, but there has
to be middle-ware components which can handle the transition
of the congestion-sensitive prices to the individual customers
in a smooth way. Alternatively, instead of using congestion-
sensitive pricing directly for the purpose of congestion control,
it can be used to improve fairness of an underlying congestion
control mechanism. We believe that the second approach is
more realistic way of implementing congestion-sensitive pric-
ing over the Internet.

Another key implementation problem for congestion pricing
is that current Internet access is point-to-anywhere. It is not
possible to obtain information about the exit points of the traf-
fic. However, it is not possible to determine congestion infor-
mation and prices without coordinating entry and exit points of
the traffic. So, this particular aspect implies that it is highly
challenging to implement congestion pricing at individual user
to ISP level. But, if an ISP has enough control over the entry
and exit points, then it is possible. Alternatively, if ISPs of the
current Internet collaborate on providing information about the
entry and exit points to each other, then again it will be possible.

Future work will include complex modeling of the dynamics
of congestion-sensitive pricing by relaxing some of the assump-
tions. For example, a model without fixed arrival rate assump-
tion would represent the behavior of the system more appropri-

ately.
Another important issue to explore is how much congestion

control can be achieved with exactly what level of correlation
between prices and congestion measures. In this paper we used
the correlation value as a direct representation of the level of
congestion control that was achieved. Although we supported
this idea by providing the match between the correlation and the
coefficient of variation in Section IV-B, this issue needs more
investigation.
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