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Abstract This paper reports the results of numerical simulations of the acoustics in a two-dimensional (plane)
motor using a high-order accurate, low-dissipation numerical solver. For verification we compare solutions
to Culick’s (AIAA J 4(8):1462–1464, 1966) asymptotic solution for constant injection, and to recent results
of Hegab and Kassoy (AIAA J 44(4):812–826, 2006) for a space- and time-dependent mass injection. We
present results when the injection boundary condition is described by propellant morphology and by white
noise. Morphology strongly affects the amplitude of the longitudinal acoustic modes, and in this connection
white noise is not a suitable surrogate.

Keywords Fluid dynamics · Acoustics · Solid rocket motor · Numerical simulations · Heterogeneous
propellants
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1 Introduction

Transient sidewall mass addition (in practice, generated by propellant burning transients) can generate acoustic
disturbances inside the chamber of solid rocket motors. If not properly accounted for in the design stage,
resonance can occur which can lead to motor failure. Because of motor failures in past programs, the study
of acoustical behavior is an old problem dating back some 50 years. For historical background and recent
developments, the reader is directed to the book on combustion instability by Culick [1] and to the article by
Flandro and Jacob [2]. Despite this long history of research, there are still a number of outstanding problems
that are yet to be fully understood. These include an understanding of the evolution of linear disturbances
into the nonlinear regime, the non-linear response for the fully coupled gas/solid combustion problem, and an
understanding of the effect of propellant morphology on acoustical behavior.
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This paper is concerned primarily with the latter question. We describe a high-order, low dissipation
numerical solver, and verify it by comparisons with existing steady solutions, and existing unsteady (forced)
solutions. We then use it to calculate the response when fluctuations in the injection conditions at the propellant
surface are defined by two different propellants. We find that the amplitudes of the longitudinal acoustic modes
are strongly influenced by the nature of the injection fluctuations, i.e., there is a significant morphology effect.
In the past, absent descriptions of morphology generated fluctuations, calculations have been reported using
white noise. Not surprisingly, white noise leads to longitudinal amplitudes quite different from those generated
by the propellants: indeed, the amplitudes are much lower.

The paper is organized as follows. In Sect. 2 the problem formulation and the numerical method are pre-
sented. A verification study of the code is presented in Sect. 3. The verification problems include a comparison
to Culick’s asymptotic solution for constant injection [1], and to recent results of Hegab and Kassoy [10]
for a space- and time-dependent mass injection. Section 4 presents new results when the injection boundary
conditions are defined by propellant morphology for a large motor. For comparison, we also give results when
white noise is used. Finally, conclusions are given in Sect. 5.

2 Formulation

We are interested in computing the acoustic modes inside a two-dimensional (plane) motor with transient
sidewall mass addition. We solve numerically either the compressible Navier–Stokes (NS) equations or the
equivalent parabolized Navier–Stokes equations (PNS), both written in conservative form. We use high-order
accurate, low-dissipation numerical spatial and temporal schemes. More precisely, the equations are solved on
a staggered mesh arrangement of variables, introduced by Harlow and Welch [3] for incompressible flows. This
provides a robust formulation because of the discrete conservation of kinetic energy, mass, and momentum
[4]. In addition, it provides improved resolution properties for finite-difference derivative operators [5]. A
formulation for compressible flows [6] reveals superior stability properties to those of regular and collocated
grid formulations. High-resolution (sixth-order) centered finite differences are used for the spatial operators.
Time discretization is by a fourth-order Runge–Kutta scheme. In addition to certain Dirichlet data described
below, inflow conditions, wall boundary conditions, and non-reflecting outflow conditions are implemented
using the characteristics method of Poinsot and Lele [7]. Implementation of this strategy on a staggered mesh
is analyzed and discussed in the PhD thesis of Topalian [8]. For all studies presented, convergence is confirmed
via mesh resolution studies.

The compressible Navier–Stokes equations in nondimensional conservative form are
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with equation of state

γ P = ρT, (4)
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and total energy defined by
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The nondimensional dependent variables are (u, v) the velocities, ρ the density, P the pressure, and T the
temperature. The parabolized Navier–Stokes (PNS) equations, obtained from the Navier–Stokes equations by
neglecting all viscous terms that have streamwise (x) derivatives are
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The equations are nondimensionalized as follows: the velocities are normalized by the sound speed c0, pressure
by ρ0c2

0, density by ρ0, temperature by T0, spatial coordinates by H, the channel half-height, and time by H/c0.
Here, c0, ρ0, and T0 are reference values characteristic of the chamber conditions. For example, for constant
and uniform injection conditions a suitable choice for T0 is the temperature of the injected fluid. We take
constant viscosity µ and constant thermal conductivity λ for convenience. The other parameters appearing in
the NS and PNS equations are the Reynolds number, Re, defined as

Re =
Hc0

ν
, ν = µ/ρ0, (12)

the Prandtl number Pr = µcp/λ, and the ratio of specific heats γ . For all simulations we take Pr = 1. Typical

values for a large motor are H = 0.1 m, c0 = 103 m/s, and ν = 10−4 m2/s, which gives a Reynolds number on
the order of Re = 106. Since the Reynolds numbers are large and the algorithm is weakly inviscidly unstable,
we include a sixth-order spatial filter to keep the solution stable. Too much filtering (such as a second order
filter) can significantly damp acoustic modes, but we believe that our sixth order filter does not affect the
accuracy. Certainly at lower Reynolds numbers (104 and 105) solutions obtained with the filter turned off are
essentially the same as those with the filter turned on. Mesh resolution studies also reveal no effect from the
filtering. The computational domain (non-dimensional) is [0, L/H] × [0, 2] where L is the motor length, or,
when symmetry is enforced, [0, L/H] × [0, 1].

Appropriate injection boundary conditions are given by

T = Tb(x, t), n · ub = −vb(x, t), at y = 0, 2 for 0 < x < ℓ, (13)

along the burning surfaces, where n is the outward normal and the non-dimensional length of the motor
is ℓ = L/H. vb is the nondimensional injection velocity (i.e., the injection Mach number) and Tb is the
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Fig. 1 Comparison of numerical solution (solid) with Culick’s solution (dash) for Re = 104; u contours, upper, and v contours,
lower

nondimensional injection temperature, both of which can be functions of space and time. There is no slip at
the burning surface, but slip is allowed at the head-end, where also the temperature is fixed at the value 1.

It is well known that a correct description of the outflow boundary conditions is of utmost importance for
the accurate prediction of thermo-acoustic instability. The outflow boundary conditions determine not only the
losses of acoustic energy at the system boundary, but also the phase. Because we do not consider a nozzle in
this study, we present results for the Navier–Stokes characteristic boundary conditions (NSCBC) [7].

3 Verification

For verification of the numerical solver, we first carry out numerical solutions for constant injection conditions

Tb = 1, n · ub = −Mb, (14)

where Mb is the injection Mach number, and compare the solutions to Culick’s inviscid analytical solution [9]
(an asymptotic solution, valid for large x), given by
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Figures 1 and 2 show comparisons with Culick’s solution for Re = 104, ℓ = 20, and Mb = 0.001. The grid
is nx = 100 and ny = 400 and a grid resolution study was performed to verify solution convergence. The
solutions compare well with the analytical solutions except near the exit plane, a consequence of the exit-plane
boundary condition. Note that there is velocity slip in the Culick solution at x = 0; and Culick’s solution is an
incompressible one, whereas ours is compressible, but the Mach number is small.
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Fig. 2 Comparison of numerical solution (solid) with Culick’s solution (dash) for Re = 104 at x = ℓ/2; velocity distribution at
x = l/2

Table 1 Parameter values from [10] and the equivalent values used in this study

Hegab & Kassoy Current

ω = 1 ω = 1

n = 1 n = 1

ǫ = 0.4 ǫ = 0.4

δ = 20 ℓ = 20

M = 0.02 Mb = 0.001

Re = 3 × 105 Re = 7.5 × 105

γ = 1.4 γ = 1.4
t = 24 t = 480

For additional verification of the solver, we compare our numerical solutions with those recently published
by Hegab and Kassoy [10] (hereafter HK), and we also show additional results not computed in that work. HK
consider unsteady mass injection along the burning surface described by

Tb = 1, n · ub = −Mb [1 + ǫ cos(λnx)(1 − cos(ωt/ℓ))] , (17)

where

λn =
nπ

2ℓ
, n = 1, 3, 5, . . . . (18)

Their choice of n leads to net additional mass into the chamber.
Kassoy and his co-workers have shown [11] that the disturbance vorticity field generated by the injection is

the result of an inviscid interaction between the spatially distributed transient injection and the acoustic pressure
gradient at the wall, itself generated by the injection. Significant vorticity is confined to a neighborhood of
the wall. HK show that as n is increased from 1 to 3 to 5 this neighborhood becomes thinner, the scale of the
vorticity decreases, and the magnitude of the vorticity increases. Our results duplicate those of HK (we show
results for n = 1, 5, but not for n = 3, to reduce the number of figures).

Since HK use a different scaling than we do, Table 1 shows their parameter values and the corresponding
values in our simulations. Note that the choice ǫ = 0.4 is large enough to ensure that nonlinear effects influence
the chamber flow dynamics.

Temperature contours at t = 480 are plotted in Figs. 3 and 4 for three different Reynolds numbers. Contours
for R = 1.5 × 107 (not shown) differ little from those for Re = 7.5 × 105, as the inviscid limit is reached at
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Fig. 3 Temperature contours at t = 480 for Re = 104 (left) and Re = 105 (right). Parameter values given in Table 1, no filtering

Fig. 4 Temperature contours at t = 480 for Re = 7.5 × 105. Parameter values given in Table 1, filtering applied

these high Reynolds numbers. Where there is a Reynolds number effect, an increase increases the magnitude
of the fluctuations near the propellant surface. Figure 4 compares well with Fig. 5a of HK.

Figure 5 shows the temperature and the temperature gradient as a function of y at x = ℓ/2 for different
values of Re. For Re = 104 and 105, no filtering of the solution is required because the numerical solver is
stable. However, at the higher Reynolds numbers the solver becomes unstable and so the solution is filtered
at the end of every time step using a sixth-order Shapiro spatial filter; the one-dimensional filter is applied
in each direction separately. To ensure symmetry, the directions of the filters are alternated at each time step.
Other filters give essentially the same results. When the Shapiro filter is applied at the smaller values of Re, it
has negligible effect.

Resolution studies were carried out to ensure that the solutions presented here are spatially and temporally
resolved, and that the stabilizing filters do not affect the solution.

The temperature and axial velocity history at (ℓ/2, 1) are plotted in Fig. 6 for two different frequencies,
ω = 1 and 1.5. For ω = 1 the solution is stable and for ω = 1.5 it is unstable. This plot compares well with
Figs. 2 and 3 of HK, the differences being less than 1%.

The spatial variation chosen by Hegab and Kassoy, see Eq. (17) above, is not representative of spatial
scales associated with composite propellants when n is assigned modest values, such as 1. They were primarily
motivated to study the effects of disturbance amplitudes large enough to ensure that nonlinear effects influence
the vorticity evolution within the chamber. We have shown in a previous study that the spatial microscale
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Fig. 6 Temperature and axial velocity history at (ℓ/2, 1) for ω = 1 (solid) and ω = 1.5 (dash). Parameter values given in Table 1,
filtering used

associated with AP/binder propellants is on the order of a millimeter and not on the order of the length scale
of the motor [12]; this corresponds to taking large values of n. Therefore we have performed an additional
study by varying n between 1 and 31. Instantaneous vorticity contours at time t = 480 are shown in Figs. 7
and 8. For n = 1 and 5, the contours shown in the figures are similar to those presented in HK; new results are
shown for n = 19 and 31. As the value of n increases, the number of mesh points in the x-direction must also
be increased. The grids used for each value of n are reported in the figure captions and are selected to have a
minimum of 20 mesh points inside each cosine wave along the propellant surface. The darker contour regions
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Fig. 7 Instantaneous vorticity contours at t = 480 for n = 1 (left) and n = 5 (right). The mesh has nx × ny = 80 × 500

Fig. 8 Instantaneous vorticity contours at t = 480 for n = 19 (left) and n = 31 (right). The mesh has nx × ny = 80 × 500

correspond to large vorticity values (positive or negative), and these arise near the propellant surface. These
figures show that the elongated vortical structures observed for n = 1 are broken up as n is increased. For
n = 31, there are seven pairs of counter rotating vortices near the propellant surface, and these are organized.
Also note that the maximum amplitude of the vorticity peaks decreases with an increase in n, consistent with
the observation and analysis of HK.

HK show that for modest values of n the vortical structures can reach well into the channel region, to within
20% of the channel half-height near the centerline. In contrast, structures for larger n are confined to a region
near the propellant surface.

4 Non-homogeneous injection conditions

4.1 Injection conditions defined by propellant morphology

We have recently shown numerically that the velocity-temperature correlations above a three-dimensional
heterogeneous propellant are strongly influenced by the propellant morphology, which in turn can affect the
amplitude of the acoustic modes inside a solid rocket motor [12]. These correlations have a spatial microscale
on the order of a millimeter, and a temporal microscale on the order of a few milliseconds. Because the spatial
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Fig. 9 Cross-sectional cut of the three-dimensional packs TH200 and M24
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Fig. 10 Plot of the injection temperature and normal velocity as a function of time for TH200

microscale is much smaller than a typical grid, we ignore this dependence and assume the correlations are
spatially independent. It does not follow, however, that just because the spatial microscale is much smaller
than the mesh size these correlations have no effect on the field in the chamber. Rather, these disparate spatial
scales reveal a challenging issue in the study of perturbations (including turbulence) in injection driven flows;
the complete coupling between the gas phase and a heterogeneous propellant remains an unsolved problem.
Assuming spatial independence, the velocity–temperature temporal correlations are described by a joint pdf,
normally distributed.

In this study we investigate the acoustics inside the plane motor when the injection conditions are given by
velocity-temperature temporal correlations described by two different propellant morphologies. The propellant
is represented as a random pack of spheres packed in a cuboid with periodic boundary conditions. The two
propellants considered here are TH200, a polydisperse 200 µm AP in an HTPB binder, and M24, a trimodal
AP/HTPB propellant with 20 µm micron diameter AP for the fine, 50 µm diameter AP for the medium-size,
and 200 µm diameter AP for the coarse. Figure 9 shows a cross-sectional cut of the three-dimensional packs.
The injection conditions defined by TH200 are shown in Fig. 10 (see [12] for a description of how these are
obtained); those for M24, not shown, are similar but not quite so varied. The PDFs are well fitted by normal
distributions with mean 432.02, standard deviation 41.72 for the velocity of TH200; mean 3385.66, standard
deviation 83.55 for the temperature of TH200; mean 436.16, standard deviation 52.27 for the velocity of M24;
mean 3388.45, standard deviation 110.29 for the temperature of M24.

The velocity FFTs are shown in Fig. 11, and are important in comparisons with later acoustic data.
Results are shown for the plane geometry with parameters given in Table 2. Figure 12 shows the time

history of the headend pressure perturbation for TH200 and M24 for a grid of 200×500. The latter was chosen
following grid convergence studies, and is used throughout.

An instantaneous contour plot of spanwise vorticity is shown in Fig. 13b for t = 1.42 s. For comparison
we show in Fig. 13a vorticity contours for the case of constant mass injection.
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Fig. 11 FFT of injection normal velocity

Table 2 Table of values for the plane motor

Parameter Value

L (m) 35.1

H (m) 0.7

c0 (m/s) 1037.66

Vb (m/s) 4.33

Tb (K) 3387

P (MPa) 4.053

Re 9.25 × 107
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Fig. 12 Plot of the headend pressure perturbation for TH200 and M24 as a function of time for a grid of 200 × 500
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Results for the pressure perturbations reveal transverse as well as axial modes, and to highlight the transverse
mode we show in Fig. 14 a time sequence with interval 0.243 ms. Note that the transverse waves hit the propellant
surface at y = 1.4 m (Fig. 14a–c), reflect (Fig. 14d), then travels towards the surface y = 0 (Fig. 14e–f).
Similar results (not shown) are obtained for M24.

Table 3 shows the theoretical and numerical frequencies of the first six longitudinal modes, and Table 4
shows the frequencies of the first five transverse modes. The longitudinal dimensional frequencies for a
closed-open tube are f ∗ = mc0/(4L) s−1, m = 1, 3, 5, . . ., and the transverse dimensional frequencies for
a closed–closed tube are f ∗ = mc0/(2H) s−1, m = 1, 2, 3, . . .. The numerical solver is able to resolve
the longitudinal modes. The fact that the high frequencies of the transverse modes compare well to those of a
closed–closed tube indicates that they are not numerical noise (which would generate non-physical frequencies)
but are physical.

Figure 15 shows plots of the FFTs for TH200 and M24 for low frequencies (0–90 Hz) and high frequencies
(0–400 Hz), the former relevant to longitudinal modes, the latter to transverse modes. The low-frequency
range is that of the propellant efflux perturbations, Fig. 11, and so the mode richness displayed in Fig. 15a
and c is not surprising, and is in sharp contrast to the mode simplicity of Fig. 15b and d. However, the low
frequency acoustic modes identified in Table 3 are clearly visible in (a) and (c), albeit with amplitudes that are
significantly affected by the propellant morphology, Table 5. The differences are comparable to those reported
in [12] for the ONERA C1 motor.

4.2 Injection Conditions Defined by White Noise

Only recently has it been possible to reasonably predict the nature of the perturbations generated in the efflux
from a heterogeneous propellant, and so the default description assumes white noise. And so here we examine
white noise disturbances, with PDFs the same as those of TH200. Figure 16a shows the low-frequency FFTs
for the head-end pressure and here, as in the previous section, we see the first six acoustic modes, but with
amplitudes an order of magnitude lower than those for heterogeneous propellants, a significant finding, we
believe. The differences at high frequencies, Fig. 16b, are much less significant.

5 Conclusions

In this paper we have used a high-order, low-dissipation numerical scheme to examine disturbances in a plane
rocket motor. More precisely, the configuration is rectangular (no nozzle) with a material head-end boundary,
and an immaterial tail-end boundary at which outflow boundary conditions are applied. Boundary conditions
appropriate for a propellant are applied at the side walls. Two verification studies are carried out. Comparisons
for steady flow are made with Culick’s asymptotic solution (an important example of a Taylor–Proudman flow,
[13,14]), valid for large aspect ratio, and agreement is excellent except near the downstream boundary where
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Fig. 14 Pressure perturbation contours for a time sequence with interval 0.243 ms; TH200. Grid is 200 x 500
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Table 3 Theoretical and computed frequencies for longitudinal modes. Theoretical modes given by f ∗ = mc0/(4L),
m = 1, 3, 5, . . .

Longitudinal mode 1 3 5 7 9 11

Theoretical 7.39 22.17 36.95 51.74 66.52 81.30
TH200 6.65 21.4 36.0 50.7 64.0 80.7
M24 6.00 21.4 34.0 51.4 63.4 80.7

Table 4 Theoretical and computed frequencies for transverse modes. Theoretical modes given by f ∗ = mc0/(2H), m = 1,
2, 3, . . .

Transverse mode 1 2 3 4 5

Theoretical 740.7 1481.4 2222.1 2962.9 3703.6
TH200 741 1482 2224 2965 3706
M24 739 1480 2220 2959 3705
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Fig. 15 Plot of FFTs for TH200 (top) and M24 (bottom) over the time interval [0.5, 2.0] s

our solutions are influenced by the outflow conditions. Unsteady solutions generated by a propellant velocity
efflux that is periodic in space and time are compared with solutions generated by Hegab and Kassoy [10],
with good agreement. Motivated by the fact that the combustion of heterogeneous propellants introduces short
wavelength fluctuations, we have extended the Hegab–Kassoy problem to wavelengths shorter than those that
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Table 5 Computed amplitudes (in Pa) for TH200 and M24, and their relative difference in percent

TH200 M24 (TH200-M24)/TH200 (%)

8,708 3,524 59.5
7,677 4,975 35.2

14,080 11,488 18.4
6,000 3,044 49.3

10,060 3,696 63.3
3,584 1,585 55.8
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Fig. 16 FFT of white noise. a Low frequencies and b high frequencies

they examined, and find (just as HK do for n up to 5) that as the wavelength is decreased the vortical structures
are broken up, the maximum vorticity decreases, and the vortical structures move closer to the side walls. It
is tempting to assume that as the wavelength approaches zero (i.e., the wave-number, n, approaches infinity)
the vortical structures disappear, and the solutions are those for n = 0. Tempting, because the length scales
defined by propellant morphology are subgrid. However, that which is tempting is not necessarily real, and the
full flow interaction with these small scales is presently an unsolved problem.

The truly new calculations in the paper are for heterogeneous propellants. For the reasons stated in the pre-
ceding paragraph we do not allow for fluctuation length scales, but we do allow for time scales, scales identified
in previous work on propellant combustion [12]. We consider two quite different propellants, characterized by
the packing of AP spheres of various sizes in a matrix of HTPB, and we also consider a propellant in which
it is assumed that the fluctuations can be defined by white noise. A notable characteristic of the solutions are
highly irregular transverse mode structures. Key quantitative results are defined by an examination of the FFT
of the head-end pressure, and the comparison between this and the FFT of the fluctuations. In this connection
we make a distinction between low frequency modes (0–90 Hz) and high frequency modes (0–400 Hz). For the
parameters we have chosen for these calculations the important longitudinal acoustic modes are low frequency,
whereas the important acoustic transverse modes are high frequency.

The propellant fluctuations are low frequency, and the low frequency range of the head-pressure FFT shows
these fluctuations, together with the longitudinal modes. The amplitudes of the latter are quite different for the
two “real” propellants, a significant morphology effect. The high frequency range of the head-pressure FFT
consists essentially of the transverse acoustic modes. When white noise is used, instead of the well-defined
morphology generated fluctuations, the head-end pressure FFT is qualitatively similar, but the amplitude of
the longitudinal acoustic modes are much smaller. In other words, white noise is not a surrogate for actual
morphology generated fluctuations.
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