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Abstract 

The paper explores the effect of random parameter switching in a fractional order (FO) 
unified chaotic system which captures the dynamics of three popular sub-classes of chaotic 
systems i.e. Lorenz, Lu and Chen’s family of attractors. The disappearance of chaos in such 
systems which rapidly switch from one family to the other has been investigated here for the 
commensurate FO scenario. Our simulation study show that a noise-like random variation in 
the key parameter of the unified chaotic system along with a gradual decrease in the 
commensurate FO is capable of suppressing the chaotic fluctuations much earlier than that 
with the fixed parameter one. The chaotic time series produced by such random parameter 
switching in nonlinear dynamical systems have been characterized using the largest 
Lyapunov exponent (LLE) and Shannon entropy. The effect of choosing different simulation 
techniques for random parameter FO switched chaotic systems have also been explored 
through two frequency domain and three time domain methods. Such a noise-like random 
switching mechanism could be useful for stabilization and control of chaotic oscillation in 
many real-world applications. 

Keywords:  
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1. Introduction 

Fractional calculus has given impetus to the study of dynamical systems which give 

rise to chaos and are applicable in diverse disciplines like physics, biology, economics etc. 

[1]. Fractional order nonlinear systems governed by fractional order differential equations 

(FODEs) can exhibit chaotic phenomena even for an overall order less than three. This 

contradicts with the classical theory of integer order (IO) nonlinear dynamical systems that in 

a continuous time nonlinear system, chaos can only manifest with at least an overall order of 

three [2]. This is due to the fact that each FO differ-integral operators are actually infinite 

dimensional systems which manipulate the underlying dynamics of each state with a very 

high order linear filtering (under a chosen rational approximation technique). However such 

investigations are not without their pitfalls, as higher order rational approximations of such 

FO operators have also led to spurious notions of chaos, termed as fake chaos [1]. Classical 

way of detecting chaos is carried out by the study of Lyapunov exponents from the system’s 

parametric structure or from the observation of states in the case of unavailability of system’s 

governing equations [3]. Chaos can be detected when the system has at least one positive 

Lyapunov exponent. If a system with four state equations has two positive Lyapunov 

exponents the system is known as a hyper-chaotic system. 

After the exhaustive study of fractional calculus in linear control theory for the last 

decade [4], [5], it has pervaded into the nonlinear dynamical systems theory as well [1]. For 

example many classical chaotic systems have been extended with its analogous FO 

versions e.g. Chua system [2], Lorenz system [6], Chen system [7], Lu system [8], unified 

chaotic system [9], Rossler system [7], Liu system [10], Duffing oscillator [11], Van-der Pol 

oscillator [12], Lotka-Volterra model [13], financial system [14], Newton–Leipnik system [15], 

Volta’s system [16], Arnedo system [17], Genesio–Tesi system [18], neuron network system 

[19], memristor based system [20], micro-electromechanical system [21], multi-scroll chaotic 

attractors [22], [23] and multi-wing chaotic attractors [24] and FO system without equilibrium 

points [25] etc. Similar traces of FO hyper-chaos like hyper-chaotic-Rossler system [7], 

Lorenz system [26], Chen system [27] and Four-wing attractor [28] with more than one 

positive Lyapunov exponents, have also been found. Beside the extension of FO versions of 

many well-researched chaotic systems mentioned earlier, FODEs are commonly observed 

to model various natural systems where the temporal dynamics has got a long-memory 

behavior like 1/fα noise, heavy-tailed distribution, long-range dependency in the auto-

correlation, power-law decay in excitation-relaxation systems (like electrical circuits, spring-

mass-damper system, chemical reactions etc.) instead of an exponential envelope [4], [29]. 

Fractional dynamics is more evident in time domain representation of naturally occurring 

oscillatory systems (like viscoelasticity, fluid flow etc. [30], [31]) where the notion of damping 

is different with a decaying power-law envelope and Mittag-Leffler type oscillations [32], 

instead of sinusoidal oscillations within an exponentially decaying envelope. 

The focus of the present study is to first observe chaos in the unified chaotic system 

family that encompasses the dynamics of three popular classes of chaotic systems (i.e. 

Lorenz, Lu and Chen) for different ranges of a single key parameter (δ). Next, a random 

noise like fast switching in the parameter δ is proposed, such that the system’s behavior 

continuously jumps between these three families of chaotic attractors. In addition, the effect 

of decreasing the commensurate FOs have been elucidated for the random parameter 

system to discriminate the new phenomena in comparison with the traditional fixed 

parameter FO chaotic systems mentioned above.  



3 

 

The rest of the paper is organized as follows. Section 2 briefly describes the unified 

FO chaotic system family, different time/frequency domain simulation techniques, error 

analysis and the effect of different numerical integration solvers. Section 3 shows the 

simulations for the random noise like fast switching in the unified chaotic system key 

parameter δ and the suppression of chaos particularly at low values of the commensurate 

FO. Section 4 shows the characterization of different random parameter chaotic systems 

using two system diagnostics – LLE and Shannon entropy. Section 5 sheds light on the 

novelty of the observation and the analysis of existence of chaos in the proposed random 

parameter switched Unified system. The paper ends with the conclusions in section 6, 

followed by the references. 

2. Fractional Order Unified Chaotic Systems 

2.1. Unified Chaotic System Family 

 The IO unified chaotic system (1) models the classical Lorenz-Lu-Chen family of 

chaotic attractors with a common template and a single key parameter δ that determines 

which family the chaotic system will belong to. 
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where, [ ]0,1δ ∈ . The unified chaotic system behaves as the family of either Lorenz, Lu or 

Chen system within the following ranges of parameter δ respectively [33]. 
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Recent studies [9] have developed analogous FO chaotic system by replacing the IO 

derivative terms by equivalent fractional derivatives, as shown in (3) with the commensurate 

FO ( ]0,1α ∈ which still exhibits chaotic nature depending on the value of the order of the FO 

nonlinear system α. 
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2.2. FO Chaotic System Simulation Techniques Using Frequency and 

Time Domain Methods 

It has been shown in many literatures that FO nonlinear dynamical systems exhibit 

chaotic behaviour even when the commensurate order is less than one i.e. the overall 
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system order being lesser than three which is impossible in the case of classical IO chaotic 

systems [2]. Numerically solving such FO chaotic systems is a bit challenging as compared 

to the IO chaotic systems. The Adams-Bashforth-Moulton predictor-corrector method is 

widely adopted in various literatures to avoid appearance of fake chaos or loss of chaos due 

to truncation or rational approximation by frequency domain methods of realizing fractional 

differ-integrals. But for noisy FO chaotic systems and fast randomly switched parameter 

systems, extension of such time domain numerical solvers similar to Adams-Bashforth-

Moulton method has not been explored yet. 

Petras [1] has suggested that as an alternative way, the FO differential equations 

may be converted to a set of integral equations with fractional derivative less than unity as 

shown in equation (4) for efficiently solving such equations. In this way, the fractional 

derivatives can be rationalized using Oustaloup’s/modified Oustaloup’s or any other 

frequency domain approximation methods [5].  
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where, 
1

0 tD α−
 is Riemann-Liouville fractional differentiation operator. 

In the present study, we have primarily used the modified Oustaloup’s recursive 

approximation for each fractional derivative with a 30th order approximation within a chosen 

frequency range of [ ] 4 4, 10 ,10 Hzb hω ω − =    using the FOMCON Toolbox [34] in the 

Matlab/Simulink environment to simulate such FO chaotic systems as suggested in Petras 

[1]. The modified Oustaloup’s approximation converts the fractional differ-integrals in 

Riemann-Liouville definition (5) in equivalent frequency domain Infinite Impulse Response 

(IIR) filters given by (6). 
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Here, s and t denotes the Laplace and time domains respectively. For zero initial conditions 

the Laplace transform of Riemann-Liouville fractional derivatives reduces to 

( ){ } ( )0 tD f t s F sα α=L [1] [5]. 
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The choice of refined Oustaloup’s filter parameters (bf and df) in (6) has been 

described in [35] in an optimization based framework where it has been shown that the 

constant phase performance remains almost consistent with a fixed f fb d  ratio, whereas 



5 

 

the original proposition for modified Oustaloup’s filter suggested a fixed parameter of 

10, 9f fb d= = . The particular advantage of using modified Oustaloup’s approximation 

instead of the original Oustaloup’s approximation (implemented in another popular Matlab 

based Toolbox for FO systems, called Ninteger [36]) is that the former gives lesser ripple in 

the frequency domain phase error surface. Therefore it maintains a constant phase for a 

wider frequency range and gives good approximation even near the chosen boundaries of 

lower/upper frequency [35], [5]. The original Oustaloup’s filter’s poles, zeros and gain are 

recursively calculated as: 
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For the present study in both the frequency domain approximation techniques for FO differ-

integrators, the nonlinear FO ordinary differential equations have been integrated with the 

fourth order Runge-Kutta method with fixed step size of 0.001 sec. 

 

Figure 1: Phase portraits of IO (α = 1) and commensurate FO (α = 0.9) chaotic Lorenz, Lu 
and Chen system (δ = 0.9, 0.8, 0.7 respectively) 

The frequency domain rational approximation methods sometimes may be less 

accurate for FO differential equations, especially for the investigation of chaos. Tavazoei and 

Haeri [37], [38] have shown that chaos may disappear in a FO system due to frequency 

domain rational approximation whereas a non-chaotic nonlinear FO system may appear to 

be chaotic due to such rational approximation. This is because the frequency domain 

rational approximation techniques modifies the nature, number and stability of the fixed 

points. Therefore, time domain methods for fractional differential equations should also be 

tested alongside to verify that the nature of phase space response is consistent between the 

frequency and time domain computation of the FODEs. The most popular time domain 

method for single and multi-term FODEs is known as the Adams-Bashforth-Moulton PECE 

(predict, evaluate, correct, evaluate) method [39], [40]. Garrappa came up with a new 

implementation of the PECE algorithm using Fast Fourier Transform (FFT) for the 

convolutions which reduces computational cost of the Volterra convolution equation. The 
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stability of Garrappa’s implementation of PECE method has been studied in [41] and its 

Matlab based implementation is known as fde12. There is also another class of time domain 

method known as the implicit fractional linear multistep methods (FLMMs) of the second 

order. The FLMM has three subclasses viz. Trapezoidal method, Newton-Gregory (NG) 

formula, and backward differentiation formula (BDF) which are implemented by Garrappa in 

Matlab as flmm2 algorithms and the detailed mathematical treatments of PECE and FLMM 

can be found in [42], [42], [43] respectively. Here, we focus on exploring the difference in the 

resulting state trajectories using these different time domain and frequency domain 

simulation techniques. 

The PECE method needs only the functional form of the nonlinear state equations, 

whereas the FLMM methods additionally needs the Jacobian information which is given by 

(8) for the FO Unified system (3). Detailed error analysis of Jacobian based predictor 

corrector method has been reported in [44]. 
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In order to use the existing three time domain FLMM solvers for the simulation of 

random parameter FO chaotic systems (as explored in subsequent sections), the same 

random choice of the key parameter is declared as a global variable and then passed in both 

the functions containing the system structure (3) and the Jacobian (8) simultaneously. 

Choosing different random key parameter in the system structure and Jacobian at one time 

step do not yield convergence of the FLMM methods. Whereas, in the PECE method, the 

Jacobian information is not required. Therefore the key parameter δ can directly be 

randomised within the function containing the system structure and not to be passed from 

outside as a global variable like in the three FLMM methods.  

 

Figure 2: Disappearance of chaos in FO unified chaotic system family for commensurate 
order α ≤ 0.8 
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As mentioned earlier, the unified chaotic system behaves as the family of Lorenz, Lu 

and Chen systems for different ranges of the key parameter δ as given in (2). The phase 

portraits of the three IO chaotic systems (Lorenz-Lu-Chen) and that of their commensurate 

FO counterparts (with α = 0.9) are shown in Figure 1 with an initial condition of 

( ) ( )0 0 0, , 1,3, 2x y z = using the frequency domain refined Oustaloup’s approximation method. It  

is found that decrease in the commensurate FO of the unified system still exhibits chaotic 

phase portraits till α = 0.85. For further decrease in commensurate FO up to α = 0.8, the 

phase space trajectory stabilizes in one of the stable equilibrium points as shown in Figure 2. 

Therefore, for FO systems, chaos can appear even in a system having an overall order

0.85 3 2.55× = . Tavazoei and Haeri in [45] have shown the bounds of observing chaos in 

commensurate and incommensurate FO unified chaotic system and in general, the gradual 

decrease in FO causes disappearance of chaos. 

2.3. Error Analysis of Time and Frequency Domain Methods for the 

Numerical Simulation of Chaotic FODEs 

The error analysis for numerical simulation of chaotic FODEs have been carried out 

in two different ways –  

•  Error incurred in the frequency domain approximation (while maintaining a constant 

phase response within a chosen frequency band) for the FO elements 

•  Error (rather difference) between the state trajectories using different numerical 

methods to integrate the chaotic FODEs 

To explain the first point - FO differ-integrators are known as constant phase 

elements (CPEs) and different rational approximations try to maintain a nearly constant 

phase response by placing interlaced poles and zeros, over a chosen frequency band. 

However the error between the original fractional differ-integrator and their rational 

approximation are affected by the choice of the method, frequency bandwidth and order of 

realization. Figure 3 shows the error between the ideal and approximated phase responses 

for Oustaloup’s and modified Oustaloup’s method for different FOs (α). It is evident from 

Figure 3 that the refined Oustaloup’s filter produces less error in the approximation of a 

smooth phase response especially near the boundaries ( ),b hω ω . Here, the phase error is 

given by (9) as the difference between ideal and approximated response for a FO differ-

integrator. 

 ( )approx 2φ φ απ∆ = −    (9) 

We have also shown the variation in the phase error with the order of approximation 

in both the Oustaloup’s and refined Oustaloup’s method in Figure 4. It is evident that in both 

the methods for low order of rational approximation ( 10N < ), there is some ripple in the 

phase response and after that there is a small variation in accuracy as also found previously 

for several other rational approximation techniques like Carlson, continued fraction 

expansion (CFE) in continuous and discrete time etc. [35], [46]–[48]. However, as reported in 

Petras [1], we chose a 30th order approximation for both the Oustaloup’s and refined 

Oustaloup’s approximation of FO operators in the FODEs. 
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Figure 3: Phase ripple in Oustaloup’s and refined Oustaloup’s method with variation in FO 
(α). 

 

Figure 4: Phase ripple in Oustaloup’s and refined Oustaloup’s method with variation in order 
of approximation (N). 

 

To explain the second point, we have also shown the difference between the most 

consistent time domain method – FLMM BDF (backward difference formula) and the other 

three variants of time domain methods (PECE, FLMM Trapezoidal, FLMM Newton-Gregory) 

along with two frequency domain methods (Oustaloup’s and refined Oustaloup’s method). 

Consistency of time domain methods for FODEs have already been discussed in Garrappa 

[43]. Since the frequency domain approximation methods try to maintain a constant phase 

response over the desired frequency range, the phase ripple with the change in 
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approximation technique might have some impact on the accuracy of simulation for chaotic 

FODEs. However, here the objective is to find the consistency of simulations between 

frequency and time domain numerical methods for chaotic FODEs. 

 

Figure 5: State trajectories and their difference between two frequency domain methods for 
numerical integration of chaotic FO unified system. 
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Figure 6: State trajectories and their difference amongst four time domain methods for 
numerical integration of chaotic FO unified system. 

The difference between the state trajectories are shown in Figure 5 for the two 

frequency domain methods and in Figure 6 for the three time domain methods. This helps in 

understanding the difference in the temporal evolution of the state variables while using 

different techniques for FODEs. All of the five methods use some sort of approximation 

either in time or frequency domain to evaluate the state trajectories, no ground truth (base 

case) of the state variables can be ascertained to compute the error incurred in the evolution 

of the states. Therefore we have provided the comparative plots between these time and 

frequency domain techniques for a fixed parameter FO unified chaotic system. The 

robustness of these methods are judged for the random parameter case yielding minimum 

variance in estimating the LLE and entropy, in the coming sections. However for comparing 

the four time domain techniques, the FLMM BDF method has been considered as the 

benchmark solution for the FO chaotic system as suggested in [43] and rest of the three 

system’s response have been compared with it for the time domain error analysis of the 

three state variables. The errors have been quantified using the 1-norm, 2-norm and ∞-norm 

difference between the state trajectories obtained with FLMM BDF vs. rest of the methods in 

Table 1. Considering the error signal being [ ] [ ] [ ] { }, , ,FLMM BDF other
i i ie n X n X n i x y z−= − ∈  over a 

finite time length (here 5 sec and thus sample size n = 5×104) these three norm difference 

are calculated as: 

 [ ] [ ] [ ]( )2

1 2, , max
n n

L e n L e n L e n∞∆ = ∆ = ∆ =∑ ∑   (10) 

The best results (in terms of Lp norm difference) between the FLMM BDF and other 

time/frequency domain methods are highlighted in bold-italics. It is seen that the PECE is 

better most of the times and is able to maintain close enough state trajectories to that of the 

FLMM BDF. 

Table 1: Lp Norm difference (p = 1, 2, ∞) of the three state errors with respect to the FLMM 

BDF time domain method for time length of 50 sec  

State Error Norm FLMM Trapezoidal FLMM NG PECE Oustaloup Refined Oustaloup 

x 

∆L1 460655.21 438143.61 439773.98 438799.51 457390.97 

∆L2 2562.89 2441.84 2386.24 2439.07 2502.79 

∆L∞ 39.39 39.42 32.20 34.21 34.54 

y 

∆L1 490033.46 469082.11 471718.70 471085.30 475514.32 

∆L2 2741.20 2624.85 2564.67 2627.15 2597.90 

∆L∞ 46.65 46.70 37.17 39.23 38.18 

z 

∆L1 460655.21 438143.61 439773.98 438799.51 457390.97 

∆L2 1418.53 1497.70 1627.68 1457.53 5243.90 

∆L∞ 23.62 26.17 27.22 23.69 50.45 

2.4. Effect of Numerical Integration Methods on the Frequency Domain 

Simulation of chaotic FODEs  

For the numerical integration of IO fixed parameter chaotic systems, often the variable 

and adaptive step size solvers are used. However, it is evident from the simulated phase 

portraits in Figure 1 and Figure 2 as well as the calculated Lyapunov exponents and entropy 
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values (in the next sections) that integrating the integer and fractional order Unified chaotic 

system is sufficient to investigate the chaotic behaviour of the state variables. Also, the effect 

of random parameter perturbation can be more visible and quantifiable using various system 

diagnostic measures with a regular time step method instead of a variable step one. Also, 

the calculation of Lyapunov exponent from the noise-like time series of the state trajectories 

becomes an extremely difficult task if the state is irregularly sampled due to applying a 

variable step-size integration method. However, to address the question whether our method 

for numerically integrating the FO chaotic system with fixed step-size of 0.001 sec is robust 

enough, we here show exhaustive simulation study each for a fixed step-size of 0.0001 and 

0.00001 sec respectively. We also quantitatively show that this granularity of simulation does 

not appreciably change the results in anyway, but introduces a huge computational burden. 

The computational time for varying all the three step size methods of numerical integration 

are compared in Table 2, when 50 sec of simulations have been run in Matlab/Simulink 

environment on a 64 bit Windows 7 desktop PC with Intel I5, 3.3 GHz processor and 16 GB 

of RAM. State trajectories of the fixed parameter FO chaotic system (with δ = 0.8, α = 0.9 

and refined Oustaloup’s rational approximation method) have also been explored in Figure 

7, using different fixed step ODE solvers with order of accuracy varying between one and 

five.  

 

Figure 7: Difference in the evolution of state trajectories with change in numerical integration 
solver for fixed parameter FO chaotic system with δ = 0.8, α = 0.9 

Now, we explore the effect of varying the fixed step-size explicit solver to integrate the 

chaotic FODEs yielding a first (Euler’s method), second (Heun’s method), third (Bogacki-

Shampine method), fourth (Runge-Kutta method) and fifth (Dormand-Prince method) order 

of accuracy along with a comparison of their runtime reported in Table 2. In [49], it is shown 

that the RK4 (fourth order Runge Kutta) method can be considered as a robust solver for a 

wide variety of nonlinear stiff ODEs. Therefore in the frequency domain approximation 

methods, we have adopted the Runge-Kutta method as a trade-off between accuracy and 

simulation run-time, since higher order methods are more computationally intensive as 



12 

 

shown in Table 2. Figure 7 also shows that starting from the same initial condition but with a 

finer step size, the state trajectories deviate later between the five different choices of 

numerical integration solvers with an order of accuracy varying between one and five. It also 

shows that the evolution of the states gradually starts departing from the initial condition 

while using different solvers to numerically integrate the ODEs, but the information content 

or entropy estimates for the random parameter chaotic system is not greatly affected by the 

change of solvers as shown in Table 2. Also in order to make a fair comparison with the time 

domain methods (PECE and FLMM) we have restricted our study to fixed step size solvers 

only, as these time domain methods for FODEs use fixed step size too. In addition, the 

system diagnostics e.g. the LLE and Shannon entropy calculation becomes extremely 

complicated if the continuous states are sampled with irregular interval, as a result of 

variable step size integration. 

 

 Table 2: Effect of changing the solver for numerical integration on the computational time 
(for simulation time of 50 sec) based on refined Oustaloup’s approximation for fixed 
parameter unified system with α = 0.9, δ = 0.8  

Solver 
Order of 
Accuracy 

step-size 
(sec) 

Computational 
Time (sec) 

Shannon Entropy Hx (for 
state x) 

Euler 1 

10-3 4.27 -25123.46 

10-4 11.83 -241890.40 

10-5 425.59 -2518606.68 

Heun 2 

10-3 4.26 -24336.90 

10-4 15.65 -248293.92 

10-5 963.98 -2433222.74 

Bogacki-
Shampine 3 

10-3 4.94 -26430.05 

10-4 20.15 -240143.35 

10-5 674.66 -2473862.78 

Runge-Kutta 4 

10-3 5.23 -24181.12 

10-4 24.62 -235823.72 

10-5 549.38 -2417141.51 

Dormand-
Prince 5 

10-3 6.24 -24651.35 

10-4 37.25 -238121.71 

10-5 765.32 -2479454.18 

 

3. Random Noise Like Fast Switching in the Unified Chaotic System 
Parameter 

Here, we explore a new class of chaotic systems with random switching in its key 

parameter δ. The IO and FO unified chaotic system is chosen for the simulation study with a 

consideration of random switching in the key parameter ( )0,1δ ∼ U . Therefore, the key 

system parameter δ of the unified chaotic system is randomly drawn from a uniform 

distribution such that at each time instant it belongs to a particular system family according 

to (2) but at the next time instant it jumps to another chaotic system family. The small 

wiggles in the phase space trajectories even for the IO case is evident in Figure 8 due to 
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random variation in the unified chaotic system key parameter δ, as opposed to the smooth 

phase space trajectories in IO unified chaotic systems in Figure 1. The aberrations in the 

phase space trajectories are also evident for lower value of the commensurate FO of α = 0.9 

as shown in Figure 9. The change in the phase space trajectories for such random noise like 

fast parameter switching FO systems indicate towards a new type of chaotic behaviour, as 

compared to that shown in Figure 1 and Figure 2, for classical fixed parameter IO/FO chaotic 

systems. Systems exhibiting this kind of behaviour are henceforth called as IO/FO random 

parameter switched chaotic systems in the remainder of the paper. 

It is also expected that for such a new class of random parameter FO switched 

chaotic systems the obtained state-time series would be totally different compared to the 

classical versions. Here, starting from the same initial condition ( )0 0 0, ,x y z  and same initial 

parameter 0.8δ = , the system’s state variables evolve in a different way and diverges very 

quickly from each other due to the presence of random switching in the parameters of the 

chaotic system. Although the deterministic long term prediction property holds for the fixed 

parameter chaotic system if the underlying model is known but for the latter case due to the 

uncertainty introduced in the value of key system parameter (δ) due to noisy switching at 

each time instant, such prediction becomes impossible. As can be seen from the phase 

portraits in Figure 8-Figure 9, their shapes qualitatively match with the traditional cases with 

a constant key parameter in Figure 1-Figure 2, except the small wiggles on the phase space 

trajectories. 

 

Figure 8: Phase portrait of IO (α = 1) unified chaotic system with random variation in δ with 

wiggly trajectories. 
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Figure 9: Phase portrait of FO unified chaotic system with random variation in δ with α = 
{0.9, 0.85, 0.8} with wiggly trajectories. Chaos disappears much early at α = 0.85, due to 
random key parameter (δ) switching whereas the fixed parameter unified system is still 
chaotic at α = 0.85. 

The seed of the random number generator for the key parameter δ in different 

simulations were again randomly initialized 100 times for the same IO random parameter 

switched chaotic system so that the system evolves from the same initial condition 

( )0 0 0, ,x y z  but in different ways in successive simulation steps. The instantaneous values of 

the key parameter δ has been randomly changed by sampling from a uniform distribution as 

shown in Figure 10.  It is also clear from Figure 10 that although in 100 different simulations, 

the state variables starts from the same initial value, they diverge very quickly due to the 

randomness introduced in the key parameter δ. This shows the unpredictability of the state 

even more than the traditional application of chaotic time series in the area of secure 

communication with a fixed initial conditions ( )0 0 0, ,x y z  and model of the chaotic system 

(governed by affixed key parameter δ for encryption). Figure 10 also shows the histogram of 

the amplitudes of state variable and the key parameter.   

Another interesting fact can be observed for such switched parameter FO chaotic 

systems in Figure 9. While gradually decreasing the commensurate FO, the chaos 

disappears much earlier than the fixed parameter FO chaotic systems. This typical 

phenomenon has been illustrated in Figure 9 where the phase space trajectories stabilizes in 

one of the equilibrium points for a commensurate FO of α = 0.85, whereas the fixed-

parameter FO chaotic systems (Lorenz, Lu and Chen sub-classes) in Figure 2 still exhibit 

chaos at that low FO of α = 0.85. The early disappearance of chaos is found to be consistent 

with both the frequency domain methods – Oustaloup’s and refined Oustaloup’s method as 

shown in Figure 9 as well as the four time domain methods. 
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Figure 10: Time series of the key parameter (δ) and the three state variables for the IO 
random parameter switched chaotic system with 100 independent realizations. 

 

This observation shows that such random parameter switching may be useful for 

control or suppression of chaotic phenomena in many naturally occurring chaotic high 

dimensional systems [50], where the task is to suppress chaotic oscillations or neutralize 

chaotic oscillations by noise [50], [51]. Previously, a similar concept has been introduced in 

[52], [53], [54], [55] known as noise induced chaos where the chaotic behaviour can be an 

effect of random parameter variation in a nonlinear system. The present approach is a bit 

different since the random variation in the key parameters (δ) makes the system arbitrarily 

switch between the three families of attractors viz. Lorenz-Lu-Chen systems. The presence 

and disappearance of chaotic motion and randomness in the resulting time series in the 

previously explored fixed and random parameter chaotic systems are next verified using the 

numerical computation of Lyapunov exponents and Shannon entropy. 

4. Diagnostics for the Time-Series of Random Parameter Switched Chaotic 
Systems Using Lyapunov Exponent and Shannon Entropy 

Investigation of chaos is mostly done using its genuine signature known as the 

Lyapunov exponent. There has been significant amount of research in past to calculate the 

largest Lyapunov exponent (LLE) from a finite length time-series which is capable of 

discriminating the underlying dynamical behavior of a data due to random noise and chaotic 

motion. Lyapunov exponent greater than zero indicates the presence of chaotic fluctuation in 

a measured dataset. In most realistic cases, a measured time series is corrupted with white 

or colored noise which could result in spurious estimated values of LLE depending on the 

strength of noise added to the system. Investigation of the additive noise with chaotic time 

series with different signal to noise ratio (SNR) levels has been reported in Rosenstein et al. 

[56]. 
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In the present paper, the problem is different since the dynamics of chaotic time 

series is not masked by additive measurement noise with different noise variance unlike the 

research reported in Rosenstein et al. [56]. But here the dynamics of chaotic attractor is 

determined by random fluctuation in the key system parameters (δ). As discussed above, 

the system has a similar framework like a noise induced chaotic system [52], [53], [54], [55]. 

Therefore the exploration reported here is markedly different from that reported with additive 

noise [51] in various known family of chaotic systems. In addition, the effect of fractional 

dynamics on such random parameter switched chaotic systems and their corresponding 

Lyapunov exponents have also been investigated here. 

The attractor’s dynamics is normally reconstructed from a single time-series 

representation of the measured state ix , using the time delay embedding method. If ( )x τ be 

the evolution of the state from some initial condition ( )0x , then the largest Lyapunov 

exponent is calculated as (11). 
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Now for varying relative time (τ ) the Lyapunov exponents are calculated as (12). 
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where, iU is the neighborhood of ix  with diameter ε  and the ( ),dist ,i jx x τ
 
is the distance 

between a trajectory ix  and a neighbor jx , after the relative time τ . The plot of τ  vs. ( )S τ

helps to determine whether the embedding dimension is selected in a proper way depending 

on whether the curve is more or less horizontal or smooth [57]. Gao et al. [58] proposed a 

technique using scale-dependent Lyapunov exponent to distinguish between chaos, noisy 

chaos and noise induced chaos where the presence of the chaos could be confirmed by 

observing a plateau over multiple scales. The present work takes a similar approach where 

the Lyapunov exponents with varying relative time (τ ) is reported as also shown in [57]. It is 

a well discussed topic to distinguish chaos from noise using Lyapunov exponents and there 

are significant amount of research done on this topic e.g. [59], [60], [61], [62]. Kinser [60] 

reported that the LLE of noise may be a very large number and other nonlinear measures 

may be needed. Therefore in the present scenario, the LLE, Lyapunov exponents for varying 

relative time ( )S τ  and Shannon entropy (H) analysis have been reported together, in order 

to understand the nature of the time series obtained from these new classes of randomly 

switched parameter nonlinear dynamical systems. 

Apart from the LLE, another measure widely used in the investigation of randomness 

of the information and nonlinearity is the Shannon entropy. It can be easily calculated from 

the wavelet decomposition of the time-series ( )x t  in several orthogonal basis ( ix ) such that

( ) ( ) ( )2 2logi i i
i i

H x H x x x= =∑ ∑  along with the convention of ( ) ( )0 0 log 0 0H = = . Here, the 

Lyapunov exponents and wavelet entropy were calculated using a four times down-sampled 

version of the recorded time series of the first state variable (x) using the time delay 
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embedding technique reported in [56]. A 50 sec of simulation time with fixed step-size of 10-3 

sec in four time down-sampled version would therefore generate 12500 samples, for the 

calculation of features i.e. LLE and Shannon entropy as the two potential system 

diagnostics. This down-sampling of the state time series were required due to the issue of 

memory overflow while calculating the LLE using large number of samples. In order to obtain 

a fair comparison of these estimates, the LLE and Shannon entropy for a white Gaussian 

noise and chaotic Logistic map as in (13) are also calculated as two extreme examples of 

pure noisy and pure chaotic dynamics respectively. 

 
( ) ( )

( )
1 1

2

Logistic map : 1 , 4, 0,1

White Gaussian Noise : 0, , 1
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Such a benchmarking of standard deterministic and stochastic dynamics (along with 

their overlap) is helpful in the intuitive understanding of the proposed randomly switched 

parameter chaos in commensurate FO nonlinear dynamical systems, exhibiting new class of 

semi-deterministic dynamics. In the two deterministic/stochastic discrete time iterators in (13)

, the initial starting value is chosen from a uniform and normal distribution respectively while 

other parameters (r for logistic map and standard deviation σ for white noise) are kept 

constant. Before the calculation of LLE and entropy, the state time series or sequences from 

discrete iterators were standardized using the transformation ɶ ( )x x µ σ= −  to ensure that 

the data is zero mean and unit variance to avoid any biased estimation. The calculated LLE 

and entropy show a clear signature of chaos for the Logistic map due to significantly large 

and positive LLE while the high randomness is affirmed from the large entropy value for 

white Gaussian noise. Also, the behavior of sequences from FO coloured noise (with α = 

0.9) and noisy chaos (α = 0, 0.9) with SNR = 1 have been quantified for comparison, where 

the signal corresponds to the chaotic time series and noise is white or coloured of the same 

time length. When adding two sequences (noisy or chaotic) both of them are standardised 

separately and then added. We have used the Grunwald-Letnikov numerical fractional 

derivative (14) to generate fractional Gaussian noise (fGn) with α = 0.9 by passing a white 

noise sequence through a FO differentiator ( sα
). 
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For all the three subclasses of the unified chaotic systems i.e. fixed parameter FO 

Lorenz-Lu-Chen, the LLE decreases and entropy increases with gradual decrease in the 

commensurate FO α as shown in Table 3. The disappearance of chaos is also evident from 

sudden drop in the LLE (from change in second decimal place to the first decimal place) at α 

= 0.8 for the fixed parameter FO unified system. A similar behavior is expected for the 

random parameter case also where the chaos disappears much faster at α = 0.85. 

These time series based estimates of LLE and entropy affirms the graphical findings 

in previous sections. In principle, for stable nonlinear systems i.e. damping of chaotic 

oscillations should exhibit a negative LLE but in most cases when the chaos stabilizes, it still 
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show a positive LLE which should not be confused with weak chaotic behavior. Since, the 

estimation of LLE is attempted from the finite number of samples of the state time series and 

not the system structure itself (using Jacobian), the involved numerical method may not 

often give exactly zero or negative value but gives a LLE which is close to zero and also a 

sudden drop in the estimated Lyapunov exponents for varying relative time. The motivation 

behind applying a single state time series based LLE calculation instead of the conventional 

structure based LLE estimation method is that under varying structure or random switching 

between different ODE structures the latter technique does not hold [63], [64]. Therefore, 

using the observed time series of the state variables via the time delay embedding is a 

viable alternative to compute the LLE for these new interesting FO semi-deterministic 

chaotic systems. The delay embedding techniques are mostly used on experimental data 

when the underlying data generation process or the governing differential equations are not 

precisely known or there is noise in the measurement system. Although it is not very popular 

for simulation studies on deterministic chaos, as a structure based LLE computation is 

preferred without the presence of noisy fluctuations. 

Next the Lyapunov exponents for varying relative time - ( )S τ  is explored [57] using 

equation (12), for the fixed parameter systems in Figure 11 and the random parameter 

system in Figure 12, while the relative time has been increased from [ ]1,20τ = . Figure 11 

shows that the Lyapunov exponents have significantly positive value for α = 1 and α = 0.9 for 

all the three cases of Lorenz, Lu and Chen system. But with α = 0.8, the estimated Lyapunov 

exponents are much smaller and sometimes become negative, especially at higher value of 

τ . In Figure 12, the Lyapunov exponents of a single realization of the random parameter 

unified system show that although there is a strong chaotic behaviour for α = {1, 0.95, 0.9}, 

but at α = 0.85 the chaotic behaviour is lost due to drop in the Lyapunov exponent values 

which confirms the studies reported in the previous section. These ( )S τ  plots along with the 

LLE estimates confirm the presence or disappearance of chaos in each FO system. 

 

Figure 11: Lyapunov exponents for fixed parameter chaotic systems. 
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Figure 12: Lyapunov exponents for a single realisation of random parameter chaotic systems 

Table 3: LLE and Shannon entropy for the fixed parameter chaotic systems based on phase 
space reconstruction (PSR) of the first state 

System LLE from PSR of state x Shannon Entropy 

IO chaotic Lorenz system (α = 1) 0.1122 -26534.90 

FO chaotic Lorenz system (α = 0.9) 0.1105 -23337.01 

FO chaotic Lorenz system (α = 0.8) 0.0115 -295631.19 

IO chaotic Lu system (α = 1) 0.1142 -31135.96 

FO chaotic Lu system (α = 0.9) 0.1165 -23748.88 

FO chaotic Lu system (α = 0.8) 0.0089 -305190.45 

IO chaotic Chen system (α = 1) 0.1157 -29141.11 

FO chaotic Chen system (α = 0.9) 0.1188 -24788.91 

FO chaotic Chen system (α = 0.8) 0.0157 -314398.57 

 

For the random parameter cases, the LLE and entropy are likely to be different for 

each independent realisation of the system. Therefore, we have quantified them in the 

scatter diagrams and the associated histograms. Here, we have reported the comparison of 

the characterization of chaotic systems using LLE and Shannon entropy for the two 

frequency domain and four time domain methods of numerically solving chaotic FODEs as 

discussed in section 2. We have also explored the variation in system diagnostics like LLE 

and Shannon entropy for 100 Monte Carlo runs of the random parameter switching of the 

unified system. Scatter diagram of these diagnostics clearly show that the random parameter 
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switching destroys the chaotic nature much earlier for FO unified system family. Similar 

comparisons are also done with these quantitative estimates for the discrete time chaotic 

and noisy iterators like fractional Gaussian (1/fα) noise, Logistic map with random initial value 

( ( )1 0,1x ∈ U ) and noise corrupted Logistic map (corrupted with white and 1/fα noise with SNR 

= 1). 

 

Figure 13: Scatter histogram between LLE and Entropy for 1000 Monte Carlo runs of FO 
random parameter switched chaotic system with α = 0.9 

 

Figure 14: Scatter histogram between LLE and Entropy for 1000 Monte Carlo runs of FO 
random parameter switched chaotic system with α = 0.85 

 

The two dimensional scatter diagrams shown in Figure 13-Figure 16 are especially 

useful in understanding how the quantitative measure of chaotic behaviour (LLE) and 

randomness (entropy) change with the decrease in the commensurate FO for the random 
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parameter systems. These scatter diagrams also explains the trade-off between the 

deterministic and stochastic dynamics under the same commensurate order α while 

integrated with different time or frequency domain solvers for FODEs. Robustness of a 

particular method can be quantified by studying the variance of these distributions along 

each of the features. 

 

Figure 15: Scatter histogram between LLE and Entropy for 1000 Monte Carlo runs of FO 
random parameter switched chaotic system with α = 0.8 

 

Figure 16: Scatter histogram between LLE and Entropy for 1000 Monte Carlo runs of 

discrete time iterators (chaotic, noisy sequences and chaos with additive noise) 

A close observation in Figure 13-Figure 15 reveal that the random parameter IO 

chaotic system yields a robust estimation of LLE as evident from the high probability peaks. 

In general the FLMM algorithms also estimates the LLE with low variance compared to the 

other time and frequency domain methods for α = 0.9. For further reduction in the 

commensurate FO the chaotic behaviour disappears and the peaks in the LLE or entropy 
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histograms are no longer found as prominent as the IO case. It is also evident from Figure 

13 that the two frequency domain method slightly over-estimates the LLE as 0.07-0.08, 

compared to the LLE range obtained using time domain methods 0.1-0.11 for α = 0.9. Here 

the entropy does not discriminate much amongst the time and frequency domain methods 

and produces overlapping histograms in Figure 13.  

Table 4: Characterization of different continuous and discrete chaotic systems with noise 

using Shannon entropy and LLE (modes of 100 Monte Carlo runs) 

System Numerical Integration Solver 
Shannon 
Entropy LLE 

Computation time 
(sec) 

Logistic Map Discrete iteration -4020.754 0 321.812 

Logistic Map + White Noise α = 0 Discrete iteration -35255.276 0 321.789 

Logistic Map + Coloured Noise α = 0.9 Discrete iteration -35143.765 0 321.908 

White Noise α = 0 Discrete iteration -9792.310 0 320.632 

Coloured Noise α = 0.9 Discrete iteration -9731.640 0 320.501 

White Noise α = 0 + Coloured Noise α = 
0.9 Discrete iteration -37240.687 0 322.080 

Integer Order α = 1 Runge Kutta -28032.864 0.107 147.303 

Random parameter with α = 0.9 

Oustaloup + Runge Kutta -29227.048 0.074 144.554 

Refined Oustaloup + Runge 
Kutta -29491.429 0.075 144.429 

FLMM Trapezoidal -29955.346 0.073 158.607 

FLMM NG -30755.774 0.074 158.390 

FLMM BDF -29998.819 0.074 159.028 

PECE -31080.740 0.073 158.336 

Random parameter with α = 0.85 

Oustaloup + Runge Kutta -240975.978 0.033 20.989 

Refined Oustaloup + Runge 
Kutta -245596.069 0.030 21.303 

FLMM Trapezoidal -254232.479 0.062 24.571 

FLMM NG -249219.331 0.066 24.698 

FLMM BDF -254397.185 0.062 24.678 

PECE -254824.825 0.019 23.129 

Random parameter with α = 0.8 

Oustaloup -256240.080 0.023 25.291 

Refined Oustaloup -254630.812 0.018 25.272 

FLMM Trapezoidal -247888.269 0.118 26.803 

FLMM NG -245700.750 0.107 26.721 

FLMM BDF -199977.065 0.156 26.987 

PECE -243117.460 0.023 25.334 

 

From the 100 Monte Carlo runs of the FO random parameter switched chaotic 

system, mode of the distributions for LLE and Shannon entropy estimates have been 

reported in Table 4, for benchmarking purpose with respect to the standard discrete time 

iterators (chaotic and noisy). It is to be noted that the LLE reported here is based on the 

phase space reconstruction of a single state variable and not based on the system structure 

as the structure itself changes at each time instance due to random parameter switching. 

This helps in a fair comparison of continuous time chaotic systems with the discrete time 

ones (e.g. Logistic map or white noise) as if the order and structure of underlying dynamical 

system is unknown and there is only one measurable state available to characterize the 
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system’s deterministic/stochastic behavior. For a specific choice of α, it is observed that the 

LLE becomes lower (indicating a weaker chaos) and entropy becomes higher (stronger 

stochastic dynamics or influence of noise) for the random parameter systems (in Table 4) as 

compared to those of the corresponding fixed parameter systems in Table 3. As an example 

for random parameter unified system with α = 0.9 showing chaotic phase portraits, LLE 

drops ~ 0.07 (using different solvers) from the fixed parameter LLE ≈ 0.11, whereas the 

entropy increases to H ≈ -29×103 to -31×103 for the random parameter one from the fixed 

parameter case where H ≈ -23×103 to -24×103. This observation is just the opposite for the 

same system with α = 0.8, where the chaotic oscillation is damped as the LLE increases to 

0.01-0.02 due to random switching from the fixed parameter LLE ≈ 0.009-0.01. 

Consequently increase in entropy is observed with an order of magnitude i.e. H ≈ -19×104 to 

-25×104 (increased for random parameter system) and H ≈ -29×104 to -31×104 (decreased 

for fixed parameter system). It is to be noted that the estimates reported here are not 

optimally tested with different signal lengths and SNR levels for brevity, which can be 

pursued as a scope of future research. 

 

Figure 17: Normalised distribution of computation time (in sec) for continuous (random 
parameter) and discrete (random initial value) chaotic systems, estimated from 100 Monte 
Carlo runs. 

Table 5: Variance of the Shannon entropy and LLE estimates for 100 Monte Carlo runs of 

the random parameter switched unified chaotic system with α = 0.9  

FODE Solution Technique Variance of Shannon Entropy Variance of LLE 

Oustaloup + Runge Kutta 2332101.8 164×10-6 

Refined Oustaloup + Runge Kutta 2646576.5 183.2×10-6 

FLMM Trapezoidal 1546735.2 0.9×10-6 

FLMM NG 1408110.1 0.9×10-6 

FLMM BDF 2051054.9 0.8×10-6 

PECE 2977598.9 1×10-6 
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Histograms of the run times have also been reported in Figure 17 since the LLE 

computation automatically selects the optimum embedding dimension using the algorithm in 

Rosenstein et al. [56]. Therefore there is a clear difference between the LLE computation 

time as well, for various classes of chaotic systems and noise. It is evident from Figure 17 

that the mode of the distribution for computation time of LLE is much less (within 20-35 sec) 

for the random parameter chaotic system with α = 0.85 and α = 0.85, whereas it is 

significantly higher for α = 0.9 (140-170 sec) as the latter shows chaotic behavior. Therefore 

it takes more time to find the optimum embedding dimension to be used for the numerical 

computation of LLE. The run times are much higher for discrete time iterators (320-325 sec) 

compared to the continuous time dynamical systems. 

A closer look at Table 4 reveals that in most of the noisy discrete time cases, the LLE 

is found to be zero. The LLE estimates have low variance when the chaotic behavior is 

clearly visible in the phase portraits i.e. with α = 0.9. With further reduced commensurate FO 

(when the chaotic behavior is no longer visible in the phase portraits), the frequency domain 

methods and the time domain PECE method shows similar result with a significant reduction 

in LLE, whereas the FLMM methods still show slightly higher LLE values. In order to 

compare the performance of the frequency and time domain solvers for FODEs, the variance 

of the LLE and entropy estimates have been reported in Table 5, using the 100 Monte Carlo 

runs of the random parameter chaotic system with α = 0.9. Table 5 clearly shows that the 

FLMM BDF yields minimum variance in LLE estimation and FLMM NG formula yields 

minimum variance in the entropy estimation, In general, the time domain methods clearly 

scores better over the frequency domain methods, for a robust (minimum variance) LLE 

computation. 

5. Discussion 

5.1. Novelty of the Present Approach over Existing Theory of Noisy 

Chaos 

There have been many studies on discriminating noisy chaos, noise induced chaos 

and FO stochastic processes (1/fα) or higher order colored noise e.g. in [58], [59]. It has also 

been shown in [51], that adding white or correlated noise makes a chaotic time series 

impossible to be identified as chaos by standard LLE method which is known as titration of 

chaos by noise. In such cases, the regular smooth structure of the attractor dynamics in 

phase space breaks down and it no longer shows chaotic oscillations. Here we explore a 

different phenomenon of noise induced chaos in FO unified system where the key parameter 

(δ) was switched randomly along with gradual decrease in the commensurate FO of the 

system. In the present study, at each time instant the key parameter δ was sampled from a 

uniform distribution that determines which family the uniform chaotic attractor belongs to at 

each time instant. 

Also, there are other methods to investigate deterministic chaos e.g. the 0-1 test, 

apart from the popular method of LLE. But the 0-1 test of chaotic dynamics was originally 

developed to show chaotic dynamics with large number of noise free data [65]. 

Investigations by Gottwald and Melbourne [66] suggests that the 0-1 method can still detect 

the underlying deterministic chaotic dynamics if the noise-level is sufficiently small (10%) 

and not correlated with the systems dynamics, which is rather restricted than the problem 

addressed here. In our present study, the main idea is not to investigate weak chaos 
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masked by additive noise but to characterize the systems dynamics due to a noise like 

parameter switching. In such cases of noise induced FO chaos, the 0-1 test is not 

guaranteed to detect the underlying chaotic behavior. Therefore we restrict our study to 

determine the domination of the deterministic and stochastic dynamics using the two popular 

diagnostic methods – Lyapunov exponents and Shannon entropy only. Also, further 

investigation is needed to understand why the chaos disappears with decrease in the 

commensurate FO (α) of the system. Almost in all FO chaotic dynamical systems, the chaos 

is found for a certain range of parameters and not under all parameter settings. Previous 

investigations of FO chaos mostly reported similar approach of the existence of chaos by 

simulation study, under various parameter settings. The motivation of the present paper is to 

investigate the range of system parameters for which the chaos persists in a uniformly 

distributed noise induced FO unified chaotic systems, although the physical interpretation of 

disappearance of chaos especially at low α is still an open question. Also, the distribution of 

the key parameter (δ) is chosen from a uniform distribution rather than a Gaussian or other 

type of distributions. This ensures almost equal number of samples drawn from all different 

parts of the distribution and also strictly enforces the key parameter to lie within zero to one, 

signifying switching amongst Lorenz, Chen and Lu families as per equation (2).  

Also, different dynamical characteristics, in terms of sustained or damped excursion 

of states have been observed here while using different values of the commensurate FO. 

This raises a question whether the suppression of chaos is a generic and consistent 

characteristic for large scale nonlinear dynamical systems in the presence of noise and 

random parameter switching. Molgedey et al. [50] have shown that noise has different 

effects on the chaotic dynamics depending on the dimensionality of the system. For low 

dimensional systems, noise favors chaos, while in high dimensional systems noise impairs 

the flow of information and inhibits chaos. In this paper, the consideration of the fractional 

dynamics in the state equations makes the system infinite dimensional (which is 

approximated by a very high dimensional constant phase filtering). The aim here is to 

investigate whether the suppression of chaos due to noise is a generic phenomenon among 

all the members of the family of FO attractors (with different values of α). Previous literature 

like [50], [51] addresses the stabilizability and detectability of chaos in the presence of 

varying degrees of additive noise which is different from random parameter switching within 

the three families of attractors. The reported simulation examples can be viewed as a first 

study for this specific type of phenomena and a more in depth study using analytical 

techniques like switched and hybrid dynamical systems are required in the future to lay the 

foundation of the underlying mathematical basis, which may be pursued as a scope for 

future work. One of the limitations in applying the switched chaotic dynamical systems theory 

[67], in the present scenario, is that the Lipschitz continuity must be maintained at each of 

the switching instants [68]. In other words there cannot be any kind of arbitrarily fast 

switching for the stabilization results to hold. There is also a consequent concept of dwell 

time which puts an analytical bound on the rate of switching dynamics [68]. In this paper, a 

noise like switching in δ at every sampling instant is considered, unlike specific time 

instances as reported in [67] which employ a zero order hold mechanism to satisfy the 

conditions of Lipschitz continuity. This might pose problems for application of the established 

analytical techniques in the present random parameter switched chaotic systems of integer 

[67] and fractional order. Future work might look at appropriate mathematical refinements to 

address this issue of stability analysis in the presence of arbitrarily fast switching. 
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5.2. Physical Significance of the Observation 

Experimentally observed time domain trajectories of many real world processes as 

found in diverse disciplines (like finance, biology) are often characterized by noise like 

fluctuations. Therefore modelling the dynamical characteristics through ordinary (integer or 

fractional order) nonlinear differential equations inherently use some kind of approximations 

due to the smoothness of the differential equation solutions. Most of the literature tries to 

capture the noisy part by incorporating additive or multiplicative random variable in the state 

variables of the differential equations. The present work shows how the behavior of the FO 

dynamical system changes under the influence of random parameter vis-a-vis its constant 

counterpart. It has been shown in the previous sections that randomly modulating the key 

parameter (δ) results in the disappearance of chaos. This is an important observation and 

may have many future applications, especially with respect to chaos control and 

synchronization. Recently a special kind of random parameter chaotic system, known as 

switched chaotic system has been explored in [67]. A single global controller has also been 

designed analytically based on Lyapunov stability theory for the synchronization of chaos in 

a wide variety of scenarios. The presented results add value to the existing knowledge of 

such random parameter chaotic systems of IO [67] since there might not be any need to 

design any external controller at all as per the present design. It may be possible to 

selectively modulate (by simply introducing randomness in) some key parameters of a 

chaotic system to stabilize it.  

From perspective of mathematical foundation, the results shown in this paper bridge 

three major branches of research in differential equations – nonlinear chaotic differential 

equations, FO differential equations and stochastic differential equations. Therefore this 

paper can serve as a building block for further study of a new type of design paradigm which 

leverages the strength of these three distinct disciplines in differential equation based 

modelling of natural processes viz. sensitivity to initial condition (as modelled by chaotic 

nonlinear differential equations), long memory process and rich higher order dynamics (as 

modelled by FO differential equations) and stochastic fluctuation in the state variables (as 

modelled by stochastic differential equations). 

6. Conclusion 

A new class of commensurate FO systems has been explored in this paper known as 

random parameter switched chaotic systems. The effect of random parameter switching in 

the key parameter (δ) of unified system under different commensurate FO have been 

studied. Simulation results and illustrations for the unified chaotic system show that chaotic 

behavior disappears much early (at a higher value of commensurate FO) for random 

parameter switched chaotic systems while gradually decreasing the commensurate order. 

The corresponding fixed parameter case still shows chaotic behavior in this regime. The 

introduction of noise induced parameter switching in the chaotic system and its effect in the 

titration of chaos [51], in other class of chaotic systems may be explored in future studies. 

Here, we also show that the random switching of the key parameter (δ) of the FO unified 

system could be used to damp out the oscillations. Further engineering applications of the 

proposed system could be directed towards stabilization or control of chaos using the theory 

of switched dynamical systems. In addition, the noisy sequence for δ, along with its rate of 

switching and the commensurate FO of the system could be used in various future 

applications in secure communication, encryption etc. among others. 
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