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INTRODUCTION

Although most coral reefs grow in oligotrophic
waters (Furnas 1992), they belong to the most produc-
tive coastal marine ecosystems (Sorokin 1993). The
exchange of substances between reef, open water,
land and atmosphere is small relative to their concen-
trations and turnover within the coral reefs. The high
biomass and productivity of coral reefs is explained by
the tight internal recycling of matter (Wiebe et al. 1975,
Andrews & Müller 1983, Risk & Müller 1983). Gross

primary production in coral reef waters has been
shown to be 1 to 2 orders of magnitude higher than in
the surrounding oligotrophic water (d’Elia & Wiebe
1990, Adey 1998). Reef-related physical and biological
processes mediate intensive exchange of dissolved and
particulate matter between the coral reef and the
water in the reef environment. Coral sands and reef
framework may play important roles in this exchange
process.

In most reef ecosystems, corals occupy roughly half
the surface area, and sands cover the other half. Due to
the porous structure of the coral sand, its permeability
is relatively high and the porosity of the reef sediment
can reach 50%. Pore water analyses in these cal-
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shore waters, nutrient (ammonium, nitrite, nitrate, phosphate and silicate) and chlorophyll a data
showed seasonal changes, with high concentrations in winter and low concentrations in summer.
However, throughout the summer, nutrient concentrations in the coral reef waters significantly
exceeded those in the offshore waters, while this difference was less pronounced in winter. This dif-
ference was caused by nutrient release from regenerative spaces in the reef framework and coral
sand. In the reef framework water (i.e. cavity water), nutrient concentrations were 1.2- to 2.3-fold
higher than those in the surrounding waters, corresponding to fluxes of 14.5 mmol m–2 d–1 for ammo-
nium, 7.7 mmol m–2 d–1 for nitrate, 0.9 mmol m–2 d–1 for nitrite, and 1.3 mmol m–2 d–1 for phosphate. In
the less permeable reef sediments, nutrient concentrations exceeded those of the free-stream waters
by factors of 15 to 80. Here, the calculated diffusive fluxes were 0.06 mmol m–2 d–1 for ammonium,
0.03 mmol m–2 d–1 for nitrate, 0.01 mmol m–2 d–1 for nitrite, 0.01 mmol m–2 d–1 for phosphate, and
0.07 mmol m–2 d–1 for silicate. Our results highlight the importance of the reef framework and coral
sand for the trapping and mineralization of particulate organic matter and the regeneration of
nutrients in oligotrophic coral reef waters.
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careous sediments revealed elevated nutrient concen-
trations relative to the overlying bottom water (Holm
1978, Smith et al. 1981, Arenas & de la Lanza 1983,
Entsch et al. 1983, Nixon & Pilson 1983, Williams 1984,
Williams et al. 1985, Furnas et al. 1993, Szmant &
Forrester 1996).

Beneath the living surface of the coral reefs, coral
skeletal remains and other calcareous biogenic mat-
erials form a highly permeable framework, where the
volume of coral reef cavities may reach up to half the
bulk volume (Ginsburg 1983). These framework
cavities are inhabited by a wide variety of organisms
(Kobluk & van Soest 1989). Organic matter trapped
within the framework or imported by the reef fauna is
consumed by the organisms that colonize the cavities
and that return ammonia and phosphate to the frame-
work water (Ferrer & Szmant 1988). Nutrient con-
centrations in reef cavities, therefore, exceed those of
waters surrounding the reef (Risk & Müller 1983,
Ayukai 1993, Richter et al. 2001).

Because of their large specific surface areas, coral
sands and reef framework may have an important
biocatalytic function and may act as nutrient buffers in
reef ecosystems exposed to seasonal nutrient changes.
Seasonal variability of the nutrient supply in coral reef
environments has received little attention due to the
perception that seasonal fluctuations are less pro-
nounced in tropical climates. Nonetheless, high-

latitude reefs, such as those of the Gulf of Aqaba,
undergo strong seasonal variations in primary pro-
ductivity (Kinsey 1977) that are unexpected on the
basis of temperature and light fluctuations alone.

Our understanding of the relationship between reef
productivity and nutrient availability is limited, despite
the importance of nutrients for the growth and health
of corals (Ward 1990, Torrance 1991, Hallock et al.
1993, Atkinson et al. 1995). In this study, we investi-
gated the seasonal changes of chlorophyll a and nutri-
ents in the water column and in a fringing reef ecosys-
tem of the Gulf of Aqaba, and we measured coral
framework and sediment pore-water nutrient concen-
trations in order to assess the importance of framework
and sediment in the nutrient balance of the coral reef.

MATERIALS AND METHODS

The study was conducted in a well-developed coral
reef located in the northern Gulf of Aqaba in a marine
reserve close to the Marine Science Station in Aqaba.
Water samples were collected concurrently from the
reef site and an offshore site 3 km from the Marine Sci-
ence Station (Fig. 1A). Along the reef transect, surface
and bottom water (ca. 50 cm above the sediment) were
sampled biweekly at stations 5, 10, 20, and 30 m from
the bottom (Fig. 1B). At the stations at 20 and 30 m

water depth, additional samples were
taken at 10 m depth intervals. The off-
shore reference station was sampled at
water depths of 0.5 and 25 m. The bot-
tom-water samples were collected by
divers, while all other samples were
collected with Niskin bottles. All sam-
ples were kept on ice until analysis. In
the laboratory, 1 l of each sample was
filtered through a pre-rinsed 0.45 µm
cellulose-membrane filter and ana-
lyzed for ammonium, nitrite, nitrate,
phosphate and silicate concentrations
according to Strickland & Parsons
(1972). The material on the membrane
filter was used for the determination of
chlorophyll a based on the method
published by Arar & Collins (1992),
using a Turner Designs, TD-700 fluo-
rometer.

In June and December 1998, water
samples from coral reef cavities and
free-flowing reef waters were simulta-
neously taken at hourly intervals over
a period of 24 h (Fig. 1B). Water was
collected using a multichannel peri-
staltic pump mounted on a boat, using
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Fig. 1. (A) Study area in the NE Gulf of Aqaba,
Red Sea, showing the reference station ~3 km
offshore (✖ ) and the coral reef transect in front
of the Aqaba Marine Science Station, Jordan
(modified after Wells 1988). (B) Coral reef tran-
sect with the sampling locations for the nutrient
distribution in coral reef waters (d), nutrient
fluxes between coral reef waters and sediment
(J) and fluxes between freestream waters (R)
and framework cavities (C) (modified after 

Schuhmacher & Mergner 1985)
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10 m long, 5 mm diameter silicone tubing inserted into
8 randomly selected cavities within a 4 m diameter
coral pinnacle located at a depth of 3 to 6 m. Tubes
were fixed axially into ~6 cm wide, ~30 cm deep cavi-
ties using elastic plastic rods. Tubes were inserted
two-thirds of the way into the cavities, i.e. at ~20 cm
distance from the entrance. Free-flowing water was
collected with 2 tubes fixed on moorings 3 m upstream
from the pinnacle; 100 ml samples were drawn at 50 ml
min–1 and taken to the laboratory for subsequent analy-
sis of nutrients. Between samplings, the flow was re-
versed, using double-distilled water at rates of 2 ml
min–1 to avoid fouling of the tubing. With an average
volume of the sampled cavities of ~3 l and a water resi-
dence time of less than 5 min, we found no dilution ef-
fect of the freshwater on salinity in the cavities. Nutri-
ent fluxes between coral reef cavities and free-flowing
waters were calculated according to the formula

F =  nN ×Vc � T

where nN is the concentration difference between the
cavity and free-flowing reference (mmol m–3), Vc is the
volume of cavities per unit area of reef (m3 m–2), and T
is the residence time of water in the cavities. For the
upper 0.2 m of framework investigated, Vc was 0.07 m
(Richter et al. 2001). A conservative estimate for T is
300 s (Richter & Wunsch 1999).

From June 1999 until March 2000, interstitial water of
the coral reef sediments were sampled at a 5 m-deep
reef site (Fig. 1B) using a method similar to that de-
scribed by Hesselein (1976). The sediments in this site
consist mainly of carbonate sands, with a medium grain
size of 500 µm, an average porosity of 47%, a perme-
abilty of 143 × 10–12 m2, an organic content of 0.5%, and
a calcium carbonate content of 80%; 50 ml of the filtered
pore water was diluted to 250 ml with distilled deionized
water for nutrient analyses. The pore-water nutrient con-
centrations were compared to those of the bottom water
overlying the sediment. Minimum fluxes of NH4

+, NO2
–,

NO3
–, PO4

–3 and Si(OH)4 from the sediment were calcu-
lated according to Fick’s first law of diffusion:

F =  ø × D × dC � dz

where F is the flux (mmol m–2 d–1), ø is
sediment porosity, D is the coefficient
of diffusion (m2 d–1), and dC � dz is the
concentration gradient at the sediment-
water interface (mmol m–4). Diffusion
coefficients for ammonium, nitrate,
nitrite and phosphate were taken from
Li & Gregory (1974) for a water tem-
perature of 25°C and corrected for a
tortuosity using a porosity of 0.47 and
the tortuosity-porosity relationship
reported by Beekman (1990). The

value for silicate was taken from Lerman (1979) and
Callender & Hammond (1982) and corrected for tortu-
osity. The calculated diffusion coefficients were 8.85,
6.66, 6.70, 2.97 and 5.89 × 10–5 m–2 d–1 for ammonium,
nitrate, nitrite, phosphate and silicate respectively.

To assess whether nutrients were significantly differ-
ent in coral reef waters from those in the offshore
waters, ANOVA (5% significance level) was per-
formed based on a calculation of the differences in the
average of concentrations between coral reef waters
and offshore waters in summer and winter.

RESULTS

In order to compare nutrient concentrations of reef
and offshore waters, surface and 25 m samples of the
offshore waters were averaged and plotted with the
average of the coral reef waters from various depths
against time (Fig. 2). Nutrient and chlorophyll a con-
centrations in reef and offshore waters showed sea-
sonal changes, with high concentrations in winter and
low concentrations in summer. The concentrations
began to increase in October. Nutrient and chloro-
phyll a concentrations in the reef waters exceeded
those in the offshore waters (Fig. 2, Table 1), particu-
larly in summer, when inorganic nitrogen and phos-
phate concentrations exceeded offshore values by up
to 3 times. The pattern was less consistent during win-

279

Variable Reef water Offshore water
Summer Winter Summer Winter

Inorganic nitrogen 0.35 (0.09) 0.65 (0.08) 0.13 (0.03) 0.58 (0.05)
Phosphate 0.06 (0.01) 0.09 (0.01) 0.02 (0.01) 0.07 (0.01)
Silicate 1.05 (0.14) 1.78 (0.10) 0.70 (0.01) 1.43 (0.03)
Chlorophyll a 0.19 (0.02) 0.23 (0.03) 0.14 (0.02) 0.23 (0.02)

Table 1. Annual average (SD) nutrient (µM) and chlorophyll a (µg l–1) concen-
trations in offshore and coral reef waters during summer (n= 70) and winter 

(n = 28)

Variable Summer Winter
Mean p Mean p

difference difference

Inorganic nitrogen 0.22 <0.0001* 0.07 0.4761
Phosphate 0.04 <0.0001* 0.02 0.0057*
Silicate 0.35 <0.0015* 0.35 0.0178*
Chlorophyll a 0.05 <0.0316* 0.00 0.7394

Table 2. Mean differences in nutrient (µM) and chlorophyll a
(µg l–1) concentrations between reef and offshore waters in
summer and winter. p-values were obtained from ANOVA at 

significance level of 5%. *Significant difference
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ter, when gradient reversals occurred, both for inor-
ganic nitrogen (e.g. nitrate, February through April:
Fig. 2) and chlorophyll a (January through March:
Fig. 2). As a result, moderate cross-shore differences
were found only for phosphate and silicate in winter, as

opposed to strong and highly significant differences for
all parameters in summer (Table 2).

Within the reef framework, nutrient concentrations
were higher than in the freestream waters (Fig. 3) in
approximately 90% of the cases. Much higher nutrient
concentrations were found in sediment pore waters
compared to concentrations in the water above the
sediment (factors of 21 to 80 in summer and 15 to 74 in
winter: Fig. 4).

DISCUSSION

This study shows, for the first time, clear seasonal
changes in nutrient and chlorophyll a in reef and off-
shore waters, as well as differences in these para-
meters between the two. Enhancement of nutrient con-
centrations in reef water was found particularly during
summer. Higher nutrient concentrations were found in
the sediment pore water and in the reef framework
than in the surrounding water. This steep concentra-
tion gradient would result in fluxes of these nutrients to
the surrounding water.

Seasonal pattern of nutrients in coral reef waters

According to Furnas et al. (1990), Hatcher & Hatcher
(1981), and Ayukai (1993), it is difficult to detect sea-
sonal variations in reef-water nutrient concentrations
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Fig. 3. Average nutrient concentrations in the framework of 
the coral reef (Av cav) and surrounding waters (Av ref)

Fig. 2. Nutrient and chlorophyll a concentrations in coral reef
(Reef) and offshore reference (Ref) waters during the period 

May 1997 to May 1998
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by sampling at 1 mo or longer intervals because of the
strong short-term variations in the reef waters. Our
results demonstrate temporal and spatial changes in
the nutrient concentrations in the coastal environment
of the northern Gulf of Aqaba, whereas no significant
difference in current speed and direction between
summer and winter were found (M. Rasheed et al.
unpubl. data). We have shown that the coral reef
ecosystem in the Gulf of Aqaba is subjected to seasonal
changes, with elevated concentrations of all measured
nutrients in fall and winter. The main 2 reasons which
could cause these seasonal changes are (1) deep-water
column-mixing during winter increasing the nutrient
concentrations in the coastal waters and boosting
phytoplankton growth (Venrick et al. 1973, Souverme-
zoglou et al. 1989, Lindell & Post 1995), and (2) water-
column stratification and increased light intensities
during summer, which result in a depletion of the in-
organic nutrients by enhanced primary production
(Olson 1981, Souvermezoglou et al. 1989).

Comparison between nutrient and chlorophyll a
values in reef and offshore waters

In our study we found spatial differences in nutrient
concentrations between reef water and offshore water
adjacent to the reef. During the summer months, when
the offshore water was nutrient-depleted, concentra-
tions of nutrients and chlorophyll a in the reef water
were higher than in the offshore water. During winter,
strong vertical mixing reduced the differences in nutri-
ent and chlorophyll a concentrations between reef and
offshore waters. Vertical mixing moved deep water,
rich in nutrients, up into the water column (Venrick et
al. 1973, Klinker et al. 1978, Levanon-Spanier et al.
1979, Olson 1981, Al-Najjar 2000), while horizontal
mixing caused nutrient equilibration between reef and
offshore waters. Nitrogen enrichment of coral reef
waters has been reported by several authors (Meyer &
Shultz 1985, Blanchot et al. 1989, Tribble et al. 1990,
Bell 1991), and the reef in the Gulf of Aqaba showed
similar trends (Badran & Foster 1998). Enhanced pri-
mary productivity during winter months in the Gulf of
Aqaba was recorded by Levanon-Spanier et al. (1979).

Possible reasons for higher nutrient concentrations
in reef waters

Increased nutrient concentrations in reef waters can
originate from anthropogenic sources such as nutrient-
rich groundwater input (d’Elia et al. 1981, Lewis 1985),
sewage discharge (Johannes 1975) and terrestrial run-
off (Marsh 1977). However, these sources are negligi-

ble in our study area because the reef is an environ-
mentally protected zone and there is no groundwater
input (no salinity change was recorded in the study
area) and very little rainfall throughout the year. The
higher silicate concentrations could be attributable
partly to an influx of atmospheric silicate-rich desert
dust (Alfuqaha unpubl. data). We suggest that the
higher nutrient concentrations in the reef are caused
by the efficient trapping and decomposition of sus-
pended particles by the reef framework, coral sands
and reef biota, as well as nitrogen fixation by organ-
isms living in the reef environment.

Framework

Our study has shown that the concentrations of nutri-
ents in the framework water were higher than those in
the free-flowing water (Fig. 3), which would cause
nutrient fluxes from the framework to the surround-
ing water. The average fluxes in summer and winter
from the framework reached approximately 14.5 mmol
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Fig. 4. Average nutrient concentrations during summer and
winter (June 1999 to March 2000) in pore water (Av PW) and 

sediment water interface (Av SW) of the coral reef
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m–2 d–1 for ammonium, 7.7 mmol m–2 d–1 for nitrate,
0.9 mmol m–2 d–1 for nitrite, and 1.3 mmol m–2 d–1 for
phosphate. These fluxes may have added more nutri-
ents to the reef water, particularly during summer,
when the concentrations were low (Fig. 2). Three
mechanisms may be responsible for the higher nutrient
concentrations in the framework: (1) decomposition of
organic matter enclosed in the framework carbonates
that had been overgrown by corals (e.g. coral tissue,
boring organisms, coralline algae), (2) suspended par-
ticulate matter, including small phytoplankton and
bacteria that had been efficiently trapped by the abun-
dant suspension feeders living within the reef frame-
work (Gast et al. 1998, Richter & Wunsch 1999, Richter
et al. 2001), and (3) remineralization of faeces from
migrating invertebrates and fishes, which forage on
and above the reef and use cavities as a temporary
shelter (Bray et al. 1981, Meyer et al. 1983). Similar
findings were reported by Ferrer & Szmant (1988) and
Tribble et al. (1988), who measured increased nutrient
concentrations in the cavities of the reef of Belize
Barrier Reef and Kaneohe Bay respectively, and a net
flux of nutrients from the reef framework to the sur-
rounding water. These findings indicate that the reef
framework is an important site for organic matter
mineralization in the reef (Andrews & Müller 1983,
Szmant-Froelich 1983, Sansone 1985, Buddemeier &
Oberdorfer 1986, Tribble et al. 1986, 1988) and suggest
that the framework may act as a temporal nutrient
source in the reef environment.

Coral sands

We measured increased nutrient concentrations in
the pore water of the sediment relative to the overlying

water during summer and winter (Fig. 4). This steep
concentration gradient would result in a net flux of
nutrients from the pore water to the overlying water
(Fig. 5). Fluxes of ammonia, nitrite, nitrate and phos-
phate increased during the winter months (December
to March: Fig. 5). The average fluxes over the whole
year were 0.06 mmol m–2 d–1 for ammonium, 0.03 mmol
m–2 d–1 for nitrate, 0.01 mmol m–2 d–1 for nitrite,
0.01 mmol m–2 d–1 for phosphate, and 0.07 mmol m–2

d–1 for silicate. However, the calculated fluxes only
represent the diffusive fluxes from the sediment, as the
calculation we used (Fick’s law of diffusion) does not
include fluxes caused by bioturbation and advective
pore-water exchange (Clavero et al. 2000). Laboratory
core incubation resulted in silicate fluxes which
exceeded the calculated silicate flux by a factor of 20
(Rasheed et al. unpubl. data), suggesting that both bio-
turbation and advective pore-water exchange proba-
bly added to the flux.

This indicates that the coarse-grained carbonate
reef sediments may act as a biocatalytic converter,
similar to the porous framework. We suggest that
organic matter filtered from the water column when
bottom currents interact with the permeable sediment
(Huettel et al. 1996, Huettel & Rusch 2000) is decom-
posed in the sedimentary microbial food chain. The
products of the mineralization, the nutrients, are then
released into the pore water and overlying water col-
umn. Increased nutrient concentrations in the pore
water of reef sediments were also reported by Capone
et al. (1992) for the Great Barrier Reef, Szmant & For-
rester (1996) for the Florida Coral Reef, and Ciceri et
al. (1999) for the northern lagoon of Venice. Nutrient
release from reef pore waters to the water column
was reported by several authors (e.g. Fuentes &
Espino 1990, Bertuzzi et al. 1996, Charpy-Roubaud et
al. 1996, Ciceri et al. 1999). The flux of ammonium in
our study (0.06 mmol m–2 d–1) was lower than the
fluxes reported by Charpy-Rouband et al. (1996)
(0.16 mmol m–2 d–1) and Bertuzzi et al. (1996)
(0.3 mmol m–2 d–1). However, phosphate flux in our
study was higher compared to the previous 2 studies
(0.010, 0.004, and 0.001 respectively). The differences
in the flux values resulted from different nutrient con-
centrations in the water column and in the pore water,
which might be attributable to the differences in the
organic matter loading and different chemical and
physical properties of the study areas (Shum &
Sundby 1996, Hulthe et al. 1998). Charpy-Roubaud et
al. (1996) found that aerobic bacteria that live in coral
sediment could mineralize organic compounds to min-
eral end-products. In most tropical shallow marine
environments like the Gulf of Aqaba, the highest
metabolic activity is associated with the benthos
(Zieman 1982, d’Elia & Wiebe 1990).
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Fig. 5. Calculated nutrient fluxes from the sediment to the 
water column during the period June 1999 to March 2000
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Reef biota

Corals, mollusks, polychaetes, echinoderms and a
variety of other reef-dwelling organisms can efficiently
filter and digest organic particles from water in the reef
and thereby also increase the concentration of nutri-
ents in the reef water relative to the offshore water
(Hatcher & Hatcher 1981, Andrews & Müller 1983,
Tribble et al. 1988, Larned 1999).

Nitrogen fixation

Nitrogen fixation in the different habitats within the
reef has been reported in several studies (e.g. Wiebe et
al. 1975, Goldner 1980, Wilkinson et al. 1984). Accord-
ing to Crossland & Barnes (1976), corals themselves
do not have the ability to fix nitrogen, but endolithic
organisms in the coral skeleton do. Shashar et al.
(1994) reported a fixation rate of 0.6 to 1.0 mmol N2 m–2

d–1 in the Gulf of Aqaba and reported that 70% of the
fixation occurred in the sand-covered lagoon.

CONCLUSIONS

Our study has shown seasonal changes in the nutri-
ent concentrations in the reef and a nutrient gradient
between reef water and offshore water during sum-
mer. In winter, high nutrient concentrations in the
coastal zone in the Gulf of Aqaba caused by enhanced
water-column mixing remove this gradient. In summer,
particle trapping and biocatalytic conversion of dis-
solved and particulate material in framework and reef
sands increase the nutrient concentrations in the reef
water relative to the offshore water. This nutrient
availability during summer permits a higher primary
productivity in the reef environment during this period
in comparison to the offshore water, as indicated by the
chlorophyll a data. We conclude that the decomposi-
tion activity and buffer capacity of the coral sands and
reef framework play an important role in the support of
primary productivity in the coral reef ecosystem during
phases of nutrient depletion in the water column. Dur-
ing the fall and winter months, sands and framework
accumulate nutrients (due to sorption and binding pro-
cesses) and particulate organic matter. This organic
matter is decomposed in the pore space of the sand and
reef framework, and the resulting nutrients may be
gradually released during the summer months.
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