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The problem of wave propagation in the generalized dynamical theory of thermo-elasticity proposed by 
Green and Lindsay is applied to study the propagation of harmonically time dependent thermo-visco-
elastic plane waves of assigned frequency in an infinite visco-elastic solid in a magnetic field. A more 
general dispersion equation is deduced to determine the effects of rotation, viscoelasticity and 
relaxation time on the phase velocity of the coupled waves. The perturbation technique has been 
employed to obtain the phase velocity and attenuation coefficient for small thermo-elastic couplings. 
Taking an appropriate material, the numerical values of the phase velocity of the waves are computed 
and the results are shown graphically to illustrate the problem. The results are compared with those 
obtained earlier. 
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INTRODUCTION 
 
The study of plane wave propagation in presence of 
external magnetic field in an electrically conducting non-
rotating medium was found in the works of many authors 
including Paria (1962), Willson (1963) and Dunkin and 
Eringen (1963). In the books of Parkus (1972, 1979) and 
Eringen and Maugin (1990), valuable information and 
developments in magnetoelasticity and magneto-thermo-
elasticity in non-rotating elastic media are available. 
Using modified Fourier‟s law of heat conduction 
suggested by Kaliski (1965) and Lord and Shulman 
(1967) derived equations of generalized thermo-elasticity 
which was later applied by Nayfeh and Nasser (1973) to 
study plane waves of an infinite elastic body permeated 
by a primary magnetic field which was subjected to 
heating. Schoenberg and Censor (1973) investigated  the 
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propagation of elastic plane waves in a uniformly rotating 
medium and showed that the rotation causes the elastic 
waves to be dispersive and anisotropic. Afterwards, Bera 
(1998), Roy (1983) and Roy and Debnath (1983) 
discussed the problems of magneto-elastic and electro-
magneto-thermoelastic plane waves in rotating medium. 
Since most large bodies like the earth, the moon and 
other planets have an angular velocity as Peltier (1974) 
discussed the visco-elastic nature of the earth, it would 
appear more realistic to consider the propagation of 
plane waves in a rotating magneto-thermo- visco-elastic 
medium. Agarwal (1978, 1979) considered, respectively, 
thermoelastic and magneto-thermoelastic plane wave 
propagation in an infinite elastic medium. Lateron, 
Mukhopadhyay and Bera (1989) applied the generalized 
dynamical theory of thermoelasticity to determine the 
distributions of temperature, deformation, stress and 
strain in an infinite isotropic visco-elastic solid of Kelvin- 
Voigt type permeated by a uniform magnetic  field  having 



  

 
 
 
 
distributed instantaneous and continuous heat sources. 

Following Lord-Shulman‟s theory of generalized 
thermoelasticity, Puri (1976) and Roychoudhuri and 
Debnath (1983) studied plane wave propagation in 
infinite rotating elastic medium. Roy (1985) applied 
Green-Lindsay‟s theory of generalized thermoelasticity to 
study the effect of rotation and relaxation times on plane 
waves in the aforementioned medium. Recent works on 
„magneto-thermo-visco-elasticity and magneto-thermo 
elasticity‟ are also available from the papers of Song et 
al. (2004), Othman (2005), Baksi and Bera (2006), 
Rakshit and Mukhopadhyay (2007), Mohamed and Yaqin 
(2008), Ezzat et al. (2009), Othman et al. (2009) and 
Abd-Alla et al. (2011). In the present paper, the linearized 
theory of Green and Lindsay in generalized thermo-visco-
elasticity having two relaxation times is applied to study 
the propagation of harmonically time-dependent 
magneto-thermo-viscoelastic plane waves of assigned 
frequency in an infinite rotating viscoelastic solid of 
Kelvin-Voigt type. Using the „perturbation technique‟, a 
dispersion relation for small thermoelastic coupling is 
obtained to determine the effects of rotation and 
relaxation times on the phase velocity of the waves in a 
visco-elastic medium permeated by a uniform magnetic 
field. Finally numerical values of the wave velocities at 
various frequencies are computed for an appropriate 
material and are presented graphically for the purpose of 
illustration. 

 
 
FORMULATION OF THE PROBLEM 

 
Let us consider the propagation of plane magneto-
thermoelastic waves in a homogeneous viscoelastic 
medium with density   at uniform initial temperature. 

The medium is rotating with an angular velocity: 

 

n  

 
Where n  is a unit vector representing the direction of the 

axis of rotation. The displacement equation of motion in 
rotating frame of reference has two additional terms: 
 

i) Centripetal acceleration ( )u   due to the time 

varying motion only; 

ii) The coriolis acceleration 
.

2 u . 

 
The principle of balance of linear momentum leads to the 
equations of motion derived by Eringen and Maugin 
(1990). 

 

, ( ) [ { ( )} (2 ) ]ij j i i i iJ B u u u         

)3,2,1,( ji                                                      (1) 
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The variations of the magnetic and electric fields are 
given by Maxwell‟s equations (in absence of the 
displacement current and charge density):  

 

Curl H J , Curl ,
B

E
t


 


 ,eB H  div B = 0       (2) 

 
The modified Ohm‟s law is Roy and Debnath (1983): 

 

[ { ( )} ]
u

J E u B
t




    


,                           (3) 

 
Assuming the small effect of temperature gradient on the 

electric current. Here, H  = the total magnetic field 

vector, B  = magnetic inductance vector, E  = electric 

field vector, e  = magnetic permeability of the 

medium,  = electric conductivity of the medium,   = 

constant mass density, ij  = components of Cauchy‟s 

stress tensor, u  = displacement vector,   = rotation 

vector. 

Let us take (0,0, )zH H and also assume that the all 

field variables are supposed to be functions of x and t 
only. Using Equations 2 and 3, and neglecting higher 
order derivatives of Hz than the first, we get: 

 
2

z
e e z

H u
H

t x t
 

 
  
  

                                        (4) 

 
Taking Hz = H0 + hz in (2.4) and neglecting small 
quantities of higher order, we obtain: 

 
2

0
z

e e

h u
H

t x t
 

 
  
  

 

 
Integrating partially with respect to t, we get: 

 

hz = -H0

x

u




,                                                               (5)  

 
Where it is assumed that as x , both hz and: 

 

0




x

u
                        (6)  

 
The constant of integration in Equation 5 has taken to be 
zero,  to  satisfy  the  regularity  condition  at  infinity.  The 
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stress displacement-temperature relation for the visco-
elastic medium of Kelvin-Voigt type derived by Eringen 
(1967) is given: 
 

/

2( ) 2( ) ( )ij e v ij e v ij e ije
t t

          
 

      
 

  

                                                                               (7) 
 

Where ije  is the components of Cauchy strain tensor, 

iie is the dilatation, ,e e  are Lame‟s elastic 

constants, ,v v  are Lame‟s viscous constants for the 

viscoelastic solid, (3 2 ) ,e e e t t       being the 

coefficient of linear thermal expansion,   is temperature 

change above reference temperature; 0 , 
/

2 is the 

thermal relaxation time parameter and ij is the 

Kronecker‟s delta. 
Assuming that the rotation of the body has no effect on 

heat conduction of the medium, the heat conduction 
equation is: 
 

2 * *( ) , 1,2,3v eK c i                             (8) 

 

Where K is the thermal conductivity and vc is the specific 

heat at constant volume of the medium and 
* is thermal 

relaxation time parameter. 
 
 
PLANE WAVE SOLUTIONS AND DISPERSION 
RELATION 
 
We consider the wave propagating in the x-direction and 
all the field variables are assumed to be function of x and 

time t only. We assume that ( , , )u u v w and 

(0,0, )  , where  is a constant. Equation 1 with 

Equation 7, then reduces to: 
 

2 2
2

0 2
[( 2 ) ( 2 ) ] ( )e e e v v

u
H

t x x x t

 
      

   
      

    
2[ 2 ]u u v                                                          (9) 
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t x
  
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We introduce the following dimensionless quantities: 

 
 
 
 

2 3
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*
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   
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After dropping star, the non-dimensional forms of the 
equations obtained from Equations 9, 10, 11 and 8 are: 
 

2 2
/

2
[(1 ) ] ( )H
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R M

t x x x t

 

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 

 
                                            (14) 

 
2 2 2
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2 2
0

t t x x t


   
 
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Where, 
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22 2 * 2

* 01 1 1
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H

e

Hc c c
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 
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Equations 15, 12 and 13 form a coupled system and 
represent coupled magneto-visco-thermal dilatational and 
shears waves, while Equation 14 uncouples form of the 

system. This coupling disappears when 0 . Thus the 

thermal field affects the dilatational and shear motion due 
to rotation. 

 
 
DISPERSION EQUATION FOR THE SYSTEM 

 
For harmonic solutions of the Equations 12, 13 and 15, 
we choose: 

 

0 0 0( , , ) ( , , )exp{ ( )}u v u v i qx t                  (16) 

 

Where 0 0,u v  and 0 are amplitude constants,  is the 

prescribed frequency, q is the wave number, in general  a 



  

 
 
 
 
complex number. The phase velocity c and the 
attenuation coefficient are respectively given by: 

 

/ ( )ec R q  and 
mI ( )a q                                 (17)  

 
Substituting Equation (16) into (12), (13) and (15), we 
get: 
 
 

Baksi et al.       245 
 
 
 

2 2 2 *

1 0 0 1 0( ) 2 0Aq u i v q                   (18) 

 

2 2 2 2 2 2

0 2 02 ( ) 0i u A q v                     (19) 

 

2 2 *

0 2 0( ) 0qu q                                       (20) 

 

Where, 

/* / * *

1 2 1 2/ , / , 1 , 1Hi i A R iM A iN                                 (21) 

 
 

 

For the non-trivial solutions of 0 0,u v  and 0 , the  

dispersion equation of the coupled wave is obtained from 
Equations 18 to 20 as: 
 
 

2 2 * 2 2 2 2 2 2 2 2 * 2 2 2 2 2

2 1 0 2 0 1 2 0( ){( )( ) 4 } ( ) 0q Aq A q q A q                                               (22) 

 
Where, 
 

2 2 2

0 .    

 

In case 0 , the dispersion Equation 22 reduces to: 

 
2 2 * 2 2 2 * 2 2

2 1 0 2 0 1( ){( )( ) } 0q Aq A q q                (23) 

 

Putting 0,HM N R   equation numbers (22) and 

(23) reduce to the equation numbers (3.7) and (3.8) 
respectively in Roy (1985). 

Equation 22 is therefore a more general dispersion 
equation in the sense that it incorporates the magneto-
visco-elastic effect as well as the effects of rotation and 
relaxation parameters on the propagation of coupled 
waves. This wave may be called the Quasi-magneto-
visco-elastic-thermal-shear wave. 
 
 

 

PERTURBATION SOLUTION FOR SMALL   

 
To obtain the perturbation solution of the dispersion 

equation for small values of  , we first put 0  in 

Equation 22 and get the following solutions: 

 
2 2 *

2q                                                                   (24) 

 
4 2 2 2 2 2 4 2 2 2

1 2 1 0 2 0 0( ) 4 0A A q q A A             

 
Which on solving, we get: 

 
2 2
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Where, 
 

1
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2
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J
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Let us write 
2q in the following forms: 

 
2 2 2

1 ( )u uq q n o                                         (27) 

 
2 2 2

2 ( )v vq q n o                                                (28) 

 
2 2 * 2

2 ( )q n o                                              (29) 

Substituting into Equation 22, comparing the lowest 

degree of , and neglecting the terms of 
2( )o  , we 

obtain: 
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Where, 
 

2 2 * 2 2 2 2

1,2 1,2 2 1 2 1,2 1 0 2 0( )[2 ]D J A A J A A         

2 2 2 2 2 2 2 2

1 1,2 0 2 1,2 0( )( ) 4A J A J                       (33) 

 

On putting 0,HM N R   the results of Equations 26, 

30 and 31 are in agreement with the corresponding 
results of Roy (1985). 

 
 
DETERMINATION OF WAVE VELOCITIES AND 
ATTENUATION COEFFICIENT 

 
From the aforementioned solution, we can observe that 
the dilatational, shear and thermal waves propagate in 
the magneto-visco-elastic medium and these waves are 

affected by the visco-elastic coupling coefficient  . Now 

we find out the wave „velocity‟ and the attenuation 

coefficients of the waves for small  . 

 
 
Quasi-magneto-visco-thermal wave 
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Therefore, the thermal wave velocity / ( )ec R q  and 

the attenuation coefficient: 
 

( ),ma I q    

 

Where, eR ( )q and mI ( )q are obtained as earlier 

mentioned. 
 

Detailed calculation is given in the Appendix. 
 
 

Quasi-magneto-visco-dilatational wave 
 

Using Equation 26 in 30 for small  , the Quasi-magneto-

visco-elastic dilatational wave „velocity‟ 

/ ( )e e uc R q and the attenuation coefficient 
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Quasi-magneto-visco-shear wave 
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Figure 1. Quasi-magneto-visco-dilatational wave velocity against real frequency   

 
 
 

 
 

Figure 2. Quasi-magneto-visco-shear wave velocity against real frequency  . 

 

 
 

NUMERICAL RESULTS 
 

For numerical computation, we take copper as the 
working substance for which 121.387 10e   Dyne/cm

2
, 

120.448 10e   dyne/cm
2
, 8.93  g/cm

3
, 

1110k  s, 

* 112 10   s. We take 0.1.  

The numerical computations of the Quasi-magneto-
visco-dilatational wave velocity, the Quasi-magneto-
visco-shear wave velocity, and the Quasi-magneto-visco-

thermal wave velocity for  small  values  of     are  done 

and the corresponding graphs are plotted. The Quasi-
magneto-visco-dilatational wave velocity is drawn against 
the real frequency   for three different values of 

viscoelastic parameter M in Figure 1. The Quasi-
magneto-visco-shear wave velocity is plotted against   

for different values of M in Figure 2 and the Quasi-
magneto-visco-thermal wave velocity is drawn against 
 for same values of M in Figure 3. The variation of 

different wave velocity with the visco-elastic parameter M 
can be seen from the graph. It is observed that although 
in   the    case   of   Quasi-magneto-visco-thermal   wave
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Figure 3. Quasi-magneto-visco-thermal wave velocity against real frequency  . 

 
 
 

 
 
Figure 4. Comparison of Quasi-magneto-visco-dilatational wave velocity in the presence and 

absence of viscoelastic parameter  

 
 
 
velocity obtained in Figure 3, the variation is not 
pronounced appreciably, in case of the Quasi-magneto-
visco-thermal-shear wave velocity obtained in Figure 2, 
the variations are more pronounced for higher values 
of . It is clear from the Figures 4, 5 and 6 that in the 

viscoelastic medium, the amplitude of dilatational wave 
velocity, shear wave velocity and thermal wave velocity 
decreases. In Figure 7, comparison of Quasi-magneto-
visco-dilatational wave velocity  in  the  presence  and 

absence of magnetic field has been shown to show their 
respective effects. 
 
 
Conclusion 
 
It is observed that although in the case of Quasi-thermal 
wave velocity in respect of change of frequency, the 
variation is not pronounced  appreciably;  but  in  case  of
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Figure 5. Comparison of Quasi-magneto-shear wave velocity in the presence and absence of 

viscoelastic parameter. 

 
 
 

 
 
Figure 6. Comparison of Quasi-magneto-thermal wave velocity in the presence and absence of 

viscoelastic parameter. 

 
 
 
the Quasi-magneto-visco-thermal-shear wave velocity 
and dilatational wave velocity, the variations are more 
pronounced for higher values of   and due to rotational 

effect. A comparison has been made of dilatational wave 
velocities in the presence and absence of viscoelastic 
parameter. Similar comparisons have been made for 
shear wave velocity and thermal wave velocity under the 
influence of rotation and magnetic field. All the 
discussions have been represented in the enclosed 
graphs. Finally, it may be recalled that in the viscoelastic 
medium, the amplitude of dilatational wave velocity,  

shear wave velocity and thermal wave velocity 
decreases. The effect of rotation in the magneto-thermo-
visco-elastic medium have been shown in the respective 
graphs for finding the wave velocities. 
 
 
ACKNOWLEDGEMENT 
 
We are grateful to the learned reviewers for their valuable 
suggestions for the improvement of the paper in the 
present form. 



  

Baksi et al.       251 
 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

Frequency

Q
u
a
s
i-
d
ila

ta
ti
o
n
a
l 
w

a
v
e
 s

p
e
e
d

m

wm

 
 
Figure 7. Comparison of Quasi-magneto-visco-dilatational wave velocity in the presence and 

absence of magnetic field  
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APPENDIX 
 

 Calculation of ( )eR q and ( )mI q  
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