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Abstract: Thick high-strength steel plates are increasingly being used for ship structures. Moreover,
hydrogen enters the process of manufacturing and service, and large residual tensile stress occurs
near the weld. Such stress can facilitate the diffusion and accumulation of hydrogen in the material,
leading to hydrogen embrittlement fracture of the shell. Therefore, residual-stress-induced diffusion
and accumulation of hydrogen in the stress concentration region of thick butt-welded high-strength
steel plate structures need to be studied. In this study, manual metal arc welding was realized by
numerical simulation of residual stress in a thick butt-welded high-strength steel plate model using
the thermoelastic–plastic theory and a double ellipsoidal heat source model. To analyze residual
stress, a set of numerical simulation methods was obtained through comparative analysis of the test
results of relevant literature. Residual and hydrostatic stress distributions were determined based
on these methods. Then, hydrogen diffusion parameters in each region of the model were obtained
through experimental tests. Finally, the results of the residual stress field were used as the predefined
field of hydrogen diffusion to conduct a numerical simulation analysis. The distribution of hydrogen
diffusion under the influence of residual stress was obtained based on the theory of stress-induced
hydrogen diffusion. The weak area of the welding joint was found to be near the weld toe, which
exhibited high hydrostatic stress and hydrogen concentration. Further, the maximum hydrogen
concentration value of the vertical weld path was approximately 6.1 ppm, and the maximum value of
the path parallel to the weld centerline and 31 mm away from the weld centerline was approximately
6.22 ppm. Finally, the hydrostatic tensile stress in the vertical weld path was maximized (~345 MPa),
degrading the material properties and causing hydrogen-related cracking. Hence, a reliable method
for the analysis of hydrogen diffusion according to residual stress in thick high-strength steel plates
was obtained. This work could provide a research basis for controlling and eliminating the adverse
effects of hydrogen on the mechanical properties of ship structures and ensuring the safe service of
marine equipment.

Keywords: welding residual stress; high-strength steel; thick butt-welded plate; hydrogen diffusion;
numerical simulation; manual electric arc welding; manual metal arc welding

1. Introduction

Water will decompose into hydrogen and enter liquid metal during the smelting
process of metal materials. Hydrocarbons in fuel may also introduce hydrogen. Although
the dehydrogenation process is performed after the metal solidifies into casting embryo,
the presence of hydrogen in the metal cannot be completely avoided. Moreover, ship
structures are generally large-scale welded structures, whereas welding is actually a local
smelting process. The moisture contained in the welding rod and coating easily decomposes
into hydrogen atoms and enters the metal. The continuous high pressure borne by an
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underwater ship structure during service will promote the destruction of Cl− on its passive
film and the adsorption and penetration of hydrogen (H) on the material surface. As
a result, hydrogen evolution reaction occurs easily. Thick high-strength steel plates are
widely used in ship structures, but large residual tensile stress occurs near the weld [1,2].
The chemical potential of hydrogen is changed because residual stress interacts with the
strain field of hydrogen, thus inducing hydrogen to diffuse and accumulate in the region of
stress concentration [3–6].

Hydrogen can reduce the properties of materials and is often accompanied by hydro-
gen embrittlement (HE) [7,8]. The entry of hydrogen into materials is harmful in general,
giving rise to issues such as microcracks caused by hydrogen pressure (or welding cold
cracks), hydrogen-induced plastic loss, and hydrogen-assisted cracking (HAC) or fracture.
The occurrence of brittle fracture is concealed by the combined action of hydrogen and
residual stress. Brittle fracture will occur suddenly once the critical point is reached, often
causing personal danger and great economic loss. This paper provides a research basis for
controlling and eliminating the adverse effects of hydrogen on the mechanical properties
of ships and offshore structures and ensuring the safe service of large offshore equipment.

Roy et al. [9] analyzed the strength and failure mode of screw under corrosion by
comparing the finite element calculation and test results. Feng et al. [10] studied the stress
concentration factors (SCFs) of stainless steel welded joints. Jacek et al. [11] studied the
possibility of underwater wet welding of covered electrode S1300 ultra-high-strength steel
of different thicknesses. However, neither work considered the effect of hydrogen.

Thus, Pandey et al. [12] used numerical simulation method to study the relationship
between hydrogen diffusion behavior and bending stress of P91 steel under multipass
welding. Jiang et al. [13–15] numerically simulated the hydrogen diffusion behavior in-
duced by the welding residual stress of 16MnR steel with a wall thickness of 30 mm in
a wet hydrogen sulfide environment. Lv et al. [16] studied the plane geometry model of
a quarter section of a titanium alloy cylinder with a diameter of 100 mm × 60 mm and
then conducted a simple numerical analysis of hydrogen diffusion behavior under the
action of residual stress at a welded joint. However, the yield strength of the studied
material was relatively low. Li et al. [17] conducted a numerical study on the influence of
hydrogen on the residual stress of a medium-thickness steel plate with a yield strength of
approximately 600 MPa at an early stage. However, these investigations did not consider
hydrogen diffusion experimental studies.

Zhang et al. [18–21] studied the buckling strength of the pressure spherical shell formed
by the butt-welded method but did not consider the influence welding residual stress and
hydrogen diffusion would have on their results. Zhang [22] and Zhang et al. [23–25] studied
the hydrogen permeation behavior of welded joints of X80 pipeline steel with a wall
thickness of 18.4 mm using a high-pressure gaseous hydrogen permeation test device.
Gong [26] and Yan et al. [27–29] measured the parameters related to hydrogen diffusion
using the electrochemical penetration method and numerically simulated the variation of
hydrogen concentration and residual stress in welded joints of 12 mm thick 16MnR steel and
X80 pipeline steel. de Souza Sant’Anna et al. [8] studied the influence of hydrotreatment
on residual stress in an API 5L X65 steel pipe with a wall thickness of 9.5 mm using the
electrochemical method. Although these studies investigated the influence of welding
residual stress on hydrogen diffusion through a combination of numerical simulations and
experiments, they focused only on thin shells or thin plates with low yield strength.

Although previous studies have investigated both residual stress and hydrogen diffu-
sion, no study has simultaneously investigated these behaviors in thick high-strength steel
plates using numerical simulations informed by laboratory tests, representing the novelty
of our study.

The main contribution of this study to the field of manufacturing technology is a
reliable method for the analysis of hydrogen diffusion according to residual stress in
thick high-strength steel plates, such as those commonly used in the construction of ship
hulls. The findings of this study can therefore be used by ship fabricators to improve
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industrial applications of welding procedures to reduce residual stresses in key locations
and thereby avoid hydrogen-related cracking and deterioration of ship hulls. The results of
this study clarify this relationship and can be used to establish a foundation for improved
hull fabrication design and welding procedures.

2. Basic Theory and Analysis Method
2.1. Basic Form of Welding Heat Transfer Process

1© Heat conduction is expressed by the following equation [30]:

q′′ = −λ
∂T
∂n

(1)

where q′′ is the heat flux in W/m2, λ is the thermal conductivity in W/(mm·◦C), and ∂T/∂n

denotes the temperature gradient in ◦C/mm.
2© Convection heat transfer is as follows [30]:

qk = h(Tw − Tf ) (2)

where h is the heat transfer coefficient, and Tw, Tf are the surface temperatures of the fluid
and the solid, respectively.

3© Radiation heat transfer is expressed as follows [30]:

q = εC0 A1F12(T4
1 − T4

2 ) (3)

where q denotes the heat flow rate, and ε is the object’s blackness coefficient or emissivity.
C0 represents the radiation coefficient of the absolute black body and can be calculated
as C0 = 5.67× 10−14 (W/(mm2·◦C)). This is applicable to the object that can completely
absorb the radiant energy falling on it, or “absolute black body”, where ε = 1, A1 is the area
of radiant surface 1, F12 is the shape coefficient from radiant surface 1 to radiant surface 2,
T1 denotes the absolute temperature of radiant surface 1, and T2 denotes the absolute
temperature of radiant surface 2.

2.2. Basic Theory of Thermoelastoplasticity
2.2.1. Stress–Strain Relationship

The stress–strain relationship of the material in elastic or plastic state is as follows [31]:

{dσ} = [D]{dε} − {C}dT (4)

where [D] is the elastic or elastoplastic matrix, and {C} is the vector related to temperature.
In the elastic zone, let the yield condition of the material be as follows [31]:

{D} = {D}e (5)

{C} = {C}e = [D]e

(
{a}+ ∂[D]−1

e
∂T

{σ}
)

(6)

where a is the coefficient of linear expansion, and T is the temperature.
In the plastic zone, it is assumed that the yield condition of the material is as follows [31]:

f (σ) = f0
(
εp, T

)
(7)

where f is the yield function, and f0 is the function of yield stress. The plastic strain
increment dεp according to the plastic flow law can be expressed as follows [31]:

dεp = λ
∂ f
∂σ

(8)
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The unloading of the plastic zone is judged by the value of λ, and the unloading
process corresponds to negative λ values.

2.2.2. Equilibrium Equation

A certain element of the structure has the following balance equation [31]:

{dF}e + {dR}e = [K]e{dδ}e (9)

where {dF}e is the increment of the nodal force of the element, {dR}e is the increment of
equivalent node of element initial stress change caused by temperature, {dδ}e is the node
displacement increment, and [K]e is the element stiffness matrix.

After integrating the total stiffness matrix [K] and the total load vector {dF}, the
balance equations of the whole welded member are as follows [31]:

[K]{dδ} = {dF} (10)

where [K] = ∑[K]e, {dF} = ∑
(
{dF}e + {dR}e).

2.2.3. Equation Solution

The welding stress field is solved using the finite element method of thermoelastic–
plastic stress analysis. The main process is as follows. First, the welding structure is divided
using the finite element method. Then, based on the calculation of welding temperature
field, a temperature increment is gradually applied. Finally, the displacement increment of
each node can be calculated according to Equation (4). The relationship between the strain
increment and the node displacement increment in each element is as follows [31]:

dεe = Bdδe (11)

Then, the stress increment can be obtained from the stress–strain relationship
dσ = Ddε− CdT; thus, the welding stress field can be obtained.

2.3. Hydrogen Diffusion

The diffusion phase should satisfy the law of mass conservation during diffusion as
follows [32]: ∫

V

dC
dt

dV +
∫

S
n·JdS = 0 (12)

where V denotes the arbitrary volume of surface S, C is the diffusion phase concentration,
t denotes time, n is the outward normal direction of S, J is the concentration flow of the
diffusion phase, and n·J represents the concentration flow exiting surface S.

Diffusion is driven by the general chemical potential gradient; thus, the diffusion
behavior can be expressed as follows [16]:

J = −sD·
(

∂φ

∂x
+ Ks

∂

∂x
(ln(θ − θz)) + Kp

∂p
∂x

)
(13)

c = φs (14)

where D is the diffusion coefficient of hydrogen; Ks is the “Soret effect” coefficient driven
by the temperature gradient; θ denotes the temperature; θz is the absolute zero temperature
on the temperature scale used; Kp is the stress coefficient driven by the stress gradient;
p = −trace(σ)/3 represents the equivalent stress, wherein σ denotes stress; c is the concen-
tration of hydrogen; φ is the normalized concentration of the diffused phase, also known
as the activity of the diffused material; and s is the solubility of the diffused material in
the substrate.
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If D, Ks, or Kp depend on the hydrogen concentration, the problem becomes nonlinear
and equations become asymmetric. In practical engineering applications, the dependence
on hydrogen concentration is strong. Therefore, the asymmetric matrix storage and solution
scheme is automatically invoked when mass diffusion analysis is carried out.

The mass diffusion behavior is usually described by Fick’s law as follows [16]:

J = −D
(

∂c
∂x

+ sKp
∂p
∂x

)
(15)

Kp = φ
VH

R(θ − θz)
(16)

2.4. Analytical Methods

Here, we used the basic theory of thermoelastoplasticity to numerically simulate the
residual stress field of a thick butt-welded high-strength steel plate (hereafter known as
Model I) and compared the simulation results with test results in the literature. Based on
the agreement between numerical simulation and test results from the literature, a verified
residual stress analysis method for a thick butt-welded high-strength steel plate was ob-
tained. This method was then applied to the numerical simulation of the residual stress
in a thick butt-welded high-strength steel plate (hereafter referred to as Model II). Simul-
taneously, the parameters related to hydrogen diffusion in Model II were experimentally
studied, and the hydrogen diffusion coefficient and content were obtained and applied in
the residual stress analysis of Model II. Based on the basic theory of residual-stress-induced
hydrogen diffusion, hydrogen diffusion was numerically simulated in Model II under the
influence of residual stress. Finally, a set of analytical methods for hydrogen diffusion
induced by welding residual stress was obtained, as shown in Figure 1. These methods
represent a new analysis method for studying the diffusion of hydrogen according to
welding residual stress in thick butt-welded high-strength steel plates.

Figure 1. Method flow diagram for hydrogen diffusion analysis.
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3. Numerical Simulation

A thick butt-welded high-strength steel plate was analyzed in this study according to
the basic theory of thermoelastoplasticity and the given temperature method [33,34]. The
finite element software ABAQUS (6.1., Dassault Systèmes, Johnston, RI, USA) was used
to simulate the distribution of welding residual stress, which was then compared with
the relevant test results from the study of Sun [35]. The numerical simulation results for
residual stress were thus verified, providing a theoretical basis for subsequent research on
the effect of residual stress on the hydrogen diffusion of thick butt-welded high-strength
steel plates.

3.1. Numerical Simulation and Experimental Verification of Residual Stress in Model I
3.1.1. Finite Element Model and Material Properties of Model I

The plate for Model I consisted of two thick high-strength steel plates with dimension
of 250 mm × 125 mm × 38 mm and yield strength of 918 MPa, joined by an x-groove butt
weld. The weld width on the surface of the plate was 22 mm, as shown in Figure 2.

Figure 2. Model I (in mm): (a) geometric dimensions and weld path; (b) welding sequence ( 1©– 6©).

Table 1 and Figure 3 show the thermophysical properties and mechanical parameters
of the material in Model I at different temperatures.

Table 1. Thermophysical properties of materials in Model I [35].

Temperature
(◦C)

Elastic
Modulus

(MPa)

Poisson’s
Ratio

Thermal
Expansion
Coefficient

(1/◦C)

Heat
Transfer

Coefficient
(W/(m·◦C))

Specific Heat
(J/(kg·◦C))

25 1.96 × 105 0.3 1.2 × 10−5 16.3 450
500 1.4275 × 105 0.3 1.58 × 10−5 16.3 707

1000 0.7575 × 105 0.3 1.72 × 10−5 16.3 1730
1300 0.0425 × 105 0.3 1.86 × 10−5 16.3 6800

The welding method used was manual electric arc welding. Model I was joined
by the positive and negative alternating multilayer and multipass welding method. To
improve calculation efficiency and ensure calculation accuracy, the numerical simulation
was simplified into six layers along the direction of the weld thickness according to the
welding sequence shown in Figure 2b. The finite element model of Model I was created
with the mesh shown in Figure 4, in which the uneven grid division method was ap-
plied. For the welding seam and heat-affected zone, a refined Hex-grid with a grid size
of 2 mm × 2 mm × 4 mm was adopted to improve calculation accuracy. The mesh size
gradually increased from the weld to the base metal area, and the maximum mesh size was
4 mm × 8 mm × 15 mm. There were 38,173 nodes and 34,568 elements in Model I.
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Figure 3. Stress–strain curves of the material in Model I according to temperature.

Figure 4. Finite element model and mesh division of Model I.

3.1.2. Numerical Simulation of Welding Residual Stress in Model I

To effectively simulate the welding process, the DFLUX subroutine and double el-
lipsoidal heat source model [36] in ABAQUS were applied in this study. The latter is
illustrated in Figure 5, where a is half the width of the heat source, b is the depth of the heat
source, c f represents the front-half of the heat source, and cr represents the rear-half of the
heat source. The actual welding process was simulated using the “birth and death element”
method. The heat input was controlled by the parameters of the double ellipsoidal heat
source model and the applied current and voltage to calculate and analyze the tempera-
ture field. During numerical simulation of the welding residual stress, the four corners
of Model I were rigidly fixed to simulate the constraint conditions of the actual welding
process. The welding thermal efficiency was 0.85, the ambient temperature was set at 25 ◦C,
and the convection heat transfer coefficient was 62.5 W/m2·◦C. The shape parameters of
the double ellipsoidal heat source model were adjusted to ensure that the simulation results
of the temperature field were close to the results of the actual welding process. The final
shape parameters are shown in Table 2.
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Figure 5. Double ellipsoidal heat source model.

Table 2. Double ellipsoid heat source shape parameters of Model I.

Half Width of
Heat Source a1

(m)

Depth of Heat
Source b1

(m)

Front Half of
Heat Source

Cf1 (m)

Back Half of Heat
Source
Cr1 (m)

Energy Fraction of
the Anterior Portion

of the Ellipsoid

Energy Fraction of
the Latter Part of

the Ellipsoid

0.025 0.015 0.025 0.1 0.6 1.4

Point A was selected near the weld on the upper surface (Figure 2a) of Model I, and
the change in temperature at point A over time is shown in Figure 6. Before the maximum
temperature of 1300 ◦C was reached, there was a local maximum (Figure 6) caused by the
heat source passing close to point A when welding the previous (fourth) weld layer on the
same side of the sixth layer (Figure 2b). Then, the heat source was moved to the opposite
side of the fifth weld layer, and the temperature of point A decreased. Subsequently, the
temperature increased to the maximum value and finally decreased to room temperature
to stabilize.

Figure 6. Temperature change curve at Point A in Model I.

As shown in Figure 2a, the centerline of the weld width on the upper surface of Model I
was oriented along the Y-axis, and the center point O1 was set as the origin of the coordinate
system. The X-axis was oriented perpendicular to the weld, passing through the weld center
O1, and the Z-axis was oriented perpendicular to the upper surface of the plate. Finally,
Path 1 in Figure 2a was defined along the X-axis. The residual stress on the upper surface
perpendicular to the direction of the weld is referred to as the transverse residual stress, and
the residual stress along the weld direction is referred to as the longitudinal residual stress.
Note that these definitions of residual stress are applicable to the butt-welded Model II
discussed in Section 3.2.
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The transverse residual stress σx1 and longitudinal residual stress σy1 in Model I when
steady state was reached are shown in Figure 7 and compared with the test results from the
study of Sun [35] along Path 1 in Figure 8.

Figure 7. Residual stress distribution in Model I: (a) transverse residual stress; (b) longitudinal
residual stress.

Figure 8. Numerical simulation results of residual stress along Path 1 and test results from [35] for
(a) transverse residual stress σx1; (b) longitudinal residual stress σy1.

As shown in Figures 7 and 8, the transverse residual stress σx1 and longitudinal resid-
ual stress σy1 along Path 1 of Model I exhibited bimodal distributions, and the residual
stresses, which were tensile, were the largest near the weld. Furthermore, the longitu-
dinal residual stress was found to be greater than the transverse residual stress. The
maximum values of the transverse and longitudinal residual stresses were approximately
520 and 950 MPa, respectively. As the distance from the weld increased, the residual stress
decreased gradually. Moreover, the numerical simulation results of the transverse and
longitudinal residual stresses were consistent with the test results of Sun [35].

Therefore, the numerical simulation method used to model the residual stress of a thick
butt-welded high-strength steel plate was considered feasible, establishing the foundation
for the influence of residual stress on hydrogen diffusion.

3.2. Numerical Simulation of Residual Stress in Model II
3.2.1. Finite Element Model and Material Properties of Model II

Model II consisted of two pieces of Marine 10Ni5CrMoV steel [37] having the dimen-
sion of 500 mm × 200 mm × 40 mm with the yield strength of 785 MPa, which is relatively
tough and strong. A V840 electrode with a diameter of 4 mm was used, and the groove
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chamfer was 10◦. The weld width of the upper surface was 44 mm. The geometry of
Model II is shown in Figure 9a.

Figure 9. Model II (in mm): (a) geometric dimensions and weld path; (b) welding sequence ( 1©– 8©).

The numerical simulation was simplified to eight layers along the direction of the
weld thickness to improve calculation efficiency, as shown in the welding sequence in
Figure 9b. A finite element model was created as shown in Figure 10. During the mesh
division of Model II, the mesh near the weld was denser with a refined Hex-grid and a size
of 2.5 mm × 2.5 mm × 5 mm, whereas the mesh density farther from the weld was sparse
and the maximum mesh size was 5 mm × 7 mm × 25 mm. There were 100,697 nodes and
92,800 elements in Model II.

Figure 10. Finite element model and mesh division of Model II.

The material parameters [38] of Model II at different temperatures are shown in
Figure 11, and the physical property parameters at other temperatures were obtained using
the linear interpolation method. It was assumed that the weld and base metal were of the
same material with the same physical properties.

Figure 11. Material parameters of Model II: (a) strength parameters; (b) physical performance
parameters; (c) mechanical parameters.
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3.2.2. Numerical Simulation of Welding Residual Stress in Model II

The highest temperature at the weld was ~1500 ◦C [38], and the welding thermal
efficiency was 0.85. In the analysis of the temperature field, the ambient temperature and
initial temperature were both set to 25 ◦C, and the convective heat transfer coefficient was
set to 40 W/m2·◦C [38]. After repeated debugging, the shape parameters of the double
ellipsoidal heat source model were obtained (Table 3).

Table 3. Double ellipsoid heat source shape parameters of Model II.

Half Width
of the Heat
Source a2

(m)

Depth of the
Heat Source

b2 (m)

Front Half of
the Heat
Source
Cf2 (m)

Back Half of
the Heat
Source
Cr2 (m)

Energy
Fraction of

the Anterior
Portion of

the Ellipsoid

Energy
Fraction of
the Latter
Part of the
Ellipsoid

0.025 0.007 0.025 0.1 0.8 1.2

The welding temperature field and welding residual stress field of Model II were
obtained using the same method used for calculating the residual stress field of Model I.
Point B was selected near the weld on the upper surface of Model II (Figure 10), and its
temperature change over time is shown in Figure 12. The maximum temperature at Point
B was approximately 1500 ◦C. Before reaching this maximum temperature, seven local
maxima were observed, the values of which increased sequentially and finally decreased to
room temperature to reach a stable state. The temperature increased at Point B as a result
of the preheating effect of the welding heat source.

Figure 12. Temperature change curve at Point B in Model II.

As shown in Figure 9a, the centerline of the weld width on the upper surface of
Model II was oriented along the Y-axis and the midpoint O2 was chosen as the origin for
the coordinate system, from which the X-axis was defined and passed through the weld
center O2 and the Z-axis was oriented perpendicular to the upper surface and passed
through the weld center O2. The centerline of the plate length located on the upper surface
of the final weld layer (layer 8) along the X-direction was defined as Path 2, and Path 3
extended along the weld toe, parallel to and 31 mm away from the centerline of the weld.

Hydrogen diffusion is affected by the hydrostatic stress σh =
(
σx + σy + σz

)
/3, where

σx is the transverse residual stress, σy is the longitudinal residual stress, and σz is the vertical
residual stress. The equivalent compressive stress σpressure is the negative value of the hydro-
static stress σh affecting hydrogen diffusion [23], expressed as σpressure = −

(
σx + σy + σz

)
/3.

Figure 13 shows the transverse residual stress σx2, longitudinal residual stress σy2, equiva-
lent compressive stress σpressure, and von Mises stress of Model II after numerical simulation
analysis when steady state was reached.
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Figure 13. Residual stress in Model II: (a) transverse residual stress σx2; (b) longitudinal residual
stress σy2; (c) equivalent compressive stress σpressure; (d) von Mises stress.

The distribution of hydrostatic stress affecting hydrogen diffusion along Paths 2 and 3
is shown in Figure 14, in which σh is shown to exhibit a symmetrical bimodal distribution
along Path 2 with a maximum value of ~345 MPa located near the weld toe that gradually
decreased with the increase in distance from the weld. Along Path 3, σh is shown as the
tensile stress, and the value of the maximum stress was approximately 334 MPa.

Figure 14. Hydrostatic stress distribution of Model II for (a) Path 2; (b) Path 3.

4. Hydrogen Diffusion under the Effect of Residual Stress in Model II

The relevant parameters of hydrogen diffusion in Model II were studied experimen-
tally. Then, based on the results of the hydrogen diffusion coefficient and the diffused
hydrogen content obtained from the test, the hydrogen diffusion of Model II under the
influence of residual stress was numerically simulated using the basic theory of hydrogen
diffusion induced by residual stress.

4.1. Experimental Study of Diffusion Coefficient and Diffused Hydrogen Content of Model II

The hydrogen diffusion coefficient in Model II (Figure 9) under different tensile stresses
in the weld zone was determined using the electrochemical hydrogen penetration method
in both the heat-affected zone and base-metal zone. This is because the hydrogen diffusion
coefficient depends on the region owing to the heterogeneity of the welded joint. The
diffused hydrogen content of the deposited metal from the sample welding rod was
measured using the thermal conductivity method (hydrogen collection method), which
provided the relevant parameters for studying the influence of welding residual stress on
the hydrogen diffusion of Model II.



Metals 2022, 12, 1074 13 of 19

4.1.1. Measurement of Hydrogen Diffusion Coefficient in Different Regions of Model II

The hydrogen diffusion coefficient was measured using a CS2350 two-unit electro-
chemical workstation (Figure 15a). Samples with a thickness of 1 mm were collected from
the weld, heat-affected zone, and base metal of Model II by wire cutting after welding.
The sampling locations are shown in Figure 15b, and the completed samples are shown
in Figure 15c.

Figure 15. Specimen preparation: (a) CS2350 two-unit electrochemical workstation; (b) sampling
locations on Model II; (c) finished samples.

To prevent hydrogen diffusion from one side of the specimen to the other, each
specimen was plated with nickel on one side. The nickel plating process is shown in
Figure 16a. A double electrolytic cell device was used in the hydrogen permeation test
(Figure 16b). The device consisted of two distinct electrolytic cells. Figure 16c shows the
device to which tension was applied.

Figure 16. Test device: (a) nickel plating device for sample; (b) schematic of hydrogen permeation
test device; (c) device for tension application.

In the electrochemical hydrogen permeation test, hydrogen extraction treatment was
carried out on each sample to extract residual hydrogen so that it would not influence
the test results. Then, the sample was charged with hydrogen and its hydrogen perme-
ation curve was obtained, as shown in Figure 17. The maximum current measured in
the anode chamber was designated as Imax, and the current It at It/Imax = 0.63 [39] and
its corresponding lag time tL were obtained. The hydrogen diffusion coefficient D and
electrolytic hydrogen charging concentration C in each region of Model II were calculated
as follows [40–42]:

D =
L2

6tL
(17)

C =
ImaxL
2FD

(18)

where L denotes the thickness of the sample, and F is the Faraday constant [43].
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Figure 17. Hydrogen permeation curve.

The lag times tL corresponding to It/Imax = 0.63 obtained for the weld, heat-affected
zone, and base metal of Model II under different tensile stresses are shown in Figure 18.
The hydrogen diffusion coefficient D and electrolytic hydrogen charging concentration C of
Model II in different regions according to Equations (17) and (18) are shown in Table 4.

Figure 18. Hydrogen permeation curves for Model II under different tensile stresses in the (a) weld;
(b) heat-affected zone (HAZ); (c) base metal.

Table 4. Hydrogen diffusion coefficient D and electrolysis hydrogen charging concentration C of each
region of Model II under different tensile stresses.

Tensile
Stress MPa

Weld Heat-Affected Zone Base Metal

D1
×10−7 cm2/s

C1
×10−4 mol/cm3

D2
×10−7 cm2/s

C2
×10−4 mol/cm3

D3
×10−7 cm2/s

C3
×10−4 mol/cm3

0 4.48 4.032 4.55 3.058 4.16 0.110

100 5.67 3.076 4.90 2.803 4.33 0.123

200 6.04 2.981 5.58 2.500 4.86 0.097

400 6.88 2.474 7.59 1.850 5.43 0.087

Where, D1 and C1 are hydrogen diffusion coefficient and electrolysis hydrogen charging concentration at the weld
respectively; D2 and C2 are hydrogen diffusion coefficient and electrolysis hydrogen charging concentration at the
heat-affected zone respectively; D3 and C3 are hydrogen diffusion coefficient and electrolysis hydrogen charging
concentration at the base metal respectively.

4.1.2. Test of Diffused Hydrogen Content in Model II

According to the “Determination Method of Diffused Hydrogen in Deposited Metal” [44],
the diffused hydrogen content of the deposited metal (the weld metal formed after the filler
metal melted) [14] of Model II was measured using a G4 Phoenix DH analyzer following
the thermal conductivity method. The diffused hydrogen content for four specimens from
Model II were measured and found to be 3.6875, 3.9375, 3.5179, and 3.4643 ppm. Therefore,



Metals 2022, 12, 1074 15 of 19

an average value of 3.6518 ppm was used to conduct a numerical simulation of the influence
of residual stress on hydrogen diffusion.

4.2. Numerical Simulation of the Influence of Residual Stress on Hydrogen Diffusion in Model II

In this study, the primary source of hydrogen during the welding process was the weld
metal, and the influence of welding residual stress on hydrogen diffusion was investigated
accordingly. Considering that the transient hydrogen content in the welded joint is difficult
to experimentally measure and the change in hydrogen concentration at the weld seam
during the diffusion process is difficult to predict [13,22,28,45], the influence of the change
in hydrogen concentration at the weld seam was ignored for the simulations in this study;
the influence of this factor should be considered in subsequent research.

The heterogeneity of the microstructure in the welded joint led to different hydro-
gen diffusion properties in each area. Because of the heterogeneity in the structure after
welding, the hydrogen diffusion distribution of the microstructure heterogeneity was stud-
ied for the residual stress in Model II. The hydrogen diffusion coefficients of the weld,
heat-affected zone, and base metal considering the welding residual stress could be ob-
tained according to the hydrostatic stress distribution obtained in Section 3.2.2 (Figure 14)
and the hydrogen diffusion coefficient under different tensile stresses (Table 4) of vari-
ous zones in Model II (tested in Section 4.1.1), which were 6.04 × 10−11, 5.58 × 10−11,
and 4.16 × 10−11 m2/s, respectively.

Combined with the weld hydrogen concentration of 3.6518 ppm obtained in Section 4.1.2,
the hydrogen concentration distribution in Model II under the influence of the heteroge-
neous microstructure and residual stress when the model reached a steady state was
obtained, as shown in Figure 19. The concentration distribution of hydrogen diffusion
along Paths 2 and 3 (Figure 9a) in Model II are shown in Figure 20. Figures 19 and 20 show
the following:

1. Perpendicular to the weld (Path 2), the hydrogen concentration after diffusion pre-
sented a bimodal distribution with a maximum hydrogen concentration near the weld
toe of approximately 6.1 ppm.

2. Along the weld toe (Path 3), the hydrogen concentration changed gently, with a
maximum value of approximately 6.22 ppm.

Figure 19. Hydrogen concentration distribution in Model II.
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Figure 20. Hydrogen concentration distribution under the influence of hydrostatic stress and hetero-
geneous microstructure of Model II for (a) Path 2; (b) Path 3.

The hydrostatic stress (Figure 14) and hydrogen concentration distribution considering
the welding residual stress along Paths 2 and 3 of Model II are shown in Figure 20, which
demonstrate the following:

1. The distribution of hydrogen concentration in the model was consistent with that of
hydrostatic stress.

2. Hydrogen diffused to accumulate in regions of larger tensile stress when the influence
of the heterogeneous microstructure of the welded joint was considered, that is, the
concentration of hydrogen was higher in regions experiencing high welding residual
tensile stress.

5. Discussion

Although the effect of welding residual stress on hydrogen diffusion has been stud-
ied by combining numerical simulations and experiments, these studies focused on thin
shells or thin plates with low yield strength [16,27–29]. In this study, high-thickness (as
high-strength steels are sensitive to residual stress [6,46–48]) butt-welded (which causes
complex residual stress) high-strength steel plates used for ship structures were studied.

The residual stress of typical butt-welded marine high-strength thick steel plates was
studied by three-dimensional numerical simulations, and the hydrogen diffusion coefficient
was studied using electrochemical and hydrogen collection methods. The distribution
of hydrogen under the influence of residual stress in thick butt-welded high-strength
steel plates was obtained from the combination of experimental research and numerical
simulations. Phase transformation and hydrogen-induced cracking will be considered in
subsequent studies.

6. Conclusions

In this study, the residual stress of thick butt-welded high-strength steel plates was
numerically simulated using thermoelastic–plastic theory and the double ellipsoidal heat
source model. The feasibility of the numerical simulation method for welding residual
stress was obtained by comparing it with the relevant test results in the literature. Next, the
hydrogen diffusion coefficients in the weld, heat-affected zone, and base metal regions of the
thick butt-welded high-strength steel plates were experimentally obtained. Finally, on the
basis of the basic theory of stress-induced hydrogen diffusion and the previously obtained
diffusion coefficients, the hydrogen diffusion distribution was numerically simulated under
the influence of residual stress. The following conclusions can be drawn from the results of
this study:
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1. There was a large hydrostatic tensile stress concentration in the weld and heat-affected
zone of Model II. The hydrostatic tensile stress in the vertical weld path was maxi-
mized (~345 MPa) near the weld toe and presented a symmetrical bimodal distribution.

2. The distribution of hydrogen in Model II was consistent with that of hydrostatic
stress, which reached a maximum near the weld toe (the maximum value of Path 2
was approximately 6.1 ppm, and the maximum value of Path 3 was approximately
6.22 ppm). When the hydrostatic stress was tensile, diffusion and accumulation of
hydrogen were promoted in the welded joint, so the hydrogen concentration was
higher in regions with higher tensile stress.

3. The toe of the butt weld was the weakest area of the entire thick high-strength steel
plate model, where both the hydrostatic stress and concentration were high. These
conditions will degrade the material properties and cause hydrogen-related cracking.

4. A reliable numerical simulation method combined with laboratory tests for the ef-
fect of residual stresses in thick butt-welded high-strength steel plates on hydrogen
diffusion was obtained.

Note that owing to difficulties in experimentally measuring the transient hydrogen
content in a welded joint and predicting the change in hydrogen concentration at a weld
seam during the diffusion process, the influence of the change in hydrogen concentration at
the weld seam was ignored in this study. The influence of this factor on hydrogen diffusion
due to residual stress should be considered in future research.
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