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Abstract 
 

   In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration 
are performed using the lattice Boltzmann method. The gap spacing g=s/d is set at 1.0, 3.0 and 6.0 and Reynolds number ranging 
from Re=60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re=60 and g=1.0); (ii) a stable shielding 
wake pattern (80≤Re≤175 and g=1.0); (iii) a wiggling shielding wake pattern (60≤Re≤175 and g=3.0) and (iv) a vortex shedding 
wake pattern (60≤Re≤175 and g=6.0). At g=1.0, the Reynolds number is observed to have a strong effect on the wake patterns. It is 
also found that at g=1.0, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. 
It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency 
almost vanish at g=6.0. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spac-
ing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, 
power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.   
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1. Introduction 

 The flow past multiple cylinders in engineering is a very 
important and common phenomenon, for example, heat 
exchanger tube arrays, overhead cables, micro-electro-
mechanical systems (MEMS) and offshore structures. 
The flow around multiple cylinders produces some flow-
induced vibration which affects the equipment life. 
Hence, it is important to fully understand fluid-structure 
interaction mechanism for quality designing of equip-
ment. Over the past four decades, researchers mainly 
focused on flow past one or two cylinders [1-4]. A very 
few and little documentation available in the open litera-
ture for flow past more than two cylinders because of 
some important engineering parameters such as gap spac-
ing (g=s/d) and Reynolds number (Re=U∞d/ν), where s is 
the surface-to-surface distance between four cylinders, d 
is the size of the cylinder, U∞ is the uniform inflow ve-
locity, and ν is the fluid kinematic viscosity that could 
affect the wake patterns. The two cylinder arrangement 
categorized by Zdravkovich [5] into three types: (i) tan-
dem, (ii) side-by-side and (iii) staggered arrangements. 
Compared to experimental measurements the numerical 
study shows more in-depth details and their effects on the 
wake patterns transformation and force statistics such as 

mean drag coefficients (Cdmean), Strouhal number 
(St=fsd/U∞), root-mean-square values of drag (Cdrms) 
and lift (Clrms) coefficients, where fs is the vortex shed-
ding frequency determined from the power spectrum 
analysis of lift coefficients using the Fast Fourier Trans-
form (FFT). Furthermore, numerically we can easily ana-
lyze the drag (Cd=2FD/ρU2

∞d) and lift (Cl=2FL/ρU2
∞d) 

coefficients, where FD and FL are the force components in 
the streamwise and transverse directions; respectively.   
It is also important to mention here that the flow exhibits 
a number of differences behind square cylinders com-
pared to circular cylinders. Firstly, there is an interaction 
between the two inner shear layers even at large gap 
spacing because of the angle of separation shear layer. 
Secondly, the diverging and converging compared to 
square cylinders implies a smaller pressure loss for flow 
past two circular cylinders. For more details readers are 
refer to Alam et al. [6]. Experimentally they observed  
single-body sub-regime (g ≤ 1.02) and the single-
body-like sub-regime (1.02 < g < 1.3), biased flow 
between cylinders (g = 1.3-2.2), transition regime (g = 
2.2-3.0) and coupled vortex-shedding regime (g = 3.0-
4.6) at Re = 47000 using quite different techniques, in-
cluding load cell, hot wires, laser-induced fluorescence 
flow visualization and particle imaging velocimetry.    
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Kang [3] numerically examined flow past two side-by-
side circular cylinders at g < 5 and low Reynolds num-
bers (40 ≤ Re ≤ 160) using the immersed boundary meth-
od. The author observed antiphase-synchronized (g ≥ 2), 
in-phase-synchronized (g ≥ 1.5), flip-flopping (0.4 ≤ g ≤ 
1.5), single bluff-body (g ≤ 0.4), deflected (50 ≤ Re ≤ 
110 and 0.2 ≤ g ≤ 1), and steady wake patterns (Re≤40 
and g≥0.5). The author also observed that the wake 
patterns strongly depend both on the gap spacing (g) 
and Reynolds number, but the gap spacing shows 
more effect as compared to the Reynolds number.  
Agrawal et al. [4] numerically investigated the effect of 
gap spacing at g = 0.7 and 2.5 and Re = 73 for flow past 
two side-by-side square cylinders using the lattice 
Boltzmann method (LBM).  They observed flip-flop (g = 
0.7) and synchronized (g = 2.5) wake patterns. They fur-
ther investigated that these wake patterns strongly de-
pended on the jet between the cylinders with the adjoin-
ing wakes and the strength of this interaction strongly 
depended on the gap spacing.   
Experimental studies have been carried out for flow 
past four circular cylinders in an in-line square config-
uration. Sayers [7] experimentally measured the drag 
and lift coefficient using open-jet wind tunnel at g 
ranging from 1.1 to 5.0 and Re=30000 for four equally 
spaced cylinders. The author compared the results 
with a group of three cylinders and found similar data 
behavior. Sayers [8] experimentally measured the vor-
tex shedding frequencies (St) for three and four 
equispaced circular cylinders using the same open-jet 
wind tunnel technique. The author found that at g≥4.0 
and Re=30000, the Strouhal numbers is equal to those 
for flow past single isolated circular cylinder. Fur-
thermore, the author observed that at g<4.0 and 
Re=30000, the Strouhal numbers showed sudden 
changes in value and varied across the wake. Lam and 
Lo [9] experimentally conducted different kinds of 
wake patterns and there corresponding Strouhal num-
ber for four circular cylinders at Re=2100, g ranging 
from 1.28 to 5.96 and blockage ratio (β=H/d=21.3). 
They observed three different kinds of wake patterns: 
(i) the generated shear layers of the upstream cylinder 
is shielded the downstream cylinder, (ii) the generated 
free shear layers reattached onto the downstream cyl-
inder produced by the upstream cylinder and (iii) the 
upstream cylinder shed vortices and is impinged the 
downstream cylinder. They also observed that due to 
wide wake of low shedding frequency and narrow 
wake of high frequency there exist a bistable flow 
feature. Lam and Fang [10] experimentally studied 
force coefficients and flow interference effects of four 
cylinders at g=1.26-5.80, β=28.4 and Re=12800. They 
noticed that the critical gap spacing is different com-
pared to two and three cylinders and to be g=2.7. Sev-
eral other researchers (Lam et al. [11-14]) also con-

firmed different kinds of wake patterns using quite 
different experimental techniques such as digital parti-
cle imaging velocimetry (DPIV) and laser induced 
fluorescence (LIF) flow visualization technique for 
flow past four circular cylinders in an in-line square 
configuration.  
In the last two decades for solving complicated engi-
neering problems for flow past single and multiple 
cylinders computational fluid dynamics (CFD) has 
become a powerful tool. Compared to experimental 
studies numerical investigation of flow past four circu-
lar cylinders in an in-line square configuration is rela-
tively less. Farrant et al. [15] numerically examined 
the in-phase and anti-phase vortex shedding and syn-
chronized vortex shedding at Re=200 using the cell 
boundary element method. Lam et al. [16] also ob-
served similar flow characteristics using surface 
vorticity method at g=1.5 and Re=1300. They ob-
served such well-known characteristics in this compli-
cated flow which are mostly observed for two cylin-
ders [3, 4]. Lam et al. [17] numerically examined flow 
around four circular cylinders in an in-line square con-
figuration using a finite-volume method at Re=100 
and 200, β=16 and g ranging from 1.6 to 5.0. They 
noticed three distinct wake patterns: (i) a stable shield-
ing wake pattern, (ii) a wiggling shielding wake pat-
tern and (iii) a vortex shedding wake pattern. They 
further noticed jump change in engineering parameters 
such as Cdmean, Cdrms and Clrms when the flow 
transformation occurs. Readers are also referred to 
some other existing numerical investigations [18-20] 
for flow past four circular cylinders in an in-line 
square configuration.       
The motivation of present numerical investigation is of 
importance in engineering applications. To get reliable 
knowledge of important parameters, such as vortex 
shedding frequency, wake patterns, and drag and lift 
coefficients, understanding of basic fluid mechanics in 
case of multiple cylinders is very important for design-
ing. In the present numerical study, for complex multi-
cylinder configurations, more than two cylinders are 
needed; therefore, we use four square cylinders in an 
in-line square configuration. It should be mentioned 
that there is some experimental [7-14] and numerical 
[15-20] study on flow past four circular cylinders in an 
in-line square configuration in the open literature. To 
the best of author’s knowledge, no experimental and 
numerical study available for gap spacing and Reyn-
olds number effect for flow past four square cylinders 
in an in-line square configuration. Furthermore, only 
one numerical study available for four square cylin-
ders in an in-line rectangular configuration at fixed 
Reynolds number (Re=100). Islam et al. [21] numeri-
cally examined the effect of gap spacing (g = 0.5-10) for 
flow around four square cylinders in an in-line rectangu-



  
 

  

lar configuration using the LBM at Re = 100. They ob-
served that different wake patterns (single square cylin-
der, stable shielding flow, wiggling shielding flow and a 
vortex shedding flow) strongly depended on the gap 
spacing.  
Furthermore, there are two more important concepts: (i) 
variation in the wake size [2, 22] and (ii) merging of jet 
flows [23, 24] were not considered for four circular cyl-
inders case. In the present numerical work we will dis-
cuss in details and argue that the jet flow between the 
cylinders for different gap spacings and Reynolds num-
bers substantially affect the wake interaction dynamics.      
The organization of the present paper is as follows. Sec-
tion 2 consists of computational domain, LBM, boundary 
conditions, grid independence and code validation. The 
time history analysis of drag and lift coefficients signal, 
power spectrum analysis of lift coefficient signal, instan-
taneous vorticity contour visualization, and analysis of 
important engineering parameters is presented in four 
subsections in section 3. Finally, in section 4 some con-
clusions are drawn.   
 

2. Problem description and code validation study 

 In this study, the computational domain in the longitu-
dinal and transverse direction varies for different g (see 
Table. 1). The four cylinders are located at Lu=5d from 
the inlet location, and are Ld=18d from the outlet posi-
tion (see Fig. 1). H is the height of the computational 
domain. In Fig. 1, c1, c2, c3 and c4 are first, second, third 
and fourth cylinder, respectively.  It was tested that the 
present computational results are not dependent on the x-
location of the four cylinders (Table. 2). It is important to 
mention here that in this study the four cylinders are ac-
tually present in the computational domain, and by adopt-
ing periodic boundary conditions the results were ex-
tended to all four cylinders [32].  

 
Fig. 1. Schematic configuration of four square cylinders in an in-line 
square configuration.  

 

 
Fig. 2. Two-dimensional nine-velocity lattice (D2Q9) model. 
 
Table 1. Selected gap spacings. 
 

Re g (Lu×Ld)×H 
60≤Re≤175 1.0 521×521 
60≤Re≤175 3.0 561×561 
60≤Re≤175 6.0 621×621 

 
2.1 Lattice Boltzmann Method (LBM)  

In this study a 2-D numerical code was developed for 
flow past four square cylinders in an in-line square con-
figuration at g=1.0, 3.0 and 6.0 and Reynolds numbers 
ranging from 60 to 175. In LBM at each computational 
time the eight moving particles collide and change their 
velocity direction. However, during particles collision the 
net mass and momentum are conserved. Therefore, 
streaming and collisions of particles are the two basic 
steps of LBM. Several interesting applications regarding 
to LBM has found like two-phase flows and flows 
through porous media, readers can see Chen and Doolen 
[26] for a review of its applications and technique and a 
book [27]. Due to easy parallelization and an ease of 
introducing obstacles in the flow field are some of the 
advantages of LBM. On the basis of above mentioned 
advantages LBM is suitable for the present numerical 
study.  
A brief overview of the LBM is presented in this section. 
A D2Q9 (where D is the space dimensions and Q is the 
number of particles) two-dimensional is adopted in this 
study. In D2Q9 model, each computational node com-
prises a rest particle and eight moving particles (see Fig. 
2). The evolution density equation is given by 
gi(x+ei,t+1)= gi(x,t)-[ gi(x,t)- gi

eq(x,t)]/τ,                       (1) 
where gi is the particle distribution function, gi

eq is the 
corresponding equilibrium distribution function, ei are the 
velocity directions, t is the dimensionless time, x is the 
position of particles, and τ is single relaxation time.  
The equilibrium distribution function is computed as 
below 
 gi

eq=ρwi(1+3(ei.u)+4.5(ei.u)2-1.5u2),                            (2) 
where at each computational node u is the instantaneous 
velocity, ρ is the fluid velocity, and wi are the correspond-
ing weighting functions (wi = 4/9 for i = 0, wi = 1/9 for i = 
1, 2, 3, 4 and wi = 1/36 for i = 5, 6, 7, 8). The single re-



 

 

laxation time is related to the kinematic viscosity of the 
fluid 
ν=(2τ-1)/6.                                                                     (3) 
Using Bhatnagar-Groos-Krook (BGK) collision operator 
[28] Eq.(1) is solved in two steps of collision and stream-
ing. During the collision step, the particles readjust their 
states and the total mass and momentum is conserved at 
each computational node. In the streaming step, the parti-
cles along their velocity directions move to the nearest 
computational node. Mathematically, the collision (Eq. 
(4)) and streaming (Eq. (5)) can be expressed as 
gi

*(x,t)= gi(x,t)-[ gi(x,t)- gi
eq(x,t)]/τ,                               (4) 

where gi
* is an intermediate particle distribution function, 

and 
gi(x+ei,t+1)= gi

*(x,t).                                                 (5) 
The inlet, outlet, walls and cylinder surface boundary 
conditions are applied after the streaming step (Eq. (5)), 
and iteratively the entire process is solved. The following 
equations (Eqs. (6) and (7)) are used to calculate the den-
sity and velocity at each computational node: 
 ρ=Σgi,                                                                           (6) 
     i     
ρu=Σgiei.                                                                        (7) 
      i 
In LBM the pressure is calculated using equation of state 
 P= ρcs

2.                                                                         (8) 
where cs

2 = 1/3 (cs is the speed of sound) in the present 
model.  
Frisch et al. [29] mathematically shown that the solution 
of Eq. (1) using the collision and streaming steps in LBM 
is equivalent to solving the Navier-Stokes equations pro-
vided that there is sufficient amount of symmetry for the 
LBM lattices. Furthermore, LBM has a second-order 
numerical accuracy [26]. Breuer et al. [30] compared the 
LBM with the finite-volume method for flow past a sin-
gle square cylinder using different blockage ratios and 
Reynolds numbers. They observed satisfactory agree-
ment between the two computational methods.  
 
2.2 Boundary conditions and grid independence study 

The flow behind four square cylinders in an in-line 
square configuration as presented in Fig. 1. At the en-
trance, a uniform inflow velocity (u = U∞, v = 0) along x-
direction is applied. At the outlet boundary, the convec-
tive (∂u/∂x = ∂v/∂x = 0) boundary conditions for all flow 
variables are applied [30]: 
∂tφ+ U∞∂xφ=0,                                                               (9)   
where φ=ρ, ρu, ρv.  
No-slip (u = v = 0) boundary conditions at the solid sur-
faces are applied [30]. The hydrodynamic force on the 
square cylinders adopted using the momentum-exchange 
method [31]. Periodic boundary conditions are applied on 
the lower and upper walls of the computational domain 

[32]. All the computations are carried out on a Dawning 
Parallel Computer TC4000.  
Computations are normally terminated when the follow-
ing convergence criteria is satisfied 
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A grid dependence study is carried out for different 
combinations of Lu and Ld at g = 3.0d. The computa-
tional results of the Cdmean obtained for different cases 
are summarized in Table 2. In Table 2, the discrepancies 
between the results in percentage are also shown. It is 
noted that at Lu = 5.0d and Ld = 18.0d the Cdmean shows 
good results compared to other combinations. In other 
chosen combinations such as Ld= 22.0d we also need 
more grid points. In previous studies Breuer et al. [30] 
already mentioned that a high resolution is required only 
at large Reynolds numbers. All the numerical results in 
this study based on Lu = 5.0d and Ld = 18.0d.   
 
 Table 2. Grid independence study at Re=150. 
 
Lu Ld g Cdmean1 Cdmean2 Cdmean3 Cdmean4 

4.0d 18.0d 3.0d 1.6912 1.6912 1.3741 1.3741 
   (0.54%) (0.54%) (0.85%) (0.85%) 

5.0d 18.0d 3.0d 1.6821 1.6821 1.3624 1.3624 
   (0.125%) (0.12%) (0.19%) (0.19%) 

6.0d 18.0d 3.0d 1.6801 1.6801 1.3598 1.3598 
   (1.24%) (1.24%) (1.63%) (1.63%) 

5.0d 15.0d 3.0d 1.7012 1.7012 1.3823 1.3823 
   (1.26%) (1.26%) (1.61%) (1.61%) 

5.0d 22.0d 3.0d 1.6798 1.6798 1.3601 1.3601 
 
It is important to state here that in this study in terms of 
vorticity contours the solid line represent the positive 
vorticity and the dotted line represent negative vorticity. 
Furthermore, for time signal analysis of drag and lift co-
efficients the solid, dashed, dotted and dashed-dotted line 
represents the first, second, third and fourth cylinder, 
respectively.   
 
2.3 Code validation study  

In this sub-section, the unsteady flow past a single 
square cylinder at Reynolds numbers ranging from 60 to 
175 is simulated to use as a reference for further numeri-
cal investigation of flow past four square cylinders. A 
computational domain of 35.0d×10.0d is used for simula-
tion and the upstream distance from the inlet position is 
located at 6.0d from the surface of the cylinder and the 
outlet boundary 28.0d downstream, the lower and upper 
walls are located at 10.0d. Computational results of 



  
 

  

Cdmean and Clrms, are compared with existing experi-
mental measurements of Okajima [33], Davis and Moore 
[34] and Dutta et al. [35], and numerical data of Gera et 
al. [36] and Malekzadeh and Sohankar [37] (see Fig. 3 (a, 
b)). It is seen that the present calculation and other exist-
ing numerical data for the Cdmean at Re = 100 is either 
above or below compared to experimental data of 
Okajima [33], Davis and Moore [34] and Dutta et al. [35]. 
It is observed that the present calculation for Cdmean 
(Fig. 3(a)) and Clrms (Fig. 3(b)) at Re =60 to 175 is very 
close to the numerical results of Gera et al. [36] and 
Malekzadeh and Sohankar [37]. The general trend from 
all of the numerical studies is similar, and the present 
result agrees well with that from Gera et al. [36] and 
Malekzadeh and Sohankar [37]. 

 

 
Fig. 3. Comparison of present and available experimental [33-35] 
and numerical [36, 37] results of mean drag coefficient and root-
mean-square value of lift coefficient as a function of Reynolds 
number (a) mean drag coefficients and (b) root-mean-square value 
of lift coefficient.  
 
For the second validation case the flow past four square 
cylinders at g = 5.0 and Re=200 is presented in this sub-
section. Figure 4(a, b) show the structure comparison 
between four square and circular cylinders at Re = 200 
and g=5.0d. The qualitative comparison shows that the 
present numerical code is suitable for such complicated 
flow configuration.     
 

 

 
(a) Square cylinders.                (b) Circular cylinders. 

Fig. 4. Instantaneous vorticity contours visualization at g=5.0d and 
Re=200. (a) Present and (b) Lam et al. [17].   
 
3. Results and discussion                  

After verifying the present numerical Lattice Boltzmann 
Method, we have systematically conducted numerical 
simulations by varying the Reynolds numbers for flow 
past four square cylinders using small, intermediate and 
large gap spacing between the cylinders (see Table 1). 
We assign the names to wake patterns on the basis of 
wake interactions, jet flows, power spectrum analysis of 
lift coefficients and time history analysis of drag and lift 
coefficients. We mainly concentrate on primary and sec-
ondary cylinder interaction frequencies when the wake 
pattern transformation occurs. Kumar et al. [23] numeri-
cally examined for the first time the secondary cylinder 
interaction frequency to the widening and narrowing of 
the wakes, and in this numerical investigation we are 
hereby examining the effect of Reynolds number for 
three chosen gap spacing for flow past four square cylin-
ders in an in-line square configuration from a same view-
point. To know more in-depth about this practicable en-
gineering problem the distortion of shed vortices and 
merging of jets called wake interaction mechanism pro-
posed by Kumar et al. [23] also explored in this numeri-
cal study. We found that in case of multiple cylinders 
more important and interesting kind of wake patterns 
occur. The wake patterns in this work demarcated based 
on power spectrum analysis of lift coefficients, time sig-
nal analysis of drag and lift coefficients and vorticity 
contour visualization, at g= 1.0, 3.0 and 6.0 and 
60≤Re≤175. It is also important to state here that in this 
numerical study we present some selected cases and 
those cases that they have similar characteristics in terms 
of power spectrum analysis, time signal analysis and 
vorticity contours are not shown.     
 

3.1 Wake pattern analysis  

 At g=1.0, for various Reynolds numbers the vorticity 
contours visualization are shown in Fig. 5(a-f). It is found 
that at g=1.0 and Re=60 no vortices generated between 
and behind the cylinders (see Fig. 5(a)). The shear layers 
separated from the upstream cylinders (c1 and c2) reat-
tached to downstream cylinders (c3 and c4). Such kind of 
wake pattern is called ‘steady wake pattern’. In Figs. 5(b-



 

 

f), from the upstream cylinders free shear layers between 
two inner sides quickly reattach onto the downstream 
cylinders surfaces. Furthermore, there is no reattachment 
between the downstream cylinder surfaces and the out-
side free shear layers from the upstream cylinders. As a 
result the downstream cylinders are completely engulfed. 
We not found any significant wiggling between the inner 
and outer side free shear layers. It is observed that during 
the whole computational process the wake pattern is al-
most steady. On the basis of above observations such 
kind of wake pattern is called the ‘stable shielding wake 
pattern’. Lam et al. [17] observed similar wake pattern 
for flow past four circular cylinders in an in-line square 
configuration at Re=100 and 200 and g=1.6 and Re=100 
and g=2.5.  
Furthermore, it is found that the shed vortices merge be-
hind the downstream cylinders at small downstream dis-
tance for all chosen Reynolds numbers (see Figs. 5(b-f)) 
except Re=60. The shed vortices behind the downstream 
cylinders either narrower or wider compared to isolated 
wake. One can clearly see the complete chaotic flow 
structure behind the downstream cylinders as they move 
downstream and there is no relation between the shed 
vortices. At higher Reynolds numbers behind the down-
stream cylinders the merging of vortices becomes strong-
er and stronger at Re=150 (Fig. 5(e)) and Re=175 (Fig. 
5(f)). These figures clearly show the effect of jet flow 
between the cylinders. It is observed that the incoming jet 
mass laterally spread and as a result the adjoining wakes 
deflects in various directions behind the downstream 
cylinders. It is observed that at g=1.0 the jet strongly 
spread laterally behind the downstream cylinders because 
of larger acceleration of the fluid. Agrawal et al. [4] also 
found that the wake patterns strongly depended on the jet 
between the cylinders with the adjoining wakes for two 
side-by-side square cylinders using LBM at Re=73 and 
g=0.7 and 2.5. Kumar et al. [23] and Chatterjee et al. 
[24] also observed the importance and effects of merging 
of jets for flow past row of square cylinders.  

 

 

 

 

 

 



  
 

  

Fig. 5. Instantaneous vorticity contours for different Reynolds 
numbers (a) Re=60, (b) Re=80, (c) Re=100, (d) Re=130, (e) Re=150 
and (f) Re=175 at g=1.0. 
 
In Figs. 6(a-d), the outer side free shear layers do not 
reattach to the downstream cylinders while the two inner 
side free shear layers reattach. Furthermore, near the 
downstream cylinders alternately wiggling observed be-
cause of outer side free shear layers. This kind of flow 
structure is called the ‘wiggling shielding wake pattern’. 
Lam et al. [17] numerically observed such kind of wake 
pattern for flow past four circular cylinders in an in-line 
square configuration using the finite-volume method at 
Re=100 and g=3.5 and 4.0 and Re=200 and g=2.5. The 
wiggling and generated vortices behind the downstream 
cylinders can be clearly seen when the Reynolds number 
increases (see Fig. 6(c-d)). It is also found that after wig-
gling near the downstream the shed vortices independent-
ly moves. It is observed that at higher Reynolds number 
the shed vortices attain the same width and size, rather 
than becoming short or longer. It is found that the gener-
ated vortices between the upstream and downstream cyl-
inders either in-phase (Re=60, 80, 90, 100, 130 and 150) 
or anti-phase (Re=110, 120, 160 and 175) when the 
Reynolds number changes from Re=60 to 175.  
 

 

 

 

 
Fig. 6. Vorticity contours visualization for various Reynolds 
numbers (a) Re=60, (b) Re=80, (c) Re=100 and (d) Re=150 at 
g=3.0. 
 

The vorticity contour visualization for different Reyn-
olds numbers at g=6.0 are shown in Figs. 7(a-d). It is 
observed that between cylinders 1and 2 and 3 and 4 there 
is a large scale recirculation region. The roll up into ma-
ture vortices because of free shear layers observed on the 
upstream cylinders and then shows impinge behavior on 
the downstream cylinders. This kind of flow structure is 
defined as ‘vortex shedding wake pattern’. In this study 
we observed in-phase (Re=120, 150 and 160) and anti-
phase (Re=60, 80, 90, 100, 110, 130 and 175) vortex 
shedding wake patterns. This observation is in consistent 
with Farrant et al. [15] and Lam et al. [17]. Farrant et al. 
[15] found in-phase and anti-phase vortex shedding wake 
patterns using the cell boundary element method for 
Re=200. Lam et al. [17] observed in-phase and anti-
phase vortex shedding wake patterns for flow past four 
circular cylinders in an in-line square configuration at 
Re=100 and g=5.0 and Re=200 and g=3.5 and 4.0 numer-
ically. We further observed that in in-phase and anti-
phase vortex shedding wake patterns the surrounding 
shed vortices behind the upstream and downstream cyl-
inders not affect each one and moves almost parallel in 
the streamwise direction and no distortion and merging 
of shed vortices observed (see Fig. 7(a-d)). This ensures 
that the strength is almost equal of the adjoining vortices.     
 



 

 

 

 

 

 
Fig. 7. Instantaneous vorticity contours for different Reynolds 
numbers (a) Re=60, (b) Re=90, (c) Re=150 and (d) Re=175 at 
g=6.0. 

 

The shed vortices almost remain distinct and moves for-
ward without any lateral spread and distortion. For such 
kind of wake patterns the wake interaction is too weak 
because of relatively large gap spacing between the up-
stream and downstream cylinders. This ensures that at 
relatively large gap spacing the in-phase and anti-phase 
vortex shedding wake patterns are predominant in case of 
four square cylinders in an in-line square configuration. 

Kumar et al. [23] observed similar findings for flow past 
row of square cylinders. Williamson [25] experimentally 
observed anti-phase vortex shedding wake pattern for 
two side-by-side circular cylinders for Re=100 and g=3.0. 
 
3.2 Time signal analysis of drag and lift force coefficients  

It is important to state here that when the amplitude of 
upstream and downstream cylinders are same, then we 
can see only the solid line and dash-dotted line in drag 
and lift coefficients figures in this sub-section. At g=1.0 
and Re=60, the time signal analysis of drag and lift coef-
ficients shows steady behavior (see Fig. 8 (a, b)). No 
modulation and periodic behavior observed for both drag 
and lift coefficients. Furthermore, at g=1.0 and Re=80, 
small modulation exists for drag and lift coefficients (see 
Fig. 9 (a, b)). The existence of a secondary cylinder in-
teraction frequencies and its important contribution in the 
time signal analysis of drag and lift coefficients is an 
important property of stable shielding wake pattern. The 
time history analysis for some selected Reynolds num-
bers shown in Fig. 9(a, b) to 12 (a, b) confirm that the 
flow behaves like stable shielding. It is found that the 
time signal analysis of drag and lift coefficients from 
Re=80 to 175 for stable shielding wake pattern ensure 
that the corresponding time periods of cycles are not 
same (see Figs. 9 (a, b)-12 (a, b)). Chatterjee et al. [25] 
observed similar time signal analysis at small gap spac-
ing for flow past row of square cylinders.     
 

 

Fig. 8. Time signal analysis of drag and lift coefficients. 

 

Fig. 9. Time history analysis of drag and lift coefficients.  



  
 

  

 

Fig. 10. Time analysis of drag and lift coefficients. 

 

Fig. 11. Time signal analysis of drag and lift coefficients. 

 

 

Fig. 12. Time history analysis of drag and lift coefficients. 

At g=3.0, the time signal analysis of drag (cd1, cd2, cd3, 
cd4) and lift (cl1, cl2, cl3, cl4) coefficients for Re=80, 
110 and 150 are illustrated in Figs. 13 (a, b) – 15 (a, b). 
The time signal analysis of drag coefficients for upstream 
cylinders (c1 and c2) shows steady behavior for Re=80 
and the downstream cylinders (c3 and c4) shows periodic 
behavior (see Fig. 13 (a, b)). Furthermore, the time signal 
analysis of lift coefficients (see Figs. 13 (a, b) – 15 (a, b)) 
shows the existence of only primary vortex shedding 
frequency. This ensures that the secondary cylinder inter-
action frequency almost disappears for all four cylinders. 
Furthermore, there exists some modulation in the drag 
coefficients. It is found that the time period of consecu-
tive cycles is almost same. The in-phase and anti-phase 
wiggling shielding wake patterns clearly seen from the 
time signal analysis of lift coefficients.   
 
  

 

Fig. 13. Time analysis of drag and lift coefficients. 

 

 

Fig. 14. Time signal analysis of drag and lift coefficients. 

 

 
Fig. 15. Time history analysis of drag and lift coefficients. 

 

The in-phase and anti-phase vortex shedding wake pat-
tern clearly seen from the time signal analysis of drag and 
lift coefficients (see Figs. 16 and 17 (a, b)). The sinusoi-
dal natures for both drag and lift coefficients observed. It 
is found that the oscillation frequency of the drag coeffi-
cient is almost double than the lift coefficient oscillation 
frequency for all four cylinders. It is examined that the 
temporal variation of lift coefficients between the up-
stream and downstream cylinders are close to zero degree 
or 180 degree. The present investigation is in agreement 
with the numerical findings of Chatterjee et al. [24] for 
flow past row of square cylinders using the lattice Boltz-
mann method for g=4.0 and Re=150.   
 



 

 

 

Fig. 16. Time analysis of drag and lift coefficients. 

 

 

Fig. 17. Time signal analysis of drag and lift coefficients. 

 
3.3 Vortex shedding frequency  

It is important to state here that for Re=60, 80 and 90 at 
g=1.0 not observed any primary and secondary cylinder 
interaction frequency for four cylinders in this study. The 
power spectrum analysis of lift coefficients for Re= 130 
and 175 at g=1.0 in Figs. 18-19(a, d) clearly shows the 
existence of broad and continuous spectrum, characteris-
tics of stable shielding wake pattern. The power spectrum 
analysis clearly indicates the presence of secondary cyl-
inder interaction frequencies for all four cylinders at 
g=1.0. The time signal analysis of lift coefficients for 
Re=130 (see Figs. 18 (a-d)) clearly indicates the presence 
of secondary cylinder interaction frequencies. The high-
est peak in Fig. 18 (a-d) (St=0.0936, 0.1410, 0.1346 and 
0.1410 for upstream (c1 and c2) and downstream (c3 and 
c4) cylinders) and in Fig. 19(a-d) (St=0.0343, 0.0348, 
0.1631 and 0.0239 for upstream and downstream cylin-
ders) is the primary vortex shedding frequency. Further-
more, the multi peaks represent the secondary cylinder 
interaction frequencies. Kumar et al. [23] for flow past 
row of square cylinders for the first time proposed the 
secondary cylinder interaction frequency concept.    
 

 
Fig. 18. Power spectrum analysis for lift coefficients for  Re = 130 
and g=1.0. 

 

 
Fig. 19. Power spectrum analysis for lift coefficients for  Re = 175 
and g=1.0. 

 
The power spectrum analysis for g=3.0 for two chosen 
Reynolds numbers (Re=80 and 120) for all four square 
cylinders are shown in Figs. 20-21 (a-d). It is found that 
there exists only primary vortex shedding frequency at 
intermediate gap spacing. A Strouhal number of 0.1203, 
0.1243, 0.1203 and 0.1243 corresponds to the primary 
vortex shedding frequency for c1, c2, c3 and c4 at Re=80, 
respectively. Similarly, 0.1417, 0.1410, 0.1417 and 
0.1410 corresponds to Strouhal number for c1, c2, c3 and 



  
 

  

c4 at Re=120, respectively. It is found that there exists 
one small peak for downstream cylinders (c3 and c4) in 
Figs. 20 (c, d) and 21 (c, d). The same characteristics 
observed for all chosen Reynolds numbers at g=3.0 in 
this study (not shown). The oscillation frequency of lift 
coefficients for four cylinders is almost same for all 
Reynolds numbers. This ensures that there is no second-
ary cylinder interaction frequency for wiggling shielding 
wake pattern. Chatterjee et al. [24] observed similar 
characteristics for flow past row of square cylinders.  

 
Fig. 20. Power spectrum analysis for lift coefficients for  Re = 80 
and g=3.0. 

 

 
Fig. 21. Power spectrum analysis for lift coefficients for  Re = 120 
and g=3.0. 

At g=6.0, the wake pattern not affected by the secondary 
cylinder interaction frequency and the primary vortex 
shedding frequency fully dominated the vortex shedding 
wake pattern (see Figs. 22-23 (a-d)). Some representative 
cases such as Re=90 (Fig. 22 (a-d)) and Re=175 (Fig. 23 
(a-d)) are presented in this sub-section. The lift coeffi-
cients spectrum analysis shows similar characteristics for 
other Reynolds number (not shown) in this study.   
  

 
Fig. 22. Power spectrum analysis for lift coefficients for  Re = 90 
and g=6.0. 

 

 
Fig. 23. Power spectrum analysis for lift coefficients for  Re = 175 
and g=6.0.   
 



 

 

 
3.4 Statistical analysis  

The variation of physical parameters such as Cdmean, St, 
Cdrms and Clrms with gap spacing (g= 1.0, 3.0 and 6.0) 
at different Reynolds number is shown in Figs. 24-26 (a-
d). At g=3.0 and 6.0, the Cdmean, Cdrms and Clrms of 
upstream cylinders (c1 and c2) and downstream cylinders 
(c3 and c4) are almost same or close to each other. Thus, 
in this section we mainly discuss cylinders c1 and c4. Lam 
et al. [17] examined similar characteristics for four circu-
lar cylinders numerically. It is found that the Cdmean is 
either slightly increases or decreases with a increase in 
Reynolds number for all four cylinders (see Fig. 24 (a)). 
The present results show that at g=1.0 and Re=130 that 
the Cdmean value of cylinder (c3) is negative. Similarly 
we observed the negative value for cylinder (c4) at g=1.0 
and Re=110 (see Fig. 24(a)). Sayers [7] and Lam and 
Fang [10] also observed the negative values for fourth 
cylinder at g≤2.0. They not observed the negative value 
for the third cylinder. This means that the free shear lay-
ers from first and second cylinders, after shielding behind 
third and fourth cylinders induce a strong backflow that 
produce a negative drag. Compared to upstream cylinders 
the downstream cylinders gives quite different values for 
third and fourth cylinders. The upstream cylinders shows 
higher values compared to single isolated cylinder and 
the downstream cylinders values are lower than isolated 
cylinder value. We not observed Strouhal number for 
Re=60, 80 and 90 in this study. For other Reynolds num-
ber the Strouhal number value for all four cylinders lower 
than the single cylinder value (see Fig. 24(b)). The 
Cdrms value of four cylinders shows an increasing be-
havior for various Reynolds number and higher than the 
single cylinder value (see Fig. 24(c)). Furthermore, for 
some Reynolds number (Re=150, 160 and 175) the up-
stream cylinders shows higher value than single cylinder 
value (see Fig. 24(d)). It is found that Clrms values of all 
cylinders are lower than the isolated cylinder value. The-
se characteristics clearly tell us that there is strong inter-
action of wakes behind the downstream cylinders and no 
vortices generated between the upstream and downstream 
cylinders.         
 

 
Fig. 24. Variation of engineering parameters for various Reynolds 
numbers at g = 1.0.  

 
The mean drag coefficient value for upstream and down-
stream cylinders is almost equal. It is found that the up-
stream cylinders (c1 and c2) values are close to isolated 
cylinder. On the other hand, the downstream cylinders (c3 
and c4) shows a jump between Re=100 and 110 for 
Cdmean (see Fig. 25(a)). This jump clearly shows when 
the in-phase wiggling shielding wake pattern (Re=100) 
change to anti-phase wiggling shielding wake pattern 
(Re=110). The Strouhal number parameter is not affected 
too much (see Fig. 25(b)). Furthermore, the Cdrms and 
Clrms for upstream cylinders are close to isolated cylin-
der and the downstream cylinders increases with the in-
crease of Reynolds number (see Fig. 25(c, d)).  

 
Fig. 25. Variation of engineering parameters for different Reynolds 
numbers at g = 3.0.  

 
In order to further confirm the wake interaction mecha-
nism and explanation discussed in section 3, the statisti-



  
 

  

cal data for large gap spacing presented in Figs. 26(a-d). 
This data ensures that the adjoining wakes isolated prac-
tically, and the interaction between the four cylinders 
wakes almost negligible. At relatively large gap spacing 
the physical parameters not affected too much (see Fig. 
26(a-d)). It is found that for all engineering parameters 
the upstream cylinders (c1 and c2) values are almost close 
to single isolated cylinder value. Furthermore, the 
Cdmean value of downstream cylinders (c3 and c4) are 
lower than the isolated value and the other parameters 
such as St, Cdrms and Clrms values are higher than the 
isolated cylinder. The observed wake patterns in this 
study for different Reynolds number shown in Table 3.   

 
Fig. 26. Variation of engineering parameters for various Reynolds 
numbers at g = 6.0.  
 
Table. 3. Wake patterns against Reynolds number. 
 

g Re Wake Pattern 
1.0 60 Steady  
1.0 80≤Re≤175 Stable shielding  
3.0 60, 80, 90, 100, 130, 150 In-phase wiggling shielding  
3.0 110, 120, 160, 175 Anti-phase wiggling shielding  
6.0 120, 150, 160 In-phase vortex shedding  
6.0 60, 80, 90, 100, 110, 130, 175 Anti-phase vortex shedding 

 
4. Conclusion 

The numerical results of two-dimensional flow past four 
square cylinders in an in-line square configuration for 
gap spacing are reported in this present numerical study. 
The main agenda of the present work is to fully under-
stand the effect of Reynolds number on steady, stable 
shielding, wiggling shielding (in-phase and anti-phase) 
and vortex shedding (in-phase and anti-phase) wake pat-
terns. Furthermore, we study the effects of secondary 
cylinder interaction frequency in the time history analysis 

of drag and lift coefficients and power spectrum analysis 
of lift coefficient. Important findings are given below:  
(i) At g = 1.0 substantial effect of Reynolds number is 
found. At g = 3.0 and 6.0 and larger Reynolds numbers 
the primary vortex shedding frequency dominates the 
flow and the secondary cylinder interaction frequency 
disappears. This means that at intermediate and relatively 
large gap spacing there is a week interaction of wakes 
behind the four cylinders, especially, with an increase in 
the Reynolds number. For g = 1.0 for all Reynolds num-
bers observed strong wakes interaction and compared to 
primary vortex shedding frequency the secondary cylin-
der interaction frequency predominates the flow.  
(ii) The wake interaction mechanism in this paper is 
viewed from a shedding frequency perspective. At larger 
unequal gap spacing g = 3.0 and 6.0, the interaction be-
tween the wakes is too weak and observed between the 
cylinders continuous jet flow. On the other hand, at 
smaller unequal gap spacing g = 1.0 the interaction of 
wakes strongly depends on the Reynolds number. It is 
argued that the interaction of wakes occurs due to jet 
flow between the cylinders. The gap spacing is responsi-
ble for the lateral movement of different jets. In stable 
shielding wake pattern the jets strongly spread laterally 
due to small gap spacing. As a result of such strong jets 
spread the generated wakes are just behind the four cyl-
inders broken immediately and the produce jets quickly 
merge together. Thus, at smaller gap spacing the second-
ary cylinder interaction frequency strongly affects the 
primary vortex shedding frequency.   
(iii) In this work we observed that the widening and nar-
rowing of wakes is the main cause of secondary cylinder 
interaction frequency which strongly affects the primary 
vortex shedding frequency as a result of gap spacing and 
increasing the Reynolds number. The proposed mecha-
nism clearly tells us when the shed vortices move inde-
pendently and when the merging of the jets strongly af-
fect the wake interaction between the cylinders for une-
qual gap spacing. Specifically, in this study for unequal 
gap spacing and Reynolds number affect the wake inter-
action mechanism clearly and systematically brought out 
more insight and fruitful informations which observed 
experimentally in several studies.   
(iv) We found that at g=1.0 and Re=130 the Cdmean 
value of cylinder (c3) is negative. Similarly we observed 
the negative value for cylinder (c4) at g=1.0 and Re=110.  
This means that the free shear layers from first and se-
cond cylinders, after shielding behind third and fourth 
cylinders induce a strong backflow that produce a nega-
tive drag. 

 
Nomenclature 

c1          : First square cylinder 
c2          : Second square cylinder 



 

 

c3          : Third square cylinder  
c4          : Fourth square cylinder     
Cs          : Speed of sound 
Cd        : Drag coefficients 
Cl           : Lift coefficients 
Cdmean   : Mean drag coefficients 
Cdmean1 : First cylinder mean drag coefficients 
Cdmean2 : Second cylinder mean drag coefficients 
Cdmean3 : Third cylinder mean drag coefficients 
Cdmean4 : Fourth cylinder mean drag coefficients 
Cdrms         : Root-mean-square value of drag coefficients 
Clrms          : Root-mean-square value of lift coefficients  
d               : Diameter of the three cylinders 
D              : Dimensions 
ei              : Direction of the velocity 
FD           : Force components in in-line directions 
FL           : Force components in transverse directions 
fs             : Vortex shedding frequency 
gi              : Particle distribution function  
gi

(eq)          : Equilibrium distribution function 
g              : Gap spacing between three cylinders 
H             : Height of the computational domain 
L1            : Upstream location 
L2            : Downstream location 
n              : Number of particles 
p              : Pressure 
Re            : Reynolds numbers 
St             : Strouhal number 
St1           : First cylinder Strouhal number 
St2           : Second cylinder Strouhal number 
St3           : Third cylinder Strouhal number  
St4           : Fourth cylinder Strouhal number  
s             : Surface-to-surface distance between cylinders 
t               : Dimensionless time 
u              : Flow velocity 
U∞           : Uniform inflow velocity 
wi             : Weighting functions 
x              : Position of the particle  
ρ              : Fluid density      
τ              : Single-relaxation time parameter  
υ              : Kinematic viscosity  
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