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Abstract. The generalized dynamical theory of thermo-elasticity proposed by Green and

Lindsay is applied to study the propagation of harmonically time-dependent thermo-visco-

elastic plane waves of assigned frequency in an infinite visco-elastic solid of Kelvin-Voigt

type, when the entire medium rotates with a uniform angular velocity. A more general

dispersion equation is deduced to determine the effects of rotation, visco-elasticity, and

relaxation time on the phase-velocity of the coupled waves. The solutions for the phase

velocity and attenuation coefficient are obtained for small thermo-elastic couplings by the

perturbation technique. Taking an appropriate material, the numerical values of the phase

velocity of the waves are computed and the results are shown graphically to illustrate the

problem.

Keywords and phrases. Plane waves, rotating visco-elastic medium, generalized thermo-

elasticity.
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1. Introduction. The classical theory of thermoelasticity is based on Fourier’s law

of heat conduction, which predicts an infinite speed of heat propagation. Many new

theories have been proposed to eliminate this physical absurdity. Lord and

Shulman [4] first modified Fourier’s law by introducing into the field equations the

term representing the thermal relaxation time. This modified theory is known as the

generalized theory of thermoelasticity. Following Lord-Shulman’s theory, several au-

thors including Puri [7] and Nayfeh [6] studied the plane thermoelastic wave prop-

agations. Later, Green and Lindsay [3] developed a more general theory of thermo-

elasticity, in which Fourier’s law of heat conduction is unchanged, whereas the classi-

cal energy equation and the stress-strain temperature relations are modified by intro-

ducing two constitutive constants α and α∗ having the dimensions of time. Using this

theory, Agarwal [1, 2] considered, respectively, thermoelastic and magneto-thermo-

elastic plane wave propagation in an infinite elastic medium. Later, Mukhopadhyay

and Bera [5] applied the generalized dynamical theory of thermoelasticity to deter-

mine the distributions of temperature, deformation, stress and strain in an infinite

isotropic visco-elastic solid of Kelvin-Voigt type permeated by uniform magnetic field

having distributed instantaneous and continuous sources.

Recently, attention has been given to the propagation of thermoelastic plane waves

in a rotating medium. Following Lord-Shulman’s theory, Puri [8], and Roychoudhuri

and Debnath [10] studied plane wave propagation in infinite rotating elastic medium.

Roychoudhuri [9] applied Green-Lindsay’s theory to study the effect of rotation and
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relaxation time on plane waves in generalized thermoelasticity. Roychoudhuri and

Debnath [11] studied magnetoelastic plane wave in a rotating medium too.

In the present paper, the linearized theory of Green and Lindsay having two re-

laxation times is applied to study the propagation of harmonically time-dependent

thermo-visco-elastic plane waves of assigned frequency in an infinite rotating visco-

elastic solid of Kelvin-Voigt type. Using the perturbation technique, a dispersion rela-

tion for small thermoelastic coupling is obtained to determine the effects of rotation

and relaxation times on the phase velocity of the waves in a visco-elastic medium.

Numerical values of the wave speeds at various frequencies are computed for an ap-

propriate material and are presented graphically for the purpose of illustration.

2. Formulation of the problem. We consider an infinite isotropic homogeneous

visco-elastic solid Kelvin-Voigt type which is rotating uniformly with an angular ve-

locity Ω. The basic field equations in the temperature-rate dependent theory of Green

and Lindsay follow (in usual notations).

(i) The stress equations of motion in a rotating medium in the absence of body

forces are [12]

τij,j = ρ
{

üi+
[

Ω×(Ω×u)
]

i+(2Ω×u̇)i
}

, i,j = 1,2,3, (2.1)

where

τij =
(

λe+λν
∂

∂t

)

∆δij+2

(

µe+µν
∂

∂t

)

eij−γ(θ+αθ̇)δij . (2.2)

(ii) The heat conduction equation is

Kθ,ii = ρcν
(

θ̇+α∗θ̈
)

+γθ∗∆̇, i= 1,2,3. (2.3)

3. Plane wave solutions and dispersion relation. We consider the waves propa-

gating in the x-direction and all the field variables are assumed to be functions of x

and time t only. We assume that u= (u,v,w) andΩ = (0,0,Ω), whereΩ is a constant.

Equation (2.1) with equation (2.2) then reduces to

ρ
[

ü−uΩ2−2ν̇Ω
]

=
[

(

λe+2µe
)

+(λν+2µν)
∂

∂t

]

∂2u

∂x2
−γ

(

∂θ

∂x
+α ∂

2θ

∂x∂t

)

, (3.1)

ρ
[

ν̈−νΩ2+2u̇Ω
]

=
(

µe+µν
∂

∂t

)

∂2ν

∂x2
, (3.2)

ρẅ =
(

µe+µν
∂

∂t

)

∂2w

∂x2
. (3.3)

The nondimensional forms of equations (3.1), (3.2), (3.3), and (2.3) are obtained as

θ̇+α∗′θ̈−θ′′+ǫθu̇′ = 0, (3.4)

[

ü−uΩ2−2ν̇Ω
]

=
[

1+M ∂
∂t

]

u′′−
(

θ′+α′θ̇′
)

, (3.5)

β2
[

ν̈−νΩ2+2u̇Ω
]

=
(

1+N ∂
∂t

)

ν′′, (3.6)

β2ẅ =
(

1+N ∂
∂t

)

w′′, (3.7)
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where we use the following notation and nondimensional variables:

c2
1 =
λe+2µe

ρ
, κ = K

ρcν
, ǫθ =

γ2θ∗

ρ2cνc
2
1

,

β2 = λe+2µe

µe
, M = (λν+2µν)

(λe+2µe)
· c

2
1

κ
,

N = µν
µe
· c

2
1

κ
, α′ = αc

2
1

κ
, α∗′ = α

∗c2
1

κ
.

(3.8)

κ/c2
1 , κ/c1, γθ∗κ/c3

1ρ, θ∗, c2
1/κ are taken as the units of time, length, displacement,

temperature, and rotation, respectively. Primes denote the differentiation with respect

to x and dots denote time differentiation. Equations (3.4), (3.5), and (3.6) form a cou-

pled system and represent coupled visco-thermal-dilatational and shear waves, while

equation (3.7) uncouples from the system. This coupling disappears whenΩ = 0. Thus,

the thermal field affects the dilatational and shear motion due to rotation.

4. Dispersion equation for the system. For harmonic solutions of the equations

(3.4), (3.5), and (3.6), we choose

(u,ν,θ)= (u0,ν0,θ0)·exp
{

i(qx+ωt)
}

, (4.1)

where u0, v0, θ0 are amplitude constants,ω is the prescribed frequency, q is the wave

number, in general complex. The phase velocity c and the attenuation coefficients a

are then given by

c = ω

Re(q)
, a=−Im(q). (4.2)

Substituting (4.1) into (3.4), (3.5), and (3.6), we obtain

(

A1q
2−ω2−Ω2

)

u0−2iωΩν0−α∗1ωqθ0 = 0

2iωΩβ2u0+
(

A2q
2−ω2β2−Ω2β2

)

ν0 = 0

−ǫθωqu0+
(

q2−ω2α∗2
)

θ0 = 0,

(4.3)

where

α∗1 =α′−
i

ω
,

A1 = 1+iωM,

α∗2 =α∗
′− i
ω
,

A2 = 1+iωN.
(4.4)

For the nontrivial solutions foru0, v0, θ0, the dispersion equation of the coupled wave

is obtained from (4.3) as

(

q2−ω2α∗2
){(

A1q
2−Ω2

0

)(

A2q
2−Ω2

0β
2
)

−4Ω2ω2β2
}

−ǫθα∗1ω2q2
(

A2q
2−Ω2

0β
2
)

=0,

(4.5)

where Ω2
0 =Ω2+ω2. In case Ω = 0, the dispersion equation (4.5) reduces to

(

A2q
2−ω2β2

){(

q2−ω2α∗2
)(

A1q
2−ω2

)

−ǫθα∗1ω2q2
}

= 0. (4.6)
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On setting M = 0 = N , equations (4.5) and (4.6) agree with [9, equations (3.7) and

(3.8)], respectively. Equation (4.5) is therefore a more general dispersion equation in

the sense that it incorporates the visco-elastic effect as well as the effects of rotation

and relaxation parameters on the propagation of coupled waves. This wave may be

called the quasi-visco-elastic-thermal-dilatational-shear wave.

5. Perturbation solution for small ǫθ . To obtain the perturbation solution of the

dispersion equation for small values of ǫθ , we first put ǫθ = 0 in (4.5) to obtain the

following solutions:

q2 =ω2α∗2 , q2
2,1 = J2

2,1, (5.1)

where

J2
2,1 =

(

A2+A1β
2
)

Ω
2
0±
{(

A2+A1β
2
)2
Ω

4
0−4A1A2β

2
(

Ω2−ω2
)2}1/2

2A1A2
. (5.2)

Next, let us write q2 in the following forms:

q2
u = q2

1+nuǫθ+0
(

ǫ2
θ

)

,

q2
ν = q2

2+nνǫθ+0
(

ǫ2
θ

)

,

q2
θ =ω2α∗2 +nθǫθ+0

(

ǫ2
θ

)

.

(5.3)

Substituting into equation (4.5), comparing the lowest power of ǫθ , and neglecting the

terms of 0(ǫ2
θ), we obtain

q2
u = J2

1

[

1+ω
2α∗1 ǫθ

(

A2J
2
1 −β2Ω

2
0

)

D1

]

, (5.4)

q2
ν = J2

2

[

1+ω
2α∗1 ǫθ

(

A2J
2
2 −β2Ω

2
0

)

D2

]

, (5.5)

q2
θ =ω2α∗2

[

1+ α∗1ω
2ǫθ
(

A2α
∗
2ω

2−β2Ω
2
0

)

[(

A1α
∗
2ω2−Ω2

0

)(

A2α
∗
2ω

2−β2Ω
2
0

)

−4Ω2β2ω2
]

]

, (5.6)

where

D1,2 =
(

J2
1,2−ω2α∗2

){

2A1A2J
2
1,2−A1β

2
Ω

2
0−A2Ω

2
0

}

+
(

A1J
2
1,2−Ω2

0

)(

A2J
2
1,2−β2

Ω
2
0

)

−4Ω2β2ω2.
(5.7)

On putting M = 0 = N , the results (5.2), (5.4), and (5.5) are in agreement with the

corresponding results of [9].

6. Determination of wave speeds and attenuation coefficients. From the above

solutions, we can observe that the dilatational, shear, and thermal waves propagate

in the visco-elastic medium, and these waves are affected by the thermo-visco-elastic

coupling coefficient ǫθ . Now we find out the wave speed and the attenuation coeffi-

cients of the waves for small ǫθ .
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I. Quasi-visco-thermal wave. Separating real and imaginary parts, we get from

(5.6), for small ǫθ ,

Re(qθ)=ω
√

L+α∗′
2

+ 1

2
ǫθ ·
ω3

√
2
· 1

(D2
γ+D2

m)

×
[
√

L+α∗′
(

NγDγ+NmDm
)

−
√

L−α∗′
(

NmDγ−NγDm
)

]

,

Im(qθ)=ω
√

L−α∗′
2

+ 1

2
ǫθ ·
ω3

√
2
· 1
(

D2
γ+D2

m

)

×
[
√

L+α∗′
(

NmDγ−NγDm
)

−
√

L−α∗′
(

NγDγ+NmDm
)

]

,

(6.1)

where

Nγ =α′
(

α∗′ω2+Nω2−Ω2
0β

2
)

−
(

1−α∗′Nω2
)

,

Nm =−
(

α∗′ω+Nω− Ω
2
0β

2

ω

)

−α′ω
(

1−α∗′Nω2
)

,
(6.2)

Dγ =
(

α∗′ω2+Nω2−Ω2
0

)(

α∗′ω2+Nω2−Ω2
0β

2
)

−ω2
(

1−α∗′Mω2
)(

1−α∗′Nω2
)

−4ω2
Ω

2β2,

Dm =−ω
[

(

1−α∗′Mω2
)(

α∗′ω2+Nω2−Ω2
0β

2
)

+
(

1−α∗′Nω2
)(

α∗′ω2+Mω2−Ω2
0

)

]

,

(6.3)

L=

√

{

(α∗′ω)2+1
}

ω
,

√

α∗2 =
1√
2

[
√

L+α∗′+i
√

L−α∗′
]

.

(6.4)

Therefore, the thermal wave speed cθ = ω \Re(qθ) and the attenuation coefficient

aθ =− Im(qθ), where Re(qθ) and Im(qθ) are obtained above.

II. Quasi-visco-dilatational wave. Using (5.2) from (5.4) for small ǫθ , the

quasi-visco-elastic dilatational wave speed ce = ω \Re(qu) and the attenuation co-

efficient ae =− Im(qu), where

Re(qu)=A3+
1

2
ǫθω·

1

(P2+Q2)

{

A3

[

P
(

α′ωK3+K4

)

+Q
(

α′ωK4−K3

)]

−B3

[

P
(

α′ωK4−K3

)

−Q
(

α′ωK3+K4

)]}

,

Im(qu)= B3+
1

2
ǫθω·

1

(P2+Q2)

{

B3

[

P
(

α′ωK3+K4

)

+Q
(

α′ωK4−K3

)]

+A3

[

P
(

α′ωK4−K3

)

−Q
(

α′ωK3+K4

)]}

,

(6.5)
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where

A3 =
1

2

[

R3+
√

R2
3+R2

4

]1/2

, B3 =
1

2

R4
∣

∣R4

∣

∣

[

−R3+
√

R2
3+R2

4

]1/2

,

R3 =
[(

1−ω2MN
){(

β2+1
)

Ω
2
0−A

}

+(M+N)ω×
{

Ω
2
0ω
(

N+Mβ2
)

−B
}]

[(

1−ω2MN
)2+ω2(M+N)2

]

,

R4 =
[(

1−ω2MN
){

Ω
2
0ω
(

N+Mβ2
)

−B
}

−(M+N)ω×
{(

β2+1
)

Ω
2
0−A

}]

[(

1−ω2MN
)2+ω2(M+N)2

]

,

(6.6)

A= 1√
2

[

P1+
√

P2
1 +P2

2

]1/2

, B = P2

|P2|
· 1√

2

[

−P1+
√

P2
1 +P2

2

]1/2

,

P1 =
{

(

β2+1
)2−ω2

(

N+Mβ2
)

}

Ω
4
0−4β2

(

1−ω2MN
)(

Ω
2−ω2

)

,

P2 =ω
[

2
(

β2+1
)(

N+Mβ2
)

Ω
4
0−4β2(M+N)

(

Ω
2−ω2

)]

,

K3 = R3−β2
Ω

2
0−R4ωM, K4 = R4+R3ωM,

E3 = 2R3

(

1−ω2MN
)

−2R4ω(M+N)−
(

β2+1
)

Ω
2
0,

E4 = 2R4

(

1−ω2MN
)

+2R3ω(M+N)−ω
(

N+Mβ2
)

Ω
2
0,

F3 = R3−R4ωN−2Ω2
0, F4 = R4+R3ωN,

P = E3

(

R3−α∗′ω2
)

−E4

(

R4+ω
)

+F3K3−F4K4−4Ω2ω2β2,

Q= E3

(

R4+ω
)

+E4

(

R3−α∗′ω2
)

+F4K3+F3K4.

(6.7)

III. Quasi-visco-shear wave. Using (5.2), we get from (5.5) for small ǫθ , the quasi-

visco-shear wave speed cS =ω/Re(qv) and the attenuation coefficient aS =− Im(qv),

where

Re(qν)=A1+
1

2
ǫθω·

1
(

P ′2+Q′2
)

[

A1

{

P ′(α′ωK1+K2)

+Q′(α′ωK2−K1)
}

−B1

{

P ′(α′ωK2−K1)−Q′(α′ωK1+K2)
}]

,

Im(qν)= B1+
1

2
ǫθω·

1
(

P ′2+Q′2
)

[

B1

{

P ′(α′ωK1+K2)

+Q′(α′ωK2−K1)
}

+A1

{

P ′(α′ωK2−K1)−Q′(α′ωK1+K2)
}]

,

(6.8)

A1 =
1

2

[

R1+
√

R2
1+R2

2

]1/2
, B1 =

R2

|R2|
· 1

2

[

−R1+
√

R2
1+R2

2

]1/2
,

P ′ = E1

(

R1−α∗′ω2
)

−E2(R2+ω)+F1K1−F2K2−4Ω2ω2β2,

Q′ = E1(R2+ω)+E2

(

R1−α∗′ω2
)

+F2K1+F1K2,

(6.9)

where R1 and R2 have the same expressions as R3 and R4, respectively, with −A, −B
in place of A, B, respectively, and E1, E2, K1, K2, F1, F2 have the same expressions as

E3, E4, K3, K4, F3, F4, respectively, with R1 and R2 in place of R3 and R4, respectively.
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7. Numerical results and discussions. For numerical work, we take copper as the

working substance for which

λe = 1.387×1012 dyne/cm2, µe = 0.448×1012 dyne/cm2,

ρ = 8.93 g/cm3, κ = 1.14 cm2 /s, at = 1.67×10−8 /◦ c,

α= 10−11 s, α∗ = 2×10−11 s .

(7.1)

We take Ω = 0.1.

The numerical computations of the quasi-visco-dilatational wave speed, the

quasi-visco-shear wave speed, and the quasi-visco-thermal wave speed for small val-

ues of ǫθ are done with the help of a PC and the corresponding graphs are plotted.

The quasi-visco-dilatational wave speed is drawn against the real frequency ω for

three different values of the visco-elastic parameter M in Figure 7.1. The quasi-visco-

shear wave speed is plotted against ω for three different values of M in Figure 7.2

and the quasi-visco-thermal wave speed is drawn againstω for the same values of M

in Figure 7.3.

The variation of different wave speeds with the visco-elastic parameterM can be seen

from the graphs. It is observed that although in case of quasi-visco-thermal wave speed

(Figure 7.3) the variation is not pronounced appreciably, in cases of the quasi-visco-

dilatational wave speed (Figure 7.1) and the quasi-visco-thermal-shear wave speed

(Figure 7.2) the variations are more pronounced for higher values of ω.
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Figure 7.1. Plot of quasi-visco-dilatational wave speed against real fre-

quency ω.
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Figure 7.2. Plot of quasi-visco-shear wave speed against real frequency ω.
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Figure 7.3. Plot of quasi-visco-thermal wave speed against real frequency ω.
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