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Effect of Rule Weights in Fuzzy Rule-Based
Classification Systems

Hisao IshibuchiMember, IEEEand Tomoharu Nakashimi&ember, IEEE

Abstract—This paper examines the effect of rule weights in  C; consequent class (i.e., one of the given
fuzzy rule-based classification systems. Each fuzzy IF-THEN rule ¢ classes);
in our classification system has antecedent linguistic values and a number of fuzzy IF-THEN rules.

single consequent class. We use a fuzzy reasoning method base . o . .
on a single winner rule in the classification phase. The winner e\lhen we use a grid-type fuzzy partition (e.g., Ishibuehal.

rule for a new pattern is the fuzzy IF-THEN rule that has the [12]), the antecedent part of each fuzzy IF-THEN rule is spec-
maximum compatibility grade with the new pattern. When we use ified by a combination of linguistic values. The total number
fuzzy IF-THEN rules with certainty grades (i.e., rule weights), of possible combinations i&™ when each attribute; hasK

the winner is determined as the rule with the maximum product linguistic values(i = 1,2,...,n). Thus each linguistic value

of the compatibility grade and the certainty grade. In this paper, .

the effect of rule weights is illustrated by drawing classification is shared by a number of fuzzy IF—THEN.ruIeS. On the other
boundaries using fuzzy IF-THEN rules with/without certainty —hand, each fuzzy IF-THEN rule may have its owantecedent
grades. It is also shown that certainty grades play an important fuzzy sets (or a single-dimensional antecedent fuzzy set [10]).

role when a fuzzy rule-based classification system is a mixture of |n this paper, we use a grid-type fuzzy partition for generating
general rules and specific rules. Through computer simulations, fuzzy IF-THEN rules

we show that comprehensible fuzzy rule-based systems with high . . .
classification performance can be designed without modifying the 1 € following fuzzy IF-THEN rules with certainty grades are

membership functions of antecedent linguistic values when we use also used for our classification problem:
fuzzy IF-THEN rules with certainty grades.

Index Terms—Fuzzy reasoning, fuzzy rule-based systems, pat- RuleR; : If z;isA;; and... andz,, is A;,
tern classification, rule extraction. / ! _ o
then Clas<’; with CF;, j7=1,2,...,N

)

. INTRODUCTION

been control problems [1]-[4]. Fuzzy rule-based systenv}\%%e[}ecﬁ Ig It?h? certal?ty grgde. of[r;che fl.JtZ.Zil IF—;FI-0|ElN 'rule
for control problems can be viewed as approximators of noBJ; g;az 1)f is a real number in the unitinterval [0,1] (i.e.,
linear mappings from nonfuzzy input vectors to nonfuzzy output — Jo="" . . .
values. Recently, fuzzy rule-based systems have often been a-[he aim of this paper is to examine the effect of ce_r'_[am_ty

plied to classification problems where nonfuzzy input vectogo’%des on the performance of fuzzy rule-based classification
are to be assigned to one of a given set of classes. Many 8fStems. Nauck and Kruse [16] discussed the effect of rule
proaches have been proposed for generating and learning fu\yﬂyghts in fuzzy rule-based systems fqr function apprOX|mat|on

IF-THEN rules from numerical data for classification problem®roblems. They showed how the learning of rule weights can be
For example, fuzzy rule-based classification systems are cféuivalently replaced by the modification of the membership

ated by simple heuristic procedures [5], [6], neurofuzzy techdnctions of antecedent or consequent fuzzy sets. Based on

niques [7]-[9], clustering methods [10], fuzzy nearest neighb#tis observation, they also showed that it is not necessary to

T HE main application area of fuzzy rule-based systems ha

methods [11], and genetic algorithms [12]-[15]. use rule weights for the learning in fuzzy rule-based systems.
Fuzzy IF-THEN rules for ac-class pattern classification In this paper, we show a similar relation between rule weights
problem withn attributes can be written as and membership functions in a totally different viewpoint from
[16]. We show that compact fuzzy rule-based classification
RuleR; : If z1is A;; and... andz, is A;, systems can be designed without adjusting membership func-
then Clasg’;, j=1,2,...,N (1) tions when we use fuzzy IF-THEN rules with certainty grades.
That is, the learning of membership functions can be partially
where _ _ replaced by the adjustment of certainty grades.
X = (21,...,2n)  n-dimensional pattern vector; In this paper, we assume that a set of antecedent linguistic
Aji antecedent linguistic value such agyyesis given by domain experts for each attribute ofrodi-

smallandlarge (i = 1,2, ..., n); mensional classification problem. This means that a fuzzy parti-

tion of then-dimensional pattern space is given. We also assume

Manuscript received October 30, 2000; revised April 25, 2001. that m training (i.e., labeled) patterns, = (xp1,...,2Zpn),
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the given numerical data using the given linguistic values. We  1l. Fuzzy RULES FORFUNCTION APPROXIMATION
implicitly assume that modifying the membership functions of For function approximation problems, the following fuzzy

the given linguistic values deteriorates the comprehensibility gf_tHeN rules with consequent real numbers have often been
fuzzy IF-THEN rules. This is because the modification is likely,ga g

to cause a gap between modified membership functions and an _ .

expert's understanding of linguistic values. Based on this im- Rule Rt; : If 2y is Ajy and ... andx,, is A;n,

plicit assumption, we try to design a fuzzy rule-based classifi- thenyisr;, j§=1,2,...,N 3)
cation system without modifying the given membership fun?/\'/herey is an output variable and; is a consequent real

tions. Of course, the learning of membership functions may Rﬁmber. These fuzzy IF-THEN rules can be viewed as a sim-
necessary when classification performance is our main criteri%ﬁed version of the well-known Takagi-Sugeno fuzzy rules
Learning is also necessary when we have to constructa membyGrr jinear functions in the consequent part [17]. The estimated

ship function of each antecedent fuzzy set from numerical d"ﬁétput valueg(x) for an input vectorx = (zy,...,a,) is

(i.e., when linguistic values are not given by domain experts)ca|culated as the weighted average of consequent real numbers

As shown in (2), each rule has its own rule weight (i.e., cer- ZN (%) 7
tainty grade). Since the rule weight is a single real number, its Gx)= == 0 (4)
adjustment is much easier than the learning of antecedent fuzzy Ej:l 115 (x)

sets (i.e., the learning of a number of parameter values of egghere ., (x) is the compatibility grade of the fuzzy IF~-THEN

membership function). The simplicity of adjustment is one agigle R; with the input vecto. The compatibility grade:; (x)
vantage of the use of rule weights. Another advantage is that {§isually calculated by the product operator as

classification performance can be improved without modifying
the membership function of each linguistic value. This means pi () = pjr (@) XX o () ®)
that the comprehensibility of fuzzy rule-based systems is naherey;;(-) is the membership function of the antecedent lin-
deteriorated. The rule weight can be interpreted as the strengtiistic valueA;;(i = 1,2,....n).
of each rule. As shown in this paper, the larger the rule weightWe have the following fuzzy IF-THEN rules by attaching a
is, the larger the decision area of each rule is. As pointed aute weightw; to each rule in (3)
by Nauck and Kruse [16], the use of the rule weight for each ) . .
fuzzy IF-THEN rule in (2) has the same effect on fuzzy rea- Rule R;: If IS_ A arwd o ant#a:n 1S Ajn
soning as the modification of its antecedent fuzzy sets. Even thenyis7; with w;,  j=1,2,....N. ()
when we interpret the use of rule weights as the modificati®ror handling these fuzzy IF-THEN rules, the simplified fuzzy
of antecedent fuzzy sets, the position of each fuzzy set is mehsoning method in (4) is modified as
changed, as shown in this paper (also see [16]). N i

This paper is organized as follows. Before discussing fuzzy H(x) = 2jm (%) Ty W @

—=

IF-THEN rules in (1) and (2) for classification problems, 2 i1 M (%)

we disguss the effect of rult_a weights on a_simplified fuzz_%here we assume that the weighj affects only the conse-
reasoning method for function approximation problems Buent part (i.e., the consequent real numbgr If we handle
Section Il. It is shown that the effect of rule weights is replacgge product-; - w; as a hew real number (say := r; - w;),

by the learning of consequent real numbers. Discussionstfg formulation in (7) is reduced to (4) with the consequent real
Section Il are based on Nauck and Kruse [16]. Then we dgambers;. This means that the learning af; in (7) is totally
scribe fuzzy rule-based classification systems with no certainplaced by the learning of. As a result, we can conclude that
grades in Section Ill. In Section IV, we discuss the effect qfe rule weightw; in (6) is not necessary for function approxi-
certainty grades on classification results from fuzzy IF-THEMation problems. This discussion is based on Nauck and Kruse
rules. The effect is clearly illustrated by drawing classificatiofL6], who discussed various ways for handling rule weights. For
boundaries obtained by fuzzy IF-THEN rules with/withouéxample, they discussed the handling of rule weights in Mam-
certainty grades. In Section V, we show that certainty graddani-type fuzzy systems as well as Sugeno-type fuzzy systems.
are necessary for simultaneously handling fuzzy IF-THERhey discussed the case where rule weights were applied to the
rules with different specificity levels (i.e., general rules andntecedent part of fuzzy IF-THEN rules as well as the case
specific rules). While general rules have only a few antecedeufere rule weights were applied to the consequent part. They
conditions, specific rules have many antecedent conditio#@ncluded that the learning of rule weights can be equivalently
Specific rules are used for describing complicated classificatié®Placed by the modification of the membership functions of an-
boundaries. Sometimes they work as exceptions to gendffedent or consequent fuzzy sets.

rules. In Section VI, the effect of certainty grades is examined

through computer simulations on commonly used data sets !Il- CLASSIFICATION WITHOUT CERTAINTY GRADES

in the literature. Simulation results show that compact fuzzy In our fuzzy rule-based classification system, we use a fuzzy
rule-based systems with high classification performance canre@asoning method based on a single winner rule in the classifi-
designed without adjusting membership functions when we usation phase. Other fuzzy reasoning methods for classification
certainty grades. Section VII concludes this paper. problems were studied in [18]-[20]. We use the single winner
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Fig. 2.

method because its classification mechanism is simple and in-

tuitive for human users. Lo e
When fuzzy IF-THEN rules have no certainty grades as in I O
(1), anew patter®,, = (zp1,.. .,z ) is classified by the single *1° o o
winner ruleR;. defined by o
Xl % el %7 ]
uj*(xp)zlnax{uj(xp):j:1727"'7N} (8) ¢ ‘:.. . .J OO
L& ° .| KeRe]
wherey;(x,,) is the compatibility grade of the fuzzy IF-THEN 0ol Ge 0010
rule i; with the new patters,,, which is usually defined by the 00 b Xy .
product operator as in (5). | |
From (8), we can see that each fuzzy IF-THEN rule has W
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its own decision area in which new patterns are classified by

that rule. The decision area of each rule is illustrated in Fig.dg. 3. cClassification boundary after the modification of the membership
where we have nine fuzzy IF-THEN rules generated by thrémctions.

antecedent linguistic values (i.€5; smal] M: medium and

L: large) on each axis of the two-dimensional pattern space

[0,1] x [0,1]. Each of the nine cells (or patches) in Fig. 1 R| R | R
corresponds to the decision area of each fuzzy IFF-THEN rule. | N\ / | / Ri| R | R
Kuncheva [21], [22] proved that fuzzy IF-THEN rules with no R Ry L
certainty grades have rectangular or hyperrectangular decision R Ry =
areas when no fuzzy IF-THEN rules are missing in fuzzy rule Ry R | B R R | R A
tables. |

Examples of classification boundaries by the nine fuzzy M M

IF-THEN rules in Fig. 1 are shown in Fig. 2. As shown in

Fig. 2, if no rules are missing in fuzzy rule tables, classification

boundaries are always parallel to the axes of the pattern sp%cggj Tl

Decision area of each fuzzy IF-THEN rule in the case of incomplete
e tables.

in the case of fuzzy IF-THEN rules without certainty grades.
This is because the decision area of each fuzzy IF-THEN
rule is a rectangular or hyperrectangular cell, as shown in!n Fig. 2, six patterns are misclassified. Classification bound-
Fig. 1. Classification boundaries consist of the borders betwediies can be adjusted by modifying the membership functions
the decision areas of fuzzy IF-THEN rules with differenf the linguistic values. Fig. 3 is an example of an adjusted clas-
consequent classes. In Fig. 2, we specified the consequent cfaégation boundary where almost all patterns are correctly clas-

C; of each fuzzy IF-THEN rule?; as follows:

>

pCClass C;

= max

15 (Xp)

pEClass k

Z pilep) i k=1,2,...

sified. From Fig. 3, we can see that the classification boundary
after the modification of the membership functions is still par-
allel to the axes of the pattern space because the decision area
of each fuzzy IF-THEN rule is a rectangular cell. As shown in
Fig. 3, the decision area can be adjusted by modifying the mem-
Q) bership functions.

When fuzzy rule tables are incomplete (i.e., some fuzzy

IF-THEN rules are missing), the decision area of each fuzzy

wherec is the number of given classes. In (9), the consequd-THEN rule is not always rectangular. In this case, classi-
classC; is specified as the dominant class in the fuzzy subspaiteation boundaries are not always parallel to the axes of the
corresponding to the antecedent part of each fuzzy IF-THEMttern space. This is illustrated in Fig. 4 where the decision

rule.

area of each fuzzy IF-THEN rule is drawn using incomplete
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Fig. 5. Classification boundary by nonfuzzy IF-THEN rules. (@)
1.0
3 x 3 fuzzy rule tables. Fig. 4 corresponds to the situations
whereR; is missing in Figs. 1 and 3.
Fig. 5 shows the difference between nonfuzzy IF-THEN rules
and fuzzy IF-THEN rules with no certainty grades. When rule
tables are complete as in Figs. 1-3, these two kinds of IF-THEN
rules have the same rectangular decision areas. For example,
each nonfuzzy IF-THEN rule in Fig. 5 has the same decision . .
area as the corresponding fuzzy IF-THEN rule in Fig. 2. Evenin 0.0 S i M8 i M ML g0
this case, the classification boundary in Fig. 5 is not exactly the t\|/ ‘, ‘ - \' /I
same as that in Fig. 2. In Fig. 5, the upper right rule (. jn o R N R BN
Fig. 1) cannot be generated because there is no training pattern ®)

compatible with its antecedent part. Thus the classification of ) o
any pattern in its decision area (i.e., shaded rectangular cell i & Generated rules by a single training pattern.
Fig. 5) is rejected.

The difference between fuzzy and nonfuzzy partitions be-
comes clearer if we consider how many rules can be generateVhen we use the fuzzy IF-THEN rules with certainty
from a single training pattern (i.e., how many rules can be acgtades in (2), the winner rulek;. for a new pattern
vated by a single training pattern). In the case of the crisp pafie = (Tp1,- .-, Tpn) is defined by
tion in Fig. 6(b), only a single nonfuzzy IF-THEN rule can be pj (x)-OFy = max{p;(x,)-CF;:5=1,2,...,N}. (10)
generated from a single training pattern. That is, the nonfuzzy " ) ) )
IF-THEN rule in the shaded area including the training paftS In the previous section, each fuzzy IF-THEN rule has its
tern is generated. This is because there is no overlap betw@&ff decision area. The size of the decision area of each rule is
neighboring subspaces (i.e., no overlap between neighborﬁﬁ}erm'ned by its certainty grade and the membership functions

crisp intervals on each axis). On the other hand, if we use tﬂgltsda_mt?cg%ent Iir(ljgui_stict\r:aluesi 'I_'htat s, t0f|1e decis_ifon azjea catn
fuzzy partition in Fig. 6(a), four fuzzy IF-THEN rules in the € adjusted by modifying the certainty grade even if we do no

. . change the membership functions. Some examples of decision
shaded area can be generated from the single training pattern. - o

. reas are shownin Fig. 7. Those decision areas correspond to the
The generated four rules cover the larger square region denote

by dashed lines. In general: fuzzy IF-THEN rules can be gen- nine fuzzy I.F_THEN rules in Flg. L l.t should be noted.that.w.e
: - . . do not modify the membership functions of the three linguistic
erated from a single training pattern for ardimensional pat-

- " values'S: small,” “M: medium,” and“L: large” in Fig. 1. We
tern .cIaSS|f|cat|on problem when we use a fuzzy partition Su%tﬁly change the certainty grade of each fuzzy IF~THEN rule
as Fig. 6(a). _ _ as shown in Table I. Fig. 7(a) corresponds to the case where all
From the comparison between Figs. 2 and 5, we can see §i@f hine fuzzy IF-THEN rules have the same certainty grade.
the same classification boundary is obtained from the fuzgy inis case, the decision area of each fuzzy IF~THEN rule is
IF-THEN rules in Fig. 2 and the nonfuzzy IF-THEN rules ifhe same as the case with no certainty grades (see Fig. 1). In
Fig. 5. Since the decision area of each fuzzy IF-THEN rule ﬁg_ 7(b)—(f), certainty grades are not the same. In general, the
arectangle or hyperrectangle when there is no missing rule iygger the certainty grade of a fuzzy IF-THEN rule is, the larger
fuzzy rule table (see Kuncheva [21], [22]), classification boungts decision area is. From Fig. 7, we can see that the decision area
aries by complete fuzzy rule tables also can be realized by n@feach fuzzy IF-THEN rule is not always rectangular even in
fuzzy rule tables. Thisis not the case when each fuzzy IF-THENe case of complete fuzzy rule tables [i.e., Fig. 7(c), (d) and
rule has arule weight. Thatis, decision areas by fuzzy IF-THEH].
rules with rule weights are not always rectangles or hyperrect-For illustrating the adjustment of classification boundaries,
angles, as shown in the next section. let us assume that we have the following three fuzzy IF-THEN

IV. CLASSIFICATION WITH CERTAINTY GRADES
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Ri| R4 |R7 I — | I
Class 1 Class 2 Class 3 Class 1 Class 2  Class 3
a b (¢
(@) (b) © @ ®)
]_ Fig. 8. Adjustment of classification boundaries using fuzzy IF-THEN rules

without certainty grades.

CF=10 CF=05 CF=10 CF=10 CF=06 CF=03

(@ (® it

Fig. 7. Decision area of each fuzzy if-then rule with a different certainty grade. OI'O
"Class1 Class2 Class3 ~ Classl  Class2  Class3
TABLE | (@ ®
CERTAINTY GRADE OF EACH OF THE NINE FUZzzY IF-THEN RULES IN FIG. 7.
THE NINE RULES ARE LABELED AS IN FiG. 7(2) Fig. 9. Adjustment of classification boundaries using fuzzy IF-THEN rules
with certainty grades.
Flgure CF] CF2 CF3 CF4 CFS CF6 CF7 CFS CF9
@ :Class1 O:Class 2
Fig.6(a)[ 1.0 10| 1.0 (10 (10| 1.0| 10| 10 1.0
[ [
Fig. 6 (b)[ 1.0 1.0 1.0 {05 ] 0505 | 0.1 |0.1]0.1 o ® O ° O
[ J
Fig.6(c)| 0.6 | 0.8 | 1.0 | 1.0 (08| 08| 08|05 02 w4 eg | © w4yl ¢ o ©
(@]
Fig. 6(d)[ 0.2 0.8 |06 (050709 |035(08 |04 ° o o o
Fig.6(e)[ 0.2 0.7/ 09 (08 (08| 00|06 | 10(0.7 / /
il 1
Fig. 6 ()| 0.5]05]05|07]1.0]07|02|07 |04 - . . "
Ci: Class 1, CFj: 1.00 Ci: Class 1, CFj: 0.55
rules for a single-dimensional pattern classification problem on
the unit interval [0,1]: o O
O °* -
. X O X2 |4;
If 2 is small, then Class Ay o | © U ol ©
If z is medium, then Clasg ®. | o ° o

If zislarge, then Class.

Aj] Ajl
X1 X1
Cj:Class 2, CFy:1.00 G Class 2, CFj:0.30

The unit interval is classified by these three rules as Fig. 8(a).

When we do not use certainty grades, the adjustment of clas-

sification boundaries is performed by modifying the member- o _
. . . L F|rcI;. 10. Determination of the consequent class and the certainty grade.

ship function of each antecedent linguistic value as shown'i

Fig. 8(b). On the other hand, when we use certainty grades, the

adjustment of classification boundaries is performed by mod- 1) When the consequent class is Class 1

ifying the certainty grade of each fuzzy IF-THEN rule. This CF: — Botass 1 () — Bctass 2(8;) (11)
is illustrated in Fig. 9, where dashed lines show the product of 7 Bctass1(B;) + Bctass 2(Ry)
the certainty grade and the compatibility grade for each fuzzy where
IF-THEN rule.
As in the previous section, the consequent clas®f each Bctass k(1) = Z pi(xp), k=12 (12)
fuzzy IF-THEN rule R; can be determined from the given @pClass k
training patterns by (9). That is, the consequent classs 2) When the consequent class is Class 2
specified as the dominant class in the fuzzy subspace corre- 3 (R;) - (R,)
sponding to the antecedent part (see Fig. 10). The certainty CF; = “as2 -y Class 1177 (13)

grade can be viewed as the grade of the dominance of the Bctass 1 (1) + Potass 2(B;)
consequent class. For example, the certainty grade is specifiefrom (11) and (13), we can see tilat C'F; < 1. When all
as follows for a two-class pattern classification problem [5]. compatible patterns with the fuzzy IF-THEN ruk (i.e., such
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1.0

T . : The formulation for determining the certainty grade in
Class1;  Class2  iClass 2 (11)—(13) is extended to the casectlass pattern classifica-

0.41 0.83 ! (1.00 ;
04D 08y lLE---.)_ tion problems as follows [5]:
Class1]  Class2  iClass 2 CF: — Botassc, (B;) — (14)
Xy [[(0.81 023) | (0.81)] ’ e B (R;
2 0.81) ( ) |( ) Ek=1/C1assk( j)
o e ir _____ ] whereC; is the consequent class and
Class 1 Class 1 EClass 2
.00} (065  1(0.12) a_ Ek;écj Pctass k(£)
0.0 ! 1 ! /3 - (C _ 1) (15)
0.0 ) 1.0
Fig. 11. Generated fuzzy IF-THEN rules. V. HANDLING OF GENERAL AND SPECIFICRULES
o Class] O Class?2 In this section, we illustrate the necessity of certainty grades
1.0 —a— : . when a fuzzy rule-based classification system is a mixture of
* o °s0 general and specific fuzzy IF-THEN rules. Let us assume that
o\ o OO 9 ) we have the following two fuzzy IF-THEN rules:
O
[e]
: e T° o © o Ry : If z1 is small andzs is small, and
X5 T .
2l4®%el2q0 x3 is small, then Clasg (16)
ranm P : °s Ry : If x5 is small, then Clasq. (17)
O
00l® ¢ ? ° ® The fuzzy IF-THEN ruleR; is specific whileR- is general.
0.0 Xy 1.0 From the definition of the compatibility grade in (5), we can see
thatR; cannot have a larger compatibility grade tinfor any
Fig. 12. Decision area of each rule and classification boundary. pattern
patterns thaj:;(x,) > 0) belong to the same class, the certainty 1R, (X) < pry(x) forvx. (18)

gradeC'F; takes its maximum value (i.e(fF; = 1). On the . . .
other hand, if no class is clearly dominant, the certainty gradeTiQIS means that the specific fuzzy IF-THEN rul is never

almost the same as its minimum value (iGE; = 0in the case sglected as the winner rule in the classification phase for classi-
fying new patterns.

of Botass 1(R)) =2 Peass 2(R;)). The latter characteristic feature . .
is the main motivation to use the formulations in (11)—(13). In _V_Vhen the above two fuzzy I—-THEN rules are given, we in-
tively think that?; may be used as an exceptional rulédo

Fig. 10, we illustrate the determination of the consequent cl ! i ;
u at is, new patterns wittmall z;, smallzs, andsmallx; are

and the certainty grade. For the purpose of illustration, we . o
four different se%/s%f training pattzrng in Fig. 10. mtqltlvely classified as Class 2 by the fu;_zy lF_THEN.“HE
From the given training patterns in Fig. 2, we spec:ifie?ﬁ'hlle R, does not have Iarge.r compat!blllt'y. grades W'.th those
the consequent class and the certainty grade of each fu terns tharR;. We can realize such intuitive reasoning as a
uzzy reasoning method by assigning a larger certainty grade to

IF-THEN rule in a 3x 3 fuzzy rule table. We used the . X e
three linguistic values in Fig. 1 with no modification of theirR3L thanz, (|.e.,O_F1 > CI3). In this case, the specific fuzzy
THEN rule R, is selected as the winner rule for a new pat-

membership functions. Generated fuzzy IF-THEN rules ap(:e_ S . )

shown in Fig. 11. One may think from Figs. 2 and 11 that tHEMXp when the following inequality holds:

pertainty grade of the upper left fuzzy IF—THEN rul'e (i.g., 0.41) pimy (%) - CFy > pig, (xp) - CFy. (19)

is too small. When we use the nonfuzzy partition in Fig. 5, the

certainty grade of the corresponding nonfuzzy rule is 1.0. Sincelt is intuitively acceptable that specific rules have larger cer-
the upper left fuzzy IF-THEN rule in Fig. 11 is compatibleainty grades than general rules. Since general rules cover large
with some patterns from Class 2 outside the correspondiageas of the pattern space, they may include several exceptions.
rectangular cell in Fig. 11 (see Fig. 2), the certainty grade 0.@n the other hand, specific rules usually include no exceptions
is much smaller than 1.0 (i.e., the certainty grade in the cadsecause they cover very small areas. Therefore, it is natural to
of the nonfuzzy partition). The classification boundary by thassign larger certainty grades to specific rules than general rules.
fuzzy IF-THEN rules in Fig. 11 is shown in Fig. 12. While sixLarge certainty grades assigned to specific rules in turn give
patterns were misclassified in Fig. 2 without certainty gradesigher priority to those rules than general rules in the classi-
two patterns are misclassified in Fig. 12 with certainty gradefication phase.

From the comparison between Figs. 2 and 12, we can seds an example, let us consider a pattern classification
that the use of certainty grades can improve the classificatiproblem in Fig. 13. All the given training patterns can be cor-
ability of fuzzy IF-THEN rules. We can also see the differencectly classified by 25 fuzzy IF-THEN rules without certainty
between the learning of membership functions and the usegoédes corresponding to thex55 fuzzy partition in Fig. 14.
certainty grades from the comparison between Figs. 3 and 1#.we use certainty grades, all the given training patterns can
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[0}
@]

lass 2 IF-THEN rules with certainty grades are efficiently utilized
in our fuzzy rule-based classification system. If we remove
the certainty grades from the above three rules, no pattern is
classified as Class 2 because the most general rule (22) with
the Class 1 consequence covers the entire pattern space.

As shown in the above example, certainty grades are nec-
essary when our fuzzy rule-based classification system is a
mixture of specific and general fuzzy IF-THEN rules. General
fuzzy IF-THEN rules, however, are not always necessary in the
case of low-dimensional problems with a few input variables.

0.0 1.0 For example, the two-dimensional problem in Fig. 13 can be
Xi handled by 25 fuzzy IF-THEN rules without certainty grades
in Fig. 14. Of course, the above three rules are more concise
Fig. 13. An example of a pattern classification problem. and intuitive than those 25 fuzzy IF-THEN rules in Fig. 14.
On the other hand, general fuzzy IF-THEN rules are necessary
for handling high-dimensional problems with many input
®:Class1  O:Class 2 variables. LetK; be the number of antecedent linguistic values
for the4th input variable. In this case, andimensional fuzzy
rule table consists ak; x - - - x K, fuzzy IF-THEN rules. The
number of fuzzy IF-THEN rules exponentially increases with
the number of input variables. It is practically impossible to
use all fuzzy IF-THEN rules for a high-dimensional problem
(i.e., whenn is large). Thus we may use only a part of such
a huge number of fuzzy IF-THEN rules. The entire input
space, however, cannot be covered by a small number of
fuzzy IF-THEN rules because each rule covers only a tiny
portion of the input space. Thus general fuzzy IF-THEN rules
with a few antecedent conditions are necessary for handling
high-dimensional problems because each general rule covers
a large fuzzy subspace. That is, it is possible to construct
compact fuzzy rule-based systems using a small number of
general fuzzy IF-THEN rules for high-dimensional problems.
Fig. 14. Classification boundary by 25 fuzzy IF-THEN rules without certainty 'OM the above discussions, we can see that general fuzzy
grades. IF-THEN rules are necessary for handling high-dimensional
problems. We also showed that certainty grades are necessary
or handling fuzzy IF-THEN rules with different specificity
evels. As a result, we conclude that certainty grades are neces-
sary for handling high-dimensional problems. The necessity of
certainty grades is examined by computer simulations on wine

lass 1

X2

0000000000 o
0000000000
000000000

QOO0O000000O0Q

QOO0O000000O00

QOO0000000O0Q
000000000
0000000000

be correctly classified by the following three fuzzy IF-THE
rules:

If 21 is medium, then Clas® with 0.75 (20) data with 13 input variables in the next section.
If 25 islarge, then Clasg with 0.84 (21)
x is Classl with 0.19 (22)

VI. PERFORMANCEEVALUATION

wheremediumandlarge correspond to the triangular member- We have already demonstrated that classification boundaries
ship functionsM and L in Fig. 14, respectively. The certaintycan be adjusted by modifying the certainty grade of each fuzzy
grades of these rules were determined by the procedure in lReTHEN rule even when we use antecedent linguistic values
previous section. The fuzzy IF-THEN rule in (22) with no anwith fixed membership functions. In this section, we examine
tecedent conditions can be viewed as havidgri't care’ con- the effect of certainty grades on the performance of fuzzy rule-
ditions on both of the two attributes; andz.. A rectangular based classification systems through computer simulations on
membership function that covers the entire domain [0,1] of eattie well-known iris data. We also examine the necessity of cer-
attribute can be used as the antecedent fuzzy set corresponthingty grades for handling high-dimensional problems through
to the “don’t care’ condition. The fuzzy IF-THEN rules in (20) computer simulations on wine data.
and (21) have adon’t caré’ condition onz, andzy, respec-  The iris data consist of 150 samples with four continuous
tively. attributes from three classes. We used the iris data after normal-
Since the certainty grade of the fuzzy IF-THEN rule iizing each attribute value to a real humber in the unit interval
(22) is very small, this rule is selected as the winner rule on[9,1]. That is, the iris data set was handled as a three-class
when a new pattern does not have high compatibility gradpattern classification problem in the four-dimensional unit
with the other rules. In this manner, general and specific fuziypercube [0,1. Since the generalization ability of fuzzy
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IF-THEN rules with certainty grades had already been exam- TABLE I

ined for the iris data by Nozalkit al. [23], we only examined AVERAGE CLASS'F";’fﬁ*NEZ‘g\ESMOEﬂEST DATA EVALUATED
the performance of fuzzy IF-THEN rules without certainty

grades. As in [23], we used twofold cross-validation (2CV) and
leaving-one-out (LV1) for evaluating the generalization ability
(see Weiss and Kulikowski [24]). In 2CV, the iris data are Without CF_|70.53 190.47 |78.20 |92.93 |95.60

divided into two subsets of the same size. That is, each subset Heuristic CF |69.27*(92.43*90.03*|95.27%(95.57*
consists of 75 samples. One subset is used as training data for Adjusted CF [91.73%|94.80%(04.53*|94,80%(95.37*
generating fuzzy IF-THEN rules. The other subset is used as

K=2|K=3|K=4{K=5{K=6

test data for evaluating the generated fuzzy IF-THEN rules. * Cited from Nozaki et al.[23]

The same training-and-testing procedure is also performed

after exchanging the role of each subset. Since the error rate on TABLE Il

test data in 2CV depends on the partition of the entire data setaAverace CLASSIFICATION RATES ON TEST DATA EVALUATED BY THE
into the two subsets, we iterated 2CV ten times using different LV1 METHOD

partitions of the iris data set. On the other hand, LV1 uses only

a single sample as test data. The other 149 samples are used as K=2{K=3|K=4|K=5|K=6

training data. This procedure is iterated 150 times until all the Without CF |71.33 [92.00 [81.33 [04.67 [97.33
given 150 samples are used as test data. In general, the average —
classification rate on test data in the LV1 is higher than that in Heuristic CF 67.33%93.33%/89.33%/95.33%|96.67%
the 2CV because the size of training data in the LV1 is much Adjusted CF 92.00%|95.33*|98.00%(94.67*|96.67*
larger than that in the 2CV. The average classification rate in * Cited from Nozaki et al.[23]
the 2CV can be viewed as indicating the generalization ability
when the size of training data is small.
In our computer simulations on the iris data, we homgaliscriminant, 96.0% by the nearest neighbor method, 96.7% by
geneously partitioned the pattern space [0,4y triangular the back-propagation algorithm, etc.).
fuzzy sets as in Fig. 14. We examined the performance ofFrom Tables Il and Ill, we can observe the following.
fuzzy IF-THEN rules without certainty grades for fine fuzzy 1) The performance of fuzzy IF-THEN rules without cer-
partitions as well as coarse fuzzy partitions. We used five tainty grades is poor especially when they are generated
different fuzzy partitions where each axis of the pattern space from the coarsest fuzzy partition (i. = 2). In this
[0,1]* was uniformly divided intoK triangular fuzzy sets case, the performance of fuzzy IF-THEN rules with
(K = 2,3,4,5,6) in the same manner as Fig. 14 and other heuristic certainty grades is also poor.
figures in this paper. For example, Figs. 6(a) and 14 correspond?) By adjusting the certainty grade of each fuzzy IF-THEN
to the cases oK = 5. Figs. 1 and 2 correspond to the case rule, we can improve the classification performance of
of K = 3. Each of the five fuzzy partitions was used for fuzzy rule-based systems. This is prominent in the case
generating a fuzzy rule-based system from training data. That of coarse fuzzy partitions.
is, a four-dimensional’ x K x K x K fuzzy rule table 3) In the case of fine fuzzy partitions witlf = 5 andK =
was generated from each fuzzy partition. For example, when 6, the effect of the adjustment of certainty grades is not
K = 2, afuzzy rule-based systemisa®2 2 x 2 x 2 clear.
fuzzy rule table with 16 fuzzy IF-THEN rules. A single 4) The performance of fuzzy IF-THEN rules without cer-
fuzzy IF-THEN rule was generated in each cell (i.e., each tainty grades is very sensitive to the choice of a fuzzy
fuzzy subspace) of each fuzzy partition. Of course, all the  partition. This sensitivity is remedied by introducing cer-
K x K x K x K fuzzy IF-THEN rules cannot be always tainty grades and adjusting them.
generated. In general, many fuzzy IF-THEN rules cannot beThe necessity of certainty grades for handling high-dimen-
generated when we use fine fuzzy partitions. This is becausenal problems was examined through computer simulations
each cell in fine fuzzy partitions is very small and likely taon wine data. The wine data set is a three-class pattern classi-
include no training patterns. When no training patterns afigation problem with 13 continuous attributes. It is impractical
compatible with the antecedent part of a fuzzy IF-THEN rulée design fuzzy rule-based classification systems using 13-di-
we cannot specify its consequent part (thus we cannot genefratnsional fuzzy rule-tables due to the exponential increase in
the fuzzy IF-THEN rule). the number of fuzzy IF-THEN rules. We used a Michigan-style
Simulation results are summarized in Tables Il and 11, whefezzy genetics-based machine learning (GBML) algorithm [25]
we also cite the results reported by Nozetal.[23]. Inthese ta- for designing compact fuzzy rule-based classification systems
bles, heuristic CF means that the certainty grade of each fuZmy the wine data. In our fuzzy GBML algorithm for the wine
IF-THEN rule was determined by the heuristic procedure ddata, each fuzzy IF-THEN rule is denoted by a string of the
scribed in Section IV. Adjusted CF means that the certaintgngth13as4,,, A4;, ... A;;3.” Since the consequent class and
grade was adjusted by the reward-and-punishment scheme¢hia certainty grade of each fuzzy IF-THEN rule can be easily
Nozakiet al. [23]. Classification performance of various nonspecified by the heuristic procedure in Section IV, only the an-
fuzzy classification methods on the iris data was examined usitegedent part is coded. Fuzzy IF-THEN rules without certainty
the LV1in Weiss and Kulikowski [24] (e.g., 98.0% by the lineagrades are also coded in the same manner. In this coding;t*
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TABLE IV sification boundaries can be generated only when some rules
AVERAGE CLASSIFICATION RATES ON TRAINING DATA (WINE DATA) are missing (i.e., fuzzy rule tables are incomplete). This sug-
gests the possibility of adjusting classification boundaries by

K=3K=4K=5K=6 selecting fuzzy IF-THEN rules when we do not use certainty
Without CF | 76.5 | 70.8 | 69.6 | 66.5 grades. On the other hand, fuzzy IF-THEN rules with certainty
Heuristic CF| 97.2 | 98.1 | 98.5 | 97.3 grades have decision areas of various shapes even when fuzzy

rule tables are complete (i.e., when no rules are missing). We
showed that classification boundaries are not always parallel to
AVERAGE CLASSIFICATIOI\TQETLEES (;{\ITEST DATA (WINE DATA) the axes Of the pattern Space in the case Of fUZZy. IF_THEN rUIeS
with certainty grades. We also showed that classification bound-
aries can be adjusted by modifying the certainty grade of each
fuzzy IF-THEN rule even when we do not change the mem-
Without CF | 72.4 | 71.0 | 61.7 | 63.8 bership functions of antecedent fuzzy sets. Then we showed
Heuristic CF| 94.9 | 94.8 | 94.2 | 93.1° the necessity of certainty grades for handling fuzzy IF-THEN
rules of different specificity levels. This leads to the necessity
of certainty grades when we apply fuzzy rule-based systems to
caré’ is handled as an additional antecedent linguistic Va'“ﬁigh-dimensional problems. Lastly, we examined the effect of
ThusA;; is one of the given linguistic values adén’tcare”We  certainty grades through computer simulations on the iris data
use this coding for generating fuzzy IF-THEN rules with difang the wine data. Simulation results on the iris data showed
ferent specificity levels (i.e., with a different number afdh't  {hat the use of certainty grades and their adjustment can im-
care’ conditions in the antecedent part) by genetic operations jjoye the classification performance of fuzzy IF~THEN rules.
our fuzzy GBML algorithm (for details, see [25]). This effect was prominent especially when we used coarse fuzzy
In computer simulations on the wine data using our fuzzyartitions. When the fuzzy partition was fine, the effect of cer-
GBML algorithm, the population size (i.e., the number ofzinty grades was not significant. In the case of fine fuzzy parti-
fuzzy IF-THEN rules) was specified as 60. Classificatiofions, the pattern space was divided into small fuzzy subspaces
performance was evaluated by using all the 178 samples in fhg_ small cells or patches). Thus we obtained high classifica-
wine data as training data. Because our fuzzy GBML algorithfiyn rates without adjusting certainty grades (i.e., without ad-
is a stochastic search algorithm, the average classificatipiting classification boundaries). On the other hand, simulation
rate was calculated by its 20 iterations. On the other hangdgyts on the wine data demonstrated the necessity of certainty
classification performance on test data was evaluated by fHPades for handling high-dimensional problems. We designed
iterations of the tenfold cross-validation (10CV) using differerf[JZZy rule-based classification systems by a fuzzy GBML algo-
subdivisions_ of the wine dz_ﬂfa set_into ten subsets (see [24]).cfhm. When we used fuzzy IF-THEN rules without certainty
10CV, the wine data are divided into ten subsets of almost thgydes, average classification rates decreased by more than 20
same size. Nine subsets are used as training data for generargment.
fuzzy IF-THEN rule§. The remaining single subset is used as;, this paper, we suggested that comprehensible fuzzy rule-
test data for evaluating the generated fuzzy IF-THEN rules. jsed systems with high classification performance can be de-
10CV, this procedure is performed ten times after exchangiggyned using linguistic values with fixed membership functions
the role_ of each subset so that every subset is used as {5%‘0 see Ishibuchit al.[12], [25]). The certainty grade of each
data. Since the error rate on test data in 10CV depends on ﬁjhfzy IF-THEN rule can be interpreted as the strength of that
partition of the entire data set, we evaluated the generalizatiQfie " |n general, the larger the certainty grade is, the larger the
performance by five trials of 10CV with different subdivisiongjecision area of the fuzzy IF-THEN rule is. As shown in Figs. 8
of the wine data set into ten subsets. and 9, the adjustment of certainty grades has a similar effect
Simulation results are summarized in Table IV for trainingy, cjassification boundaries to the modification of membership
data and Table V for test data. From these tables, we can &ggetions. When a set of linguistic values is given by domain
that the search ability of our fuzzy GBML algorithm was seaxperts for each attribute of a particular pattern classification
verely deteriorated by the use of fuzzy IF-THEN rules withowyoplem, the modification of the membership function of each
certainty grades. These results support the discussions in §ggyuistic value alters their original linguistic meaning. On the
tion V, where we concluded that certainty grades are necessghftrary, the modification of certainty grades does not change

K=3|K=4/K=5|K=6

for handling high-dimensional problems. the meaning of each linguistic value; it just affects the strength
of each fuzzy IF-THEN rule in the classification phase. One
VIl. CONCLUDING REMARKS problem of the use of certainty grades is their interpretation.

In this paper, we examined the effect of certainty grades & this paper, we interpreted the certainty grade of each fuzzy
the performance of fuzzy IF-THEN rules for pattern classificdF=THEN rule as the rule strength because the certainty grade
tion problems. First, we showed that the decision area of edt®s a direct effect on the size of the decision area. Nauck and
fuzzy IF-THEN rule with no certainty grade is always rectar<ruse [16] showed that the use of rule weights (i.e., certainty
gular (or hyper-rectangular) in the case of complete fuzzy ruisades) can be viewed as the modification of membership func-
tables. This means that classification boundaries are always pias in fuzzy reasoning. As shown in (10) in Section 1V, the
allel to the axes of the pattern space. Non-axis-parallel cl&gmpatibility grade of each fuzzy IF-THEN rule is multiplied
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by its certainty grade in our fuzzy reasoning method. Thus th@4] T. Murata, H. Ishibuchi, T. Nakashima, and M. Gen, “Fuzzy partition

use of the certainty grade can be interpreted as modifying the and input selection by genetic algorithms for designing fuzzy rule-based
b hio f . f h d f h b classification systems,” ihecture Notes in Computer Sciendé M.
membership function of each antecedent fuzzy set as shown by Porto, N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Berlin, Ger-

the dashed lines in Fig. 9 in Section IV. According to [16], the many: Springer-Verlag, 1998, vol. 1447, Evolutionary Programming IV,
certainty gradeC'F; can be viewed as modifying the member- pp. 407-416.

hio f fi f h ant dent f foll f [15] A. Gonzalez and R. Perez, “SLAVE: A genetic learning system based
ship tunction of each anteceden uzzyﬁs—;; asroliowstoran on an iterative approachlEEE Trans. Fuzzy Systol. 7, pp. 176-191,

n-dimensional problem when we use the production operation  Apr. 1999.

for the calculation of the Compatlblllty grade. [16] D. Nauck and R. Kruse, “How the |eal’ning of rule We|ghts affects the
interpretability of fuzzy systems,” iRroc. 7th IEEE Int. Conf. Fuzzy
SystemsAnchorage, AK, May 4-9, 1998, pp. 1235-1240.

pa,(mi) = YOF; - pa,, (z;). (23)  [17] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control|EEE Trans. Syst., Man, Cybern.
. .. . . vol. 15, pp. 116-132, Jan./Feb. 1985.
Even in this interpretation, the certainty grade does not chanq@S] JC. Beggek “Pattern analysis,”fandbook of Fuzzy Computatid.
the position of the antecedent fuzzy set (while the modified an- ~ H. Ruspini, P. Bonissone, and W. Pedrycz, Eds. London, U.K.: Insti-

tecedent fuzzy set is not normal anymore). Whatever interpre-  tute of Physics, 1998, ch. F6. .
. h f . des i d [19] O. Cordon, M. J. del Jesus, and F. Herrera, “A proposal on reasoning
tation we may accept, the use of certainty grades introduces'a methods in fuzzy rule-based classification systentst’ J. Approx.

new dimension of complexity to fuzzy IF-THEN rules. Thus Reason.vol. 20, no. 1, pp. 21-45, Jan. 1999.

the choice between the learning of membership functions an@®! H. Ishibuchi, T. Nakashima, and T. Morisawa, *Voting in fuzzy rule-
h f . d d d bl d , . based systems for pattern classification problefAgzzy Sets Systol.
the use of certainty grades may depend on problems and user's 153 no. 2. p. , Apr. 1999.

preference. As shown in this paper, these two schemes have sifpi] L. I. Kuncheva, Fuzzy Classifier Design Heidelberg, Germany:

ilar (but not the same) effects on the adjustment of cIassificatioF Physica-Verlag, 2000. y
. 22] ——, “How good are fuzzy if-then classifierslEEE Trans. Syst., Man,
boundaries. Cybern. Bvol. 30, pp. 501-509, Aug. 2000.
[23] K. Nozaki, H. Ishibuchi, and H. Tanaka, “Adaptive fuzzy rule-based
classification systems,JEEE Trans. Fuzzy Systvol. 4, no. 3, pp.
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