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Effect of Rule Weights in Fuzzy Rule-Based
Classification Systems
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Abstract—This paper examines the effect of rule weights in
fuzzy rule-based classification systems. Each fuzzy IF–THEN rule
in our classification system has antecedent linguistic values and a
single consequent class. We use a fuzzy reasoning method based
on a single winner rule in the classification phase. The winner
rule for a new pattern is the fuzzy IF–THEN rule that has the
maximum compatibility grade with the new pattern. When we use
fuzzy IF–THEN rules with certainty grades (i.e., rule weights),
the winner is determined as the rule with the maximum product
of the compatibility grade and the certainty grade. In this paper,
the effect of rule weights is illustrated by drawing classification
boundaries using fuzzy IF–THEN rules with/without certainty
grades. It is also shown that certainty grades play an important
role when a fuzzy rule-based classification system is a mixture of
general rules and specific rules. Through computer simulations,
we show that comprehensible fuzzy rule-based systems with high
classification performance can be designed without modifying the
membership functions of antecedent linguistic values when we use
fuzzy IF–THEN rules with certainty grades.

Index Terms—Fuzzy reasoning, fuzzy rule-based systems, pat-
tern classification, rule extraction.

I. INTRODUCTION

T HE main application area of fuzzy rule-based systems has
been control problems [1]–[4]. Fuzzy rule-based systems

for control problems can be viewed as approximators of non-
linear mappings from nonfuzzy input vectors to nonfuzzy output
values. Recently, fuzzy rule-based systems have often been ap-
plied to classification problems where nonfuzzy input vectors
are to be assigned to one of a given set of classes. Many ap-
proaches have been proposed for generating and learning fuzzy
IF–THEN rules from numerical data for classification problems.
For example, fuzzy rule-based classification systems are cre-
ated by simple heuristic procedures [5], [6], neurofuzzy tech-
niques [7]–[9], clustering methods [10], fuzzy nearest neighbor
methods [11], and genetic algorithms [12]–[15].

Fuzzy IF–THEN rules for a -class pattern classification
problem with attributes can be written as

Rule If is and and is

then Class (1)

where
-dimensional pattern vector;

antecedent linguistic value such as
smallandlarge ;
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consequent class (i.e., one of the given
classes);

number of fuzzy IF–THEN rules.
When we use a grid-type fuzzy partition (e.g., Ishibuchiet al.
[12]), the antecedent part of each fuzzy IF–THEN rule is spec-
ified by a combination of linguistic values. The total number
of possible combinations is when each attribute has
linguistic values . Thus each linguistic value
is shared by a number of fuzzy IF–THEN rules. On the other
hand, each fuzzy IF–THEN rule may have its ownantecedent
fuzzy sets (or a single-dimensional antecedent fuzzy set [10]).
In this paper, we use a grid-type fuzzy partition for generating
fuzzy IF–THEN rules.

The following fuzzy IF–THEN rules with certainty grades are
also used for our classification problem:

Rule If is and and is

then Class with

(2)

where is the certainty grade of the fuzzy IF–THEN rule
. Usually is a real number in the unit interval [0,1] (i.e.,

).
The aim of this paper is to examine the effect of certainty

grades on the performance of fuzzy rule-based classification
systems. Nauck and Kruse [16] discussed the effect of rule
weights in fuzzy rule-based systems for function approximation
problems. They showed how the learning of rule weights can be
equivalently replaced by the modification of the membership
functions of antecedent or consequent fuzzy sets. Based on
this observation, they also showed that it is not necessary to
use rule weights for the learning in fuzzy rule-based systems.
In this paper, we show a similar relation between rule weights
and membership functions in a totally different viewpoint from
[16]. We show that compact fuzzy rule-based classification
systems can be designed without adjusting membership func-
tions when we use fuzzy IF–THEN rules with certainty grades.
That is, the learning of membership functions can be partially
replaced by the adjustment of certainty grades.

In this paper, we assume that a set of antecedent linguistic
values is given by domain experts for each attribute of our-di-
mensional classification problem. This means that a fuzzy parti-
tion of the -dimensional pattern space is given. We also assume
that training (i.e., labeled) patterns ,

are given from classes. Our task is to design
a comprehensible fuzzy rule-based classification system from

1063–6706/01$10.00 ©2001 IEEE



ISHIBUCHI AND NAKASHIMA: EFFECT OF RULE WEIGHTS 507

the given numerical data using the given linguistic values. We
implicitly assume that modifying the membership functions of
the given linguistic values deteriorates the comprehensibility of
fuzzy IF–THEN rules. This is because the modification is likely
to cause a gap between modified membership functions and an
expert’s understanding of linguistic values. Based on this im-
plicit assumption, we try to design a fuzzy rule-based classifi-
cation system without modifying the given membership func-
tions. Of course, the learning of membership functions may be
necessary when classification performance is our main criterion.
Learning is also necessary when we have to construct a member-
ship function of each antecedent fuzzy set from numerical data
(i.e., when linguistic values are not given by domain experts).

As shown in (2), each rule has its own rule weight (i.e., cer-
tainty grade). Since the rule weight is a single real number, its
adjustment is much easier than the learning of antecedent fuzzy
sets (i.e., the learning of a number of parameter values of each
membership function). The simplicity of adjustment is one ad-
vantage of the use of rule weights. Another advantage is that the
classification performance can be improved without modifying
the membership function of each linguistic value. This means
that the comprehensibility of fuzzy rule-based systems is not
deteriorated. The rule weight can be interpreted as the strength
of each rule. As shown in this paper, the larger the rule weight
is, the larger the decision area of each rule is. As pointed out
by Nauck and Kruse [16], the use of the rule weight for each
fuzzy IF–THEN rule in (2) has the same effect on fuzzy rea-
soning as the modification of its antecedent fuzzy sets. Even
when we interpret the use of rule weights as the modification
of antecedent fuzzy sets, the position of each fuzzy set is not
changed, as shown in this paper (also see [16]).

This paper is organized as follows. Before discussing fuzzy
IF–THEN rules in (1) and (2) for classification problems,
we discuss the effect of rule weights on a simplified fuzzy
reasoning method for function approximation problems in
Section II. It is shown that the effect of rule weights is replaced
by the learning of consequent real numbers. Discussions in
Section II are based on Nauck and Kruse [16]. Then we de-
scribe fuzzy rule-based classification systems with no certainty
grades in Section III. In Section IV, we discuss the effect of
certainty grades on classification results from fuzzy IF–THEN
rules. The effect is clearly illustrated by drawing classification
boundaries obtained by fuzzy IF–THEN rules with/without
certainty grades. In Section V, we show that certainty grades
are necessary for simultaneously handling fuzzy IF–THEN
rules with different specificity levels (i.e., general rules and
specific rules). While general rules have only a few antecedent
conditions, specific rules have many antecedent conditions.
Specific rules are used for describing complicated classification
boundaries. Sometimes they work as exceptions to general
rules. In Section VI, the effect of certainty grades is examined
through computer simulations on commonly used data sets
in the literature. Simulation results show that compact fuzzy
rule-based systems with high classification performance can be
designed without adjusting membership functions when we use
certainty grades. Section VII concludes this paper.

II. FUZZY RULES FORFUNCTION APPROXIMATION

For function approximation problems, the following fuzzy
IF–THEN rules with consequent real numbers have often been
used:

Rule If is and and is

then is (3)

where is an output variable and is a consequent real
number. These fuzzy IF–THEN rules can be viewed as a sim-
plified version of the well-known Takagi–Sugeno fuzzy rules
with linear functions in the consequent part [17]. The estimated
output value for an input vector is
calculated as the weighted average of consequent real numbers

(4)

where is the compatibility grade of the fuzzy IF–THEN
rule with the input vector . The compatibility grade
is usually calculated by the product operator as

(5)

where is the membership function of the antecedent lin-
guistic value .

We have the following fuzzy IF–THEN rules by attaching a
rule weight to each rule in (3)

Rule If is and and is

then is with (6)

For handling these fuzzy IF–THEN rules, the simplified fuzzy
reasoning method in (4) is modified as

(7)

where we assume that the weight affects only the conse-
quent part (i.e., the consequent real number). If we handle
the product as a new real number (say ),
the formulation in (7) is reduced to (4) with the consequent real
number . This means that the learning of in (7) is totally
replaced by the learning of . As a result, we can conclude that
the rule weight in (6) is not necessary for function approxi-
mation problems. This discussion is based on Nauck and Kruse
[16], who discussed various ways for handling rule weights. For
example, they discussed the handling of rule weights in Mam-
dani-type fuzzy systems as well as Sugeno-type fuzzy systems.
They discussed the case where rule weights were applied to the
antecedent part of fuzzy IF–THEN rules as well as the case
where rule weights were applied to the consequent part. They
concluded that the learning of rule weights can be equivalently
replaced by the modification of the membership functions of an-
tecedent or consequent fuzzy sets.

III. CLASSIFICATION WITHOUT CERTAINTY GRADES

In our fuzzy rule-based classification system, we use a fuzzy
reasoning method based on a single winner rule in the classifi-
cation phase. Other fuzzy reasoning methods for classification
problems were studied in [18]–[20]. We use the single winner



508 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 1. Decision area of each fuzzy IF–THEN rule.

method because its classification mechanism is simple and in-
tuitive for human users.

When fuzzy IF–THEN rules have no certainty grades as in
(1), a new pattern is classified by the single
winner rule defined by

(8)

where is the compatibility grade of the fuzzy IF–THEN
rule with the new pattern , which is usually defined by the
product operator as in (5).

From (8), we can see that each fuzzy IF–THEN rule has
its own decision area in which new patterns are classified by
that rule. The decision area of each rule is illustrated in Fig. 1
where we have nine fuzzy IF–THEN rules generated by three
antecedent linguistic values (i.e.,S: small, M: medium, and
L: large) on each axis of the two-dimensional pattern space
[0,1] [0,1]. Each of the nine cells (or patches) in Fig. 1
corresponds to the decision area of each fuzzy IF–THEN rule.
Kuncheva [21], [22] proved that fuzzy IF–THEN rules with no
certainty grades have rectangular or hyperrectangular decision
areas when no fuzzy IF–THEN rules are missing in fuzzy rule
tables.

Examples of classification boundaries by the nine fuzzy
IF–THEN rules in Fig. 1 are shown in Fig. 2. As shown in
Fig. 2, if no rules are missing in fuzzy rule tables, classification
boundaries are always parallel to the axes of the pattern space
in the case of fuzzy IF–THEN rules without certainty grades.
This is because the decision area of each fuzzy IF–THEN
rule is a rectangular or hyperrectangular cell, as shown in
Fig. 1. Classification boundaries consist of the borders between
the decision areas of fuzzy IF–THEN rules with different
consequent classes. In Fig. 2, we specified the consequent class

of each fuzzy IF–THEN rule as follows:

(9)

where is the number of given classes. In (9), the consequent
class is specified as the dominant class in the fuzzy subspace
corresponding to the antecedent part of each fuzzy IF–THEN
rule.

Fig. 2. Classification boundary by the nine fuzzy IF–THEN rules.

Fig. 3. Classification boundary after the modification of the membership
functions.

Fig. 4. Decision area of each fuzzy IF–THEN rule in the case of incomplete
fuzzy rule tables.

In Fig. 2, six patterns are misclassified. Classification bound-
aries can be adjusted by modifying the membership functions
of the linguistic values. Fig. 3 is an example of an adjusted clas-
sification boundary where almost all patterns are correctly clas-
sified. From Fig. 3, we can see that the classification boundary
after the modification of the membership functions is still par-
allel to the axes of the pattern space because the decision area
of each fuzzy IF–THEN rule is a rectangular cell. As shown in
Fig. 3, the decision area can be adjusted by modifying the mem-
bership functions.

When fuzzy rule tables are incomplete (i.e., some fuzzy
IF–THEN rules are missing), the decision area of each fuzzy
IF–THEN rule is not always rectangular. In this case, classi-
fication boundaries are not always parallel to the axes of the
pattern space. This is illustrated in Fig. 4 where the decision
area of each fuzzy IF–THEN rule is drawn using incomplete
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Fig. 5. Classification boundary by nonfuzzy IF–THEN rules.

fuzzy rule tables. Fig. 4 corresponds to the situations
where is missing in Figs. 1 and 3.

Fig. 5 shows the difference between nonfuzzy IF–THEN rules
and fuzzy IF–THEN rules with no certainty grades. When rule
tables are complete as in Figs. 1–3, these two kinds of IF–THEN
rules have the same rectangular decision areas. For example,
each nonfuzzy IF–THEN rule in Fig. 5 has the same decision
area as the corresponding fuzzy IF–THEN rule in Fig. 2. Even in
this case, the classification boundary in Fig. 5 is not exactly the
same as that in Fig. 2. In Fig. 5, the upper right rule (i.e.,in
Fig. 1) cannot be generated because there is no training pattern
compatible with its antecedent part. Thus the classification of
any pattern in its decision area (i.e., shaded rectangular cell in
Fig. 5) is rejected.

The difference between fuzzy and nonfuzzy partitions be-
comes clearer if we consider how many rules can be generated
from a single training pattern (i.e., how many rules can be acti-
vated by a single training pattern). In the case of the crisp parti-
tion in Fig. 6(b), only a single nonfuzzy IF–THEN rule can be
generated from a single training pattern. That is, the nonfuzzy
IF–THEN rule in the shaded area including the training pat-
tern is generated. This is because there is no overlap between
neighboring subspaces (i.e., no overlap between neighboring
crisp intervals on each axis). On the other hand, if we use the
fuzzy partition in Fig. 6(a), four fuzzy IF–THEN rules in the
shaded area can be generated from the single training pattern.
The generated four rules cover the larger square region denoted
by dashed lines. In general, 2fuzzy IF–THEN rules can be gen-
erated from a single training pattern for an-dimensional pat-
tern classification problem when we use a fuzzy partition such
as Fig. 6(a).

From the comparison between Figs. 2 and 5, we can see that
the same classification boundary is obtained from the fuzzy
IF–THEN rules in Fig. 2 and the nonfuzzy IF–THEN rules in
Fig. 5. Since the decision area of each fuzzy IF–THEN rule is
a rectangle or hyperrectangle when there is no missing rule in a
fuzzy rule table (see Kuncheva [21], [22]), classification bound-
aries by complete fuzzy rule tables also can be realized by non-
fuzzy rule tables. This is not the case when each fuzzy IF–THEN
rule has a rule weight. That is, decision areas by fuzzy IF–THEN
rules with rule weights are not always rectangles or hyperrect-
angles, as shown in the next section.

(a)

(b)

Fig. 6. Generated rules by a single training pattern.

IV. CLASSIFICATION WITH CERTAINTY GRADES

When we use the fuzzy IF–THEN rules with certainty
grades in (2), the winner rule for a new pattern

is defined by

(10)

As in the previous section, each fuzzy IF–THEN rule has its
own decision area. The size of the decision area of each rule is
determined by its certainty grade and the membership functions
of its antecedent linguistic values. That is, the decision area can
be adjusted by modifying the certainty grade even if we do not
change the membership functions. Some examples of decision
areas are shown in Fig. 7. Those decision areas correspond to the
nine fuzzy IF–THEN rules in Fig. 1. It should be noted that we
do not modify the membership functions of the three linguistic
values“S: small,” “M: medium,” and“L: large” in Fig. 1. We
only change the certainty grade of each fuzzy IF–THEN rule
as shown in Table I. Fig. 7(a) corresponds to the case where all
the nine fuzzy IF–THEN rules have the same certainty grade.
In this case, the decision area of each fuzzy IF–THEN rule is
the same as the case with no certainty grades (see Fig. 1). In
Fig. 7(b)–(f), certainty grades are not the same. In general, the
larger the certainty grade of a fuzzy IF–THEN rule is, the larger
its decision area is. From Fig. 7, we can see that the decision area
of each fuzzy IF–THEN rule is not always rectangular even in
the case of complete fuzzy rule tables [i.e., Fig. 7(c), (d) and
(f)].

For illustrating the adjustment of classification boundaries,
let us assume that we have the following three fuzzy IF–THEN
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Fig. 7. Decision area of each fuzzy if-then rule with a different certainty grade.

TABLE I
CERTAINTY GRADE OF EACH OF THE NINE FUZZY IF-THEN RULES IN FIG. 7.

THE NINE RULES ARE LABELED AS IN FIG. 7(a)

rules for a single-dimensional pattern classification problem on
the unit interval [0,1]:

If is then Class

If is then Class

If is then Class

The unit interval is classified by these three rules as Fig. 8(a).
When we do not use certainty grades, the adjustment of clas-
sification boundaries is performed by modifying the member-
ship function of each antecedent linguistic value as shown in
Fig. 8(b). On the other hand, when we use certainty grades, the
adjustment of classification boundaries is performed by mod-
ifying the certainty grade of each fuzzy IF–THEN rule. This
is illustrated in Fig. 9, where dashed lines show the product of
the certainty grade and the compatibility grade for each fuzzy
IF–THEN rule.

As in the previous section, the consequent classof each
fuzzy IF–THEN rule can be determined from the given
training patterns by (9). That is, the consequent classis
specified as the dominant class in the fuzzy subspace corre-
sponding to the antecedent part (see Fig. 10). The certainty
grade can be viewed as the grade of the dominance of the
consequent class. For example, the certainty grade is specified
as follows for a two-class pattern classification problem [5].

Fig. 8. Adjustment of classification boundaries using fuzzy IF–THEN rules
without certainty grades.

Fig. 9. Adjustment of classification boundaries using fuzzy IF–THEN rules
with certainty grades.

Fig. 10. Determination of the consequent class and the certainty grade.

1) When the consequent class is Class 1

(11)

where

(12)

2) When the consequent class is Class 2

(13)

From (11) and (13), we can see that . When all
compatible patterns with the fuzzy IF–THEN rule (i.e., such
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Fig. 11. Generated fuzzy IF–THEN rules.

Fig. 12. Decision area of each rule and classification boundary.

patterns that ) belong to the same class, the certainty
grade takes its maximum value (i.e., ). On the
other hand, if no class is clearly dominant, the certainty grade is
almost the same as its minimum value (i.e., in the case
of ). The latter characteristic feature
is the main motivation to use the formulations in (11)–(13). In
Fig. 10, we illustrate the determination of the consequent class
and the certainty grade. For the purpose of illustration, we use
four different sets of training patterns in Fig. 10.

From the given training patterns in Fig. 2, we specified
the consequent class and the certainty grade of each fuzzy
IF–THEN rule in a 3 3 fuzzy rule table. We used the
three linguistic values in Fig. 1 with no modification of their
membership functions. Generated fuzzy IF–THEN rules are
shown in Fig. 11. One may think from Figs. 2 and 11 that the
certainty grade of the upper left fuzzy IF–THEN rule (i.e., 0.41)
is too small. When we use the nonfuzzy partition in Fig. 5, the
certainty grade of the corresponding nonfuzzy rule is 1.0. Since
the upper left fuzzy IF–THEN rule in Fig. 11 is compatible
with some patterns from Class 2 outside the corresponding
rectangular cell in Fig. 11 (see Fig. 2), the certainty grade 0.41
is much smaller than 1.0 (i.e., the certainty grade in the case
of the nonfuzzy partition). The classification boundary by the
fuzzy IF–THEN rules in Fig. 11 is shown in Fig. 12. While six
patterns were misclassified in Fig. 2 without certainty grades,
two patterns are misclassified in Fig. 12 with certainty grades.
From the comparison between Figs. 2 and 12, we can see
that the use of certainty grades can improve the classification
ability of fuzzy IF–THEN rules. We can also see the difference
between the learning of membership functions and the use of
certainty grades from the comparison between Figs. 3 and 12.

The formulation for determining the certainty grade in
(11)–(13) is extended to the case of-class pattern classifica-
tion problems as follows [5]:

(14)

where is the consequent class and

(15)

V. HANDLING OF GENERAL AND SPECIFICRULES

In this section, we illustrate the necessity of certainty grades
when a fuzzy rule-based classification system is a mixture of
general and specific fuzzy IF–THEN rules. Let us assume that
we have the following two fuzzy IF–THEN rules:

If is and is and

is then Class (16)

If is then Class (17)

The fuzzy IF–THEN rule is specific while is general.
From the definition of the compatibility grade in (5), we can see
that cannot have a larger compatibility grade thanfor any
pattern

for (18)

This means that the specific fuzzy IF–THEN rule is never
selected as the winner rule in the classification phase for classi-
fying new patterns.

When the above two fuzzy IF–THEN rules are given, we in-
tuitively think that may be used as an exceptional rule to.
That is, new patterns withsmall , small , andsmall are
intuitively classified as Class 2 by the fuzzy IF–THEN rule
while does not have larger compatibility grades with those
patterns than . We can realize such intuitive reasoning as a
fuzzy reasoning method by assigning a larger certainty grade to

than (i.e., ). In this case, the specific fuzzy
IF–THEN rule is selected as the winner rule for a new pat-
tern when the following inequality holds:

(19)

It is intuitively acceptable that specific rules have larger cer-
tainty grades than general rules. Since general rules cover large
areas of the pattern space, they may include several exceptions.
On the other hand, specific rules usually include no exceptions
because they cover very small areas. Therefore, it is natural to
assign larger certainty grades to specific rules than general rules.
Large certainty grades assigned to specific rules in turn give
higher priority to those rules than general rules in the classi-
fication phase.

As an example, let us consider a pattern classification
problem in Fig. 13. All the given training patterns can be cor-
rectly classified by 25 fuzzy IF–THEN rules without certainty
grades corresponding to the 5 5 fuzzy partition in Fig. 14.
If we use certainty grades, all the given training patterns can



512 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 13. An example of a pattern classification problem.

Fig. 14. Classification boundary by 25 fuzzy IF–THEN rules without certainty
grades.

be correctly classified by the following three fuzzy IF–THEN
rules:

If is then Class with (20)

If is then Class with (21)

is Class with (22)

wheremediumandlarge correspond to the triangular member-
ship functions and in Fig. 14, respectively. The certainty
grades of these rules were determined by the procedure in the
previous section. The fuzzy IF–THEN rule in (22) with no an-
tecedent conditions can be viewed as having “don’t care” con-
ditions on both of the two attributes and . A rectangular
membership function that covers the entire domain [0,1] of each
attribute can be used as the antecedent fuzzy set corresponding
to the “don’t care” condition. The fuzzy IF–THEN rules in (20)
and (21) have a “don’t care” condition on and , respec-
tively.

Since the certainty grade of the fuzzy IF–THEN rule in
(22) is very small, this rule is selected as the winner rule only
when a new pattern does not have high compatibility grades
with the other rules. In this manner, general and specific fuzzy

IF–THEN rules with certainty grades are efficiently utilized
in our fuzzy rule-based classification system. If we remove
the certainty grades from the above three rules, no pattern is
classified as Class 2 because the most general rule (22) with
the Class 1 consequence covers the entire pattern space.

As shown in the above example, certainty grades are nec-
essary when our fuzzy rule-based classification system is a
mixture of specific and general fuzzy IF–THEN rules. General
fuzzy IF–THEN rules, however, are not always necessary in the
case of low-dimensional problems with a few input variables.
For example, the two-dimensional problem in Fig. 13 can be
handled by 25 fuzzy IF–THEN rules without certainty grades
in Fig. 14. Of course, the above three rules are more concise
and intuitive than those 25 fuzzy IF–THEN rules in Fig. 14.
On the other hand, general fuzzy IF–THEN rules are necessary
for handling high-dimensional problems with many input
variables. Let be the number of antecedent linguistic values
for the th input variable. In this case, an-dimensional fuzzy
rule table consists of fuzzy IF–THEN rules. The
number of fuzzy IF–THEN rules exponentially increases with
the number of input variables. It is practically impossible to
use all fuzzy IF–THEN rules for a high-dimensional problem
(i.e., when is large). Thus we may use only a part of such
a huge number of fuzzy IF–THEN rules. The entire input
space, however, cannot be covered by a small number of
fuzzy IF–THEN rules because each rule covers only a tiny
portion of the input space. Thus general fuzzy IF–THEN rules
with a few antecedent conditions are necessary for handling
high-dimensional problems because each general rule covers
a large fuzzy subspace. That is, it is possible to construct
compact fuzzy rule-based systems using a small number of
general fuzzy IF–THEN rules for high-dimensional problems.

From the above discussions, we can see that general fuzzy
IF–THEN rules are necessary for handling high-dimensional
problems. We also showed that certainty grades are necessary
for handling fuzzy IF–THEN rules with different specificity
levels. As a result, we conclude that certainty grades are neces-
sary for handling high-dimensional problems. The necessity of
certainty grades is examined by computer simulations on wine
data with 13 input variables in the next section.

VI. PERFORMANCEEVALUATION

We have already demonstrated that classification boundaries
can be adjusted by modifying the certainty grade of each fuzzy
IF–THEN rule even when we use antecedent linguistic values
with fixed membership functions. In this section, we examine
the effect of certainty grades on the performance of fuzzy rule-
based classification systems through computer simulations on
the well-known iris data. We also examine the necessity of cer-
tainty grades for handling high-dimensional problems through
computer simulations on wine data.

The iris data consist of 150 samples with four continuous
attributes from three classes. We used the iris data after normal-
izing each attribute value to a real number in the unit interval
[0,1]. That is, the iris data set was handled as a three-class
pattern classification problem in the four-dimensional unit
hypercube [0,1]. Since the generalization ability of fuzzy
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IF–THEN rules with certainty grades had already been exam-
ined for the iris data by Nozakiet al. [23], we only examined
the performance of fuzzy IF–THEN rules without certainty
grades. As in [23], we used twofold cross-validation (2CV) and
leaving-one-out (LV1) for evaluating the generalization ability
(see Weiss and Kulikowski [24]). In 2CV, the iris data are
divided into two subsets of the same size. That is, each subset
consists of 75 samples. One subset is used as training data for
generating fuzzy IF–THEN rules. The other subset is used as
test data for evaluating the generated fuzzy IF–THEN rules.
The same training-and-testing procedure is also performed
after exchanging the role of each subset. Since the error rate on
test data in 2CV depends on the partition of the entire data set
into the two subsets, we iterated 2CV ten times using different
partitions of the iris data set. On the other hand, LV1 uses only
a single sample as test data. The other 149 samples are used as
training data. This procedure is iterated 150 times until all the
given 150 samples are used as test data. In general, the average
classification rate on test data in the LV1 is higher than that in
the 2CV because the size of training data in the LV1 is much
larger than that in the 2CV. The average classification rate in
the 2CV can be viewed as indicating the generalization ability
when the size of training data is small.

In our computer simulations on the iris data, we homo-
geneously partitioned the pattern space [0,1]by triangular
fuzzy sets as in Fig. 14. We examined the performance of
fuzzy IF–THEN rules without certainty grades for fine fuzzy
partitions as well as coarse fuzzy partitions. We used five
different fuzzy partitions where each axis of the pattern space
[0,1] was uniformly divided into triangular fuzzy sets

in the same manner as Fig. 14 and other
figures in this paper. For example, Figs. 6(a) and 14 correspond
to the cases of . Figs. 1 and 2 correspond to the case
of . Each of the five fuzzy partitions was used for
generating a fuzzy rule-based system from training data. That
is, a four-dimensional fuzzy rule table
was generated from each fuzzy partition. For example, when

, a fuzzy rule-based system is a 2 2 2 2
fuzzy rule table with 16 fuzzy IF–THEN rules. A single
fuzzy IF–THEN rule was generated in each cell (i.e., each
fuzzy subspace) of each fuzzy partition. Of course, all the

fuzzy IF–THEN rules cannot be always
generated. In general, many fuzzy IF–THEN rules cannot be
generated when we use fine fuzzy partitions. This is because
each cell in fine fuzzy partitions is very small and likely to
include no training patterns. When no training patterns are
compatible with the antecedent part of a fuzzy IF–THEN rule,
we cannot specify its consequent part (thus we cannot generate
the fuzzy IF–THEN rule).

Simulation results are summarized in Tables II and III, where
we also cite the results reported by Nozakiet al.[23]. In these ta-
bles, heuristic CF means that the certainty grade of each fuzzy
IF–THEN rule was determined by the heuristic procedure de-
scribed in Section IV. Adjusted CF means that the certainty
grade was adjusted by the reward-and-punishment scheme in
Nozaki et al. [23]. Classification performance of various non-
fuzzy classification methods on the iris data was examined using
the LV1 in Weiss and Kulikowski [24] (e.g., 98.0% by the linear

TABLE II
AVERAGE CLASSIFICATION RATES ON TEST DATA EVALUATED

BY THE 2CV METHOD

TABLE III
AVERAGE CLASSIFICATION RATES ON TEST DATA EVALUATED BY THE

LV1 METHOD

discriminant, 96.0% by the nearest neighbor method, 96.7% by
the back-propagation algorithm, etc.).

From Tables II and III, we can observe the following.

1) The performance of fuzzy IF–THEN rules without cer-
tainty grades is poor especially when they are generated
from the coarsest fuzzy partition (i.e., ). In this
case, the performance of fuzzy IF–THEN rules with
heuristic certainty grades is also poor.

2) By adjusting the certainty grade of each fuzzy IF–THEN
rule, we can improve the classification performance of
fuzzy rule-based systems. This is prominent in the case
of coarse fuzzy partitions.

3) In the case of fine fuzzy partitions with and
, the effect of the adjustment of certainty grades is not

clear.
4) The performance of fuzzy IF–THEN rules without cer-

tainty grades is very sensitive to the choice of a fuzzy
partition. This sensitivity is remedied by introducing cer-
tainty grades and adjusting them.

The necessity of certainty grades for handling high-dimen-
sional problems was examined through computer simulations
on wine data. The wine data set is a three-class pattern classi-
fication problem with 13 continuous attributes. It is impractical
to design fuzzy rule-based classification systems using 13-di-
mensional fuzzy rule-tables due to the exponential increase in
the number of fuzzy IF–THEN rules. We used a Michigan-style
fuzzy genetics-based machine learning (GBML) algorithm [25]
for designing compact fuzzy rule-based classification systems
for the wine data. In our fuzzy GBML algorithm for the wine
data, each fuzzy IF–THEN rule is denoted by a string of the
length 13 as “ .” Since the consequent class and
the certainty grade of each fuzzy IF–THEN rule can be easily
specified by the heuristic procedure in Section IV, only the an-
tecedent part is coded. Fuzzy IF–THEN rules without certainty
grades are also coded in the same manner. In this coding, “don’t
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TABLE IV
AVERAGE CLASSIFICATION RATES ONTRAINING DATA (WINE DATA)

TABLE V
AVERAGE CLASSIFICATION RATES ON TEST DATA (WINE DATA)

care” is handled as an additional antecedent linguistic value.
Thus is one of the given linguistic values or “don’t care.” We
use this coding for generating fuzzy IF–THEN rules with dif-
ferent specificity levels (i.e., with a different number of “don’t
care” conditions in the antecedent part) by genetic operations in
our fuzzy GBML algorithm (for details, see [25]).

In computer simulations on the wine data using our fuzzy
GBML algorithm, the population size (i.e., the number of
fuzzy IF–THEN rules) was specified as 60. Classification
performance was evaluated by using all the 178 samples in the
wine data as training data. Because our fuzzy GBML algorithm
is a stochastic search algorithm, the average classification
rate was calculated by its 20 iterations. On the other hand,
classification performance on test data was evaluated by five
iterations of the tenfold cross-validation (10CV) using different
subdivisions of the wine data set into ten subsets (see [24]). In
10CV, the wine data are divided into ten subsets of almost the
same size. Nine subsets are used as training data for generating
fuzzy IF–THEN rules. The remaining single subset is used as
test data for evaluating the generated fuzzy IF–THEN rules. In
10CV, this procedure is performed ten times after exchanging
the role of each subset so that every subset is used as test
data. Since the error rate on test data in 10CV depends on the
partition of the entire data set, we evaluated the generalization
performance by five trials of 10CV with different subdivisions
of the wine data set into ten subsets.

Simulation results are summarized in Table IV for training
data and Table V for test data. From these tables, we can see
that the search ability of our fuzzy GBML algorithm was se-
verely deteriorated by the use of fuzzy IF–THEN rules without
certainty grades. These results support the discussions in Sec-
tion V, where we concluded that certainty grades are necessary
for handling high-dimensional problems.

VII. CONCLUDING REMARKS

In this paper, we examined the effect of certainty grades on
the performance of fuzzy IF–THEN rules for pattern classifica-
tion problems. First, we showed that the decision area of each
fuzzy IF–THEN rule with no certainty grade is always rectan-
gular (or hyper-rectangular) in the case of complete fuzzy rule
tables. This means that classification boundaries are always par-
allel to the axes of the pattern space. Non-axis-parallel clas-

sification boundaries can be generated only when some rules
are missing (i.e., fuzzy rule tables are incomplete). This sug-
gests the possibility of adjusting classification boundaries by
selecting fuzzy IF–THEN rules when we do not use certainty
grades. On the other hand, fuzzy IF–THEN rules with certainty
grades have decision areas of various shapes even when fuzzy
rule tables are complete (i.e., when no rules are missing). We
showed that classification boundaries are not always parallel to
the axes of the pattern space in the case of fuzzy IF–THEN rules
with certainty grades. We also showed that classification bound-
aries can be adjusted by modifying the certainty grade of each
fuzzy IF–THEN rule even when we do not change the mem-
bership functions of antecedent fuzzy sets. Then we showed
the necessity of certainty grades for handling fuzzy IF–THEN
rules of different specificity levels. This leads to the necessity
of certainty grades when we apply fuzzy rule-based systems to
high-dimensional problems. Lastly, we examined the effect of
certainty grades through computer simulations on the iris data
and the wine data. Simulation results on the iris data showed
that the use of certainty grades and their adjustment can im-
prove the classification performance of fuzzy IF–THEN rules.
This effect was prominent especially when we used coarse fuzzy
partitions. When the fuzzy partition was fine, the effect of cer-
tainty grades was not significant. In the case of fine fuzzy parti-
tions, the pattern space was divided into small fuzzy subspaces
(i.e., small cells or patches). Thus we obtained high classifica-
tion rates without adjusting certainty grades (i.e., without ad-
justing classification boundaries). On the other hand, simulation
results on the wine data demonstrated the necessity of certainty
grades for handling high-dimensional problems. We designed
fuzzy rule-based classification systems by a fuzzy GBML algo-
rithm. When we used fuzzy IF–THEN rules without certainty
grades, average classification rates decreased by more than 20
percent.

In this paper, we suggested that comprehensible fuzzy rule-
based systems with high classification performance can be de-
signed using linguistic values with fixed membership functions
(also see Ishibuchiet al. [12], [25]). The certainty grade of each
fuzzy IF–THEN rule can be interpreted as the strength of that
rule. In general, the larger the certainty grade is, the larger the
decision area of the fuzzy IF–THEN rule is. As shown in Figs. 8
and 9, the adjustment of certainty grades has a similar effect
on classification boundaries to the modification of membership
functions. When a set of linguistic values is given by domain
experts for each attribute of a particular pattern classification
problem, the modification of the membership function of each
linguistic value alters their original linguistic meaning. On the
contrary, the modification of certainty grades does not change
the meaning of each linguistic value; it just affects the strength
of each fuzzy IF–THEN rule in the classification phase. One
problem of the use of certainty grades is their interpretation.
In this paper, we interpreted the certainty grade of each fuzzy
IF–THEN rule as the rule strength because the certainty grade
has a direct effect on the size of the decision area. Nauck and
Kruse [16] showed that the use of rule weights (i.e., certainty
grades) can be viewed as the modification of membership func-
tions in fuzzy reasoning. As shown in (10) in Section IV, the
compatibility grade of each fuzzy IF–THEN rule is multiplied
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by its certainty grade in our fuzzy reasoning method. Thus the
use of the certainty grade can be interpreted as modifying the
membership function of each antecedent fuzzy set as shown by
the dashed lines in Fig. 9 in Section IV. According to [16], the
certainty grade can be viewed as modifying the member-
ship function of each antecedent fuzzy set as follows for an

-dimensional problem when we use the production operation
for the calculation of the compatibility grade:

(23)

Even in this interpretation, the certainty grade does not change
the position of the antecedent fuzzy set (while the modified an-
tecedent fuzzy set is not normal anymore). Whatever interpre-
tation we may accept, the use of certainty grades introduces a
new dimension of complexity to fuzzy IF–THEN rules. Thus
the choice between the learning of membership functions and
the use of certainty grades may depend on problems and user’s
preference. As shown in this paper, these two schemes have sim-
ilar (but not the same) effects on the adjustment of classification
boundaries.
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