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ABSTRACT: Modulation of the activity of an acid/base switchable dithiocarbamate RAFT agent, 

cyanomethyl (4-fluorophenyl)(pyridin-4-yl)carbamodithioate, with the Lewis acid scandium triflate 

(Sc(OTf)3) was investigated to examine the ability to deliver improved control over RAFT 

copolymerizations involving both more-activated and less-activated monomers – specifically the 

copolymerization of methyl acrylate (MA) and vinyl acetate (VAc). The introduction of either 0.5 or 1 



molar equivalents of Sc(OTf)3, with respect to RAFT agent, into a RAFT copolymerization of MA and 

VAc provides substantially improved control resulting in significantly reduced molar mass dispersities (Ð) 

(~1.1-1.3) than achieved in its absence (ca. Ð ~1.3-1.4). Furthermore, similar introduction of Sc(OTf)3 

into MA homopolymerization mediated by the same RAFT agent also delivered polymers of very low Ð 

(~1.15). Sc(OTf)3 was also found to lower the rate of polymerization, and alter the copolymerization 

reactivity ratios for MA and VAc. Increasing the Lewis acid concentration provides enhanced 

incorporation of the less active monomer, VAc, into the copolymers ([Sc(OTf)3]/[RAFT] =0, rMA = 4.04,  

rVAc = 0.032; [Sc(OTf)3]/[RAFT] = 0.5, rMA = 3.08,  rVAc = 0.17; [Sc(OTf)3]/[RAFT] =1, rMA = 2.68,  rVAc = 

0.62). Carbon nuclear magnetic resonance (13C NMR) and differential scanning calorimetry (DSC) 

analysis of preparative samples confirm the enhanced VAc incorporation with increased levels of 

Sc(OTf)3. Importantly the inclusion of Sc(OTf)3 does not deleteriously affect the thiocarbonylthio end-

groups of the RAFT polymers, with high end-group fidelity being observed in all copolymerizations. 

INTRODUCTION 

In circumstances where a conventional radical copolymerization normally results in a blend of 

compositionally distinct polymers due to compositional drift in the monomer feed,1 copolymerization by 

reversible deactivation radical polymerization (RDRP) provides a homogeneous gradient copolymer.1-7 In 

a standard batch process, the relative steepness of the gradient along each polymer chain is determined by 

the relative reactivity of each of the monomers during polymerization (i.e. the copolymerization reactivity 

ratios, r1 and r2); in general a greater difference between r1 and r2 leads to a steeper gradient. 

For preparation of well-defined polymers that incorporate both “more activated monomers” (MAMs, i.e. 

(meth)acrylates, (meth)acrylamides), styrenes) and “less activated monomers” (LAMs, i.e. vinyl esters, 

vinylamides), which have vastly different reactivities in radical polymerization, RAFT is the most 

appealing of the RDRP techniques. Due to its degenerative transfer mechanism RAFT can deliver well 

defined polymers of either MAMs or LAMs by tailoring of the structure of the thiocarbonylthio RAFT 

agent (ZC(=S)SR).8 Indeed block copolymers of MAMs and LAMs with defined molar mass and low 



dispersity (Đ) have been synthesised using acid/base “switchable” N-4-pyridinyl dithiocarbamate RAFT 

agents (see Scheme 1).9-12  

 

Scheme 1: Acid/Base “switchable” RAFT agents (where 1 controls the polymerization of LAMs; 1-H+ 

controls the polymerization of MAMs)  

 

1  1-H+ 

The case of statistical copolymerization of MAMs and LAMs is more complex. In the presence of a lower 

activity RAFT agent (low chain transfer coefficient (Ctr)) such as an O-alkyl xanthate (Z=OR’), N-alkyl-

N-aryldithiocarbamate(Z=NR’Ar) or N-alkyl-N-pyridinyldithiocarbamate (Z=NR’-4-Py) the rate of 

addition of the propagating MAM-derived radical to the thiocarbonyl is low. This results in many 

propagation events per active cycle and gives polymers of relatively high Đ. Conversely, when attempting 

the polymerization of a LAM in the presence of a high activity RAFT agent such as a dithioester (Z=R’ or 

Ar) or trithiocarbonate (Z=SR’ or SAr) inhibition typically occurs due to the slow fragmentation of the 

highly reactive, less stabilised LAM-based propagating radicals. Even if one concedes the possibility of 

favourable rates of cross propagation of PLAM• to MAM versus degenerative chain transfer, issues 

associated with non-ideal RAFT equilibria such as slow fragmentation will inevitably arise when using 

these active RAFT agents in a polymerization involving LAMs. Clearly, if one wishes to control the 

polymerization of both MAMs and LAMs concurrently during copolymerization some balance with 

respect to RAFT agent structure must be sought.  

Although it has been shown that certain dithiocarbamates and xanthates with intermediate activity provide 

control over MAM/LAM copolymerization (e.g. N,N-dimethylacrylamide (DMAm)/vinyl acetate (VAc) 

with either 3,5-dimethyl-1H-pyrazolecarbodithioates13 or 4-chloro-3,5-dimethyl-1H-



pyrazolecarbodithioates,14 Ð~1.2, tert-butyl acrylate (tBuA)/VAc with pentaflurorophenyl xanthate, 

Ð~1.3),15 the degree of control achieved was not ideal. No detailed analysis was reported in this instance. 

However we can surmise that the reactivity ratios ensure that the MAM is consumed relatively rapidly. 

Retardation was observed in the latter stages of copolymerization when the monomer feed comprises only 

the LAM. 

The ideal approach to obtain control over a copolymerization of MAMs and LAMs would encompass 

modulation of the RAFT agent activity, through an activation/deactivation process, during the 

polymerization reaction (see Scheme 2). Indeed this would facilitate both efficient addition of MAM-

derived propagating radicals to the thiocarbonyl of the activated (macro)-RAFT agent (2 or 4) and 

promote fragmentation of LAM-derived propagating radicals from the less stabilised, deactivated RAFT 

intermediate (6).  

 
Scheme 2: Proposed equilibria of Reversible-Addition Fragmentation Chain Transfer (RAFT) Polymerization 

and RAFT agent activation/deactivation via Lewis acid interaction 

 

Acid/base equilibria involving Lewis basic “switchable” dithiocarbamate RAFT agents can be exploited in 

this context. As the hydrolytic sensitivity of LAM derived end-groups precludes use of protic acids,10, 16 

we instead propose the use of the hydrolytically stable Lewis acid17 scandium triflate (Sc(OTf)3) to 

preserve the RAFT end-group during the polymerization. Rare earth triflates, including Sc(OTf)3, 

Yb(OTf)3 and Y(OTf)3, have previously been exploited to achieve stereocontrol in conventional radical 

polymerization18-23 and RDRP.23-29 Additionally, the compatibility of Lewis acid switching with RAFT 

polymerization has been illustrated previously with aluminium triflate (Al(OTf)3).9, 30  
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Herein, we describe the effect the Lewis acid Sc(OTf)3 has on molar mass, Đ and the relative monomer 

reactivity during the RAFT homo- and copolymerization of methyl acrylate (MA) and vinyl acetate (VAc) 

(exemplar MAMs and LAMs respectively). Through estimation of the copolymerization reactivity ratios 

and by analysis the resultant copolymers by nuclear magnetic resonance (NMR) and differential scanning 

calorimetry (DSC) additional information on the distribution of each type of monomer unit along the 

polymer backbone was obtained. 

EXPERIMENTAL 

Materials.  

All solvents were of analytical reagent grade unless otherwise stated. Sc(OTf)3, methyl acrylate (MA), 

VAc were purchased from Sigma-Aldrich and used as received unless otherwise stated. 2,2'-Azobis[2-

methyl propionitrile] (AIBN) was purchased from Acros and purified by recrystallization twice from 

methanol prior to use. MA and VAc were filtered through neutral alumina activity I (70-230 mesh) and 

fractionally distilled under reduced pressure immediately before use. All deuterated solvents were 

obtained from Cambridge Isotope Laboratories. Cyanomethyl (4-fluorophenyl)(pyridin-4-

yl)carbamodithioate (8),31 cyanomethyl O-ethyl carbonodithioate (9)32 and cyanomethyl 

dodecylcarbonotrithioate (10)33 were prepared by the reported literature procedures.  

Characterization.  

NMR spectra were obtained with a Bruker Avance 300 or 400 MHz spectrometer. 1H and 13C NMR 

spectra were internally referenced to residual solvent.34 

Size exclusion chromatography (SEC) of poly(methyl acrylate) (PMA) and poly(methyl acrylate-co-vinyl 

acetate) (PMA-co-PVAc) was performed on a Shimadzu system equipped with a CMB-20A controller 

system, a SIL-20A HT autosampler, a LC-20AT tandem pump system, a DGU-20A degasser unit, a CTO-

20AC column oven, a RDI-10A refractive index detector, 4 × Waters Styragel columns (HT2, HT3, HT4 

and HT5, each 300 mm × 7.8 mm providing an effective molar mass range of 100-600000) and N,N-

dimethylacetamide (DMAc) (containing 2.1 g L-1 lithium chloride (LiCl)) at 80 °C (flow rate: 1 mL min-1. 



Number (Mn) and weight-average (Mw) molar masses were evaluated using Shimadzu LC Solution 

software. The SEC columns were calibrated with low dispersity polystyrene (PSt) standards (Polymer 

Laboratories) ranging from 3100 to 650000 g mol-1 and molar masses are reported as PSt equivalents. A 

3rd order polynomial was used to fit the log Mp vs. time calibration curve, which was linear across the 

molar mass ranges.  

DSC was performed on a Mettler Toledo DSC1 (model 700) equipped with FRS5 thermocouple sensor 

and robotic sample changer. The copolymer samples were subjected to a heat-cool-heat protocol similar to 

that previously reported,4 with all temperature increments at 5 °C min-1. The samples were first heated to 

200 °C to erase thermal history and dry the samples of adsorbed water. Samples were then quenched to -

40 °C before being reheated to 200 °C. Glass transition temperature (Tg) measurements were obtained 

from the second heating scan.  

High-throughput RAFT polymerization experiments for kinetic analysis. 

RAFT polymerization experiments for kinetic analysis were performed using a Chemspeed Swing-SLT 

automated synthesizer following procedures similar to those described elsewhere.7, 10, 35-40 The synthesizer 

was equipped with a glass reactor block consisting of 16 reaction vessels (13 mL) with thermal jackets 

connected in series through the reaction block and connected to a heating/cooling system (Hüber, –90 °C 

to 140 °C). In addition, all reaction vessels were equipped with cold-finger reflux condensers (~7 °C). 

Mixing was achieved by vortex agitation (up to 1400 rpm). Liquid transfers were handled by a 4-needle 

head (4-NH) capable of four simultaneous sample transfers. The 4-NH was connected to a reservoir bottle 

(degassed acetonitrile (MeCN)) for needle rinsing after each liquid transfer step. This solvent reservoir 

was degassed by continuously sparging with nitrogen and was also utilized to prime the tubing lines of the 

4-NH. When experiments were carried out, the synthesizer was maintained under an inert atmosphere by 

supplying a constant flow of nitrogen into the hood of the synthesizer.  A nitrogen atmosphere was also 

applied to reactors and stock solutions at all times.  Prior to the polymerizations, to ensure an inert 

environment, the reaction vessels were heated to 135 °C and subjected to 10 cycles of vacuum (2 min) and 



filling with nitrogen (2 min) to ensure the elimination of oxygen (see the supporting information (SI) for 

more details on the performed polymerization reactions). 

RESULTS AND DISCUSSION  

RAFT polymerization of methyl acrylate  

Initially, to assess the ability of the Lewis acid, Sc(OTf)3, to activate the RAFT agent and facilitate 

enhanced control over the polymerization of the MAM MA, we employed 8. We have previously shown 

this RAFT agent performs exceptionally in controlling the polymerization of both MA (when protonated) 

and VAc (when used neutral form).31  

The polymerization of MA in the presence of 8, without the addition of Sc(OTf)3, gave polymers of 

targeted molar mass with moderate Ð, which is consistent with experiments previously reported31 (see 

Table 1, Entry 1 and Figure 1a). Upon addition of either 0.5 or 1 molar equivalent of Sc(OTf)3 with 

respect to RAFT agent concentration polymers of lowered Ð were obtained, analogous to what is observed 

upon addition of protic acids31 (see Table 1, Entries 2, 3 and Figure 1a). In all cases the polymerization of 

MA in the presence of 8 showed a linear increase of molar mass with conversion, with molar masses 

above that calculated theoretically due to discrepancies introduced through the use of PSt SEC calibration 

standards. In the case of homopolymerization of MA there appears to be no significant difference between 

reactions performed with 0.5 or 1 molar equivalent of Sc(OTf)3 to RAFT agent 8, suggesting that during 

polymerization the scandium centre may accommodate more than one RAFT-based pyridyl ligand. 

          

 MA  VAc            P(MA-co-VAc)              8      

 

Scheme 3: RAFT copolymerization of MA and VAc and the structure of RAFT agent 8 
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Table 1: Synthesis of PMA, PVAc and P(MA-co-VAc) in acetonitrile (MeCN) at 60°C in the presence of 8 

with varying amounts of Sc(OTf)3
a 

Entry fMA 
b 

[Sc(OTf)3]/ 

[8] 

Time 

(min) 

MA 

conv. 

%. 

VAc 

conv. 

%. 

Total 

conv. 

%. 

FMA
c FVAc

c 
Mn 

(calc.)d 
Mn

e Ðe 

1 1 0 1440 99  99 1.0  17126 21100 1.3 

2 1 0.5 1443 96  96 1.0  16569 26500 1.16 

3 1 1 1445 95  95 1.0  16302 23500 1.15 

4 0.75 0 1448 99 54 87 0.846 0.154 15053 19300 1.41 

5 0.75 0.5 1450 91 45 79 0.858 0.142 13630 18400 1.29 

6 0.75 1 1453 64 29 55 0.868 0.132 9535 13800 1.27 

7 0.5 0 1455 100 53 77 0.653 0.347 13186 16400 1.38 

8 0.5 0.5 1458 83 36 60 0.699 0.301 10259 12700 1.26 

9 0.5 1 1460 72 54 63 0.574 0.426 10851 10000 1.21 

10 0.25 0 1463 100 50 63 0.399 0.601 10772 12000 1.31 

11 0.25 0.5 1465 77 27 40 0.482 0.518 6834 7570 1.13 

12 0.25 1 1468 48 19 27 0.452 0.5 4595 5860 1.11 

13 0 0 1470  28 28  1.0 4807 5670 1.12 

14 0 0.5 1473  20 20  1.0 3515 1420 1.03 

15 0 1 1475  0 0  1.0 0   

a[MA]+[VAc]:[8]:[AIBN] = 200:1.0:0.2, in MeCN, T = 60°C; b[MA]+[VAc] = 3.33 M; cCalculated from conversion 

data; dMn(calc)= ([MA]0 + [VAc]0)/[RAFT]0) × ((Mr,MA × FMA) + (Mr,VAc × FVAc)) × total % conv. + Mr,RAFT (where F 

is the mole fraction of monomer in the polymer); eGPC DMF eluent, T = 80°C, LiCl = [50 mM]  



9 

 

a) 

   

b) 

   

c) 

   
d) 

   

Figure 1: Total monomer conversion versus time plots (left), evolution of molar mass (Mn) with conversion 

(middle) and evolution of Ð with total monomer conversion (right) for RAFT polymerizations in the presence 

of RAFT agent 8 for monomer feed ratios of (a) 100 % MA, (b) 75 % MA/25 % VAc, (c) 50 % MA/50 % VAc 

and (d) 25 %MA/75 %VAc with varying amounts of Sc(OTf)3, where [Sc(OTf)3]/[8]: ■ = 0; ● = 0.5; ▲ = 1.0.
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RAFT copolymerization of methyl acrylate and vinyl acetate  

To investigate the effect of Sc(OTf)3 on the copolymerization of MAMs and LAMs in the presence of 

RAFT agent 8, VAc (a model LAM) was introduced as comonomer alongside MA. Monomer feed ratios 

were varied between 75% MA/25% VAc, 50% MA/50% VAc and 25%MA/75% VAc whilst maintaining 

constant monomer, RAFT agent and initiator concentrations (see Table 1, Entries 4-12) allowing for 

calculation of monomer reactivity ratios (vide infra).  

With 75% MA/25% VAc monomer feed the Ð was observed to decrease with increasing Sc(OTf)3 

concentration, coinciding with some rate retardation presumably caused by slower fragmentation of the 

PVAc propagating radicals from the coordinated RAFT intermediate (see Table 1, Entries 4-6, Figure 1b 

and Figure S1b). Additionally, a change in the relative rate of monomer incorporation was observed (see 

Table S1 for full details), suggesting an effect of Sc(OTf)3 on the monomer copolymerization reactivity 

ratios (vide infra). In the absence of Sc(OTf)3 Ð decreased with monomer conversion (see Figure 1b, 

right). This is typical for acrylate polymerization in the presence of N,N-diaryldithiocarbamate RAFT 

agents31, 41 and is also consistent with that seen with 100% MA feed (see Figure 1a, right). In the 

presence of 0.5 or 1 molar equivalents of Sc(OTf)3 to RAFT agent 8 Ð increases from low to moderate 

with conversion over the course of the reaction (see Figure 1b, right), due to the propensity for 

irreversible chain transfer and head-to-head addition in VAc polymerization.42 This is in contrast to the 

analogous experiments with 100% MA where Ð was low throughout the polymerization (see Figure 1a, 

right). Instead these observations are akin to that typically observed for a well-controlled VAc 

polymerization using moderately active N,N-diaryldithiocarbamate41, 43-44 (and pyrazolecarbodithioate)13 

RAFT agents.  

The copolymerization reactions with 50% and 25% MA feeds (see Table 1, Entries 7-9 and 10-12 

respectively) displayed similar trends with the polymerization rate retarded more with increased VAc 
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concentration (see Figure 1c and d). Inspection of evolution of monomer conversion versus time (see 

Figure 1a-d, left) and pseudo-first order kinetics plots (see Figure S1) further implies this is the case. At 

these feed ratios the Ð was again seen to decrease with increasing Sc(OTf)3 concentration.  

Notably in all the copolymerization examples increasing the concentration of Sc(OTf)3 affected the 

relative rate of incorporation of each of the monomer units into the polymer and influenced the overall 

rate of the reaction; with increased Sc(OTf)3 concentration an increased incorporation of VAc 

(presumably due to differences in the interactions between Sc(OTf)3 with MA or VAc) and a lower 

overall rate of reaction is observed (see Table S1 and Figure 1b-d and Figure S1b-d).  

For comparison the homopolymerization of VAc is well controlled by RAFT agent 8 under the same 

experimental conditions albeit with low monomer conversion (see Table 1, Entry 13 and Table S1). With 

Sc(OTf)3 also present in the reaction mixture the reaction is significantly inhibited/retarded, hence VAc 

plots are omitted from Figure 1 (see Table 1, Entries 14-15 and  Table S1). 

From the experiments discussed above it is clear that the inclusion of Sc(OTf)3 delivers improved 

control of the RAFT copolymerization of MA and VAc controlled by 8, particularly with respect to 

polymer Ð. Additionally the increased rate of chain transfer during copolymerization facilitated by the 

presence of Sc(OTf)3 will decrease the level of heterogeneity between the gradient copolymer chains.    

Effect of scandium triflate on copolymerization reactivity ratios of methyl acrylate and vinyl 

acetate 

To investigate the effect of Sc(OTf)3 on the relative reactivity of MA and VAc during their RAFT 

copolymerization, their reactivity ratios of were estimated using non-linear least squares regression fit of 

copolymerization monomer conversion data.4, 6, 35, 45 The evolution of the MA monomer fraction (fMA) 

with conversion for the three feed ratios in the absence of Sc(OTf)3 or in the presence of 0.5 and 1 molar 

equivalents to RAFT agent 8 are shown in Figure 2. The reactivity ratios, rMA and rVAc, obtained from 
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fitting the integrated copolymer composition equation are shown in Figure 3. The uncertainty in these 

values is indicated by the joint confidence region contours. 

In the absence of Sc(OTf)3, the reactivity ratios (rMA =4.4; rVAc = 0.038) indicate a stark preference for 

MA to homopolymerize and VAc to copolymerize with MA. This is consistent with literature 

observations.46 The result is polymers with very “steep” gradients due to the significant differences in 

monomer reactivity; in each case without Sc(OTf)3 the MA reaches full conversion. As the number of 

molar equivalents of Sc(OTf)3 to RAFT agent 8 increases to the reactivity ratios are affected, reflecting 

an increased propensity for MA to copolymerize with VAc and VAc to homopolymerize. In general the 

“steepness” of the gradient structure within the polymers is decreased and for a given total monomer 

conversion the extent of incorporation of VAc (FVAc) is increased (see Table 1). This can be appreciated 

qualitatively by inspection of the differences in the evolution of fMA with total monomer conversion for 

each [Sc(OTf)3]/[8] ratio (see Figure 2). 

 

Figure 2: Modelled and measured monomer compositions for fMA,initial = 0.75 (squares, solid lines), 0.5 

(circles, dashed lines), and 0.25 (diamonds, dotted lines) with [Sc(OTf)3]:[8] = 0 (black lines), [Sc(OTf)3]:[8] 

= 0.5 (red lines) and [Sc(OTf)3]:[8] =1.0 (blue lines). Modelled parameters: [Sc(OTf)3]:[8] = 0, rMA = 4.4 and 

rVAc = 0.038; [Sc(OTf)3]:[8] = 0.5, rMA = 3.7 and rVAc = 0.21; [Sc(OTf)3]:[8] = 1, rMA = 3.3 and rVAc = 0.99.   
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Figure 3: Copolymerization reactivity ratios, rMA and rVAc, and 95% joint conference regions (JCRs) for 

RAFT copolymerization of MA and VAc in the presence of 8, with ratios of [Sc(OTf)3]/[8] of 0, 0.5 and 1. 

Internal contours represent 50%, 70% and 90% JCRs.   

 

To obtain further insight into the effect of the Lewis acid Sc(OTf)3 on MA/VAc copolymerization we 

undertook test experiments under the same reaction conditions with more typical RAFT agents not in 

possession of a Lewis basic group. These RAFT agents were the cyanomethyl xanthate 9 and the 

cyanomethyl trithiocarbonate 10 (details of these experiments can be found in the supporting 

information).  

 

9  10 

As expected when undertaking the RAFT copolymerization of MA/VAc in the presence of the xanthate 

9, or trithiocarbonate 10 the addition of one molar equivalent of Sc(OTf)3 to RAFT agent did not affect 

(reduce) the dispersity to any appreciable extent.‡ An increased rate of incorporation of VAc in relation 

to MA during earlier stages of polymerization due to interaction of Sc(OTf)3 with the monomers (in the 

absence of a Lewis basic group) and slower overall rate of polymerization are observed. The latter may 
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indicate an overall slower fragmentation of the macroradicals bearing a VAc terminal group and 

therefore enhanced intermediate radical termination. Indeed the introduction of Sc(OTf)3 for the RAFT 

copolymerization of MA/VAc using trithiocarbonate 10 varies from a slow rate of polymerization to 

significantly retarded by increasing VAc feed (see Table S4 for details); complete inhibition is typically 

observed when polymerizing VAc in the presence of trithiocarbonates.42, 47-48 

Importantly, these experiments also allow the direct comparison between the performance of the 

switchable RAFT agent 8 (in the presence or absence of Sc(OTf)3) and more commonly used xanthate 

and trithiocarbonate RAFT agents (namely 9 and 10 respectively) (see Tables S2 & S4 in the supporting 

information). In all copolymerization experiments performed in the absence of Sc(OTf)3 RAFT agent 8 

outperformed the xanthate 9, due to the intrinsic activity of the N-aryl-N-pyridyl Z group, resulting in 

polymers of lower Đ (8: Đ=~1.3-1.4; 9: Đ=~1.4-1.7). In the presence of one equivalent of Sc(OTf)3 to 8 

the difference in Đ is even more stark (8+Sc(OTf)3: Đ=1.1-1.3), albeit at high VAc feed retardation of 

polymerization is evident. In comparison to the trithiocarbonate 10, RAFT agent 8 in the presence of 

Sc(OTf)3 (where [Sc(OTf)3]/[8] =1) gave polymers of lower Đ at similar Mn, but at an overall lower rate 

of conversion.  

Copolymer analysis at 50% MA/50% VAc feed ratio 

To examine the effect of Sc(OTf)3 on the polymer microstructure, copolymers were synthesised on 

preparative scale using a 50% MA/50% VAc feed ratio with 0, 0.5 or 1 molar equivalent of Sc(OTf)3 to 

8 (denoted as P0, P0.5 and P1 respectively). Reactions were heated at 60°C for 24h to ensure sufficient 

monomer conversion to facilitate polymer analysis by 1H NMR (see Figure S4 and S5), 13C NMR 

(Figure 4) and DSC (Figures S3 & S4). Characterisation data is given in Table 2.  
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Table 2: Characterization data for preparative copolymerization of 50%MA/50%VAc with 8a 

Polymer 

[Sc(OTf)3]

/ 

[RAFT] 

MA 

conv. 

%. 

VAc 

conv. 

%. 

Total 

conv. 

%. 

FMA 

(calc.)b 

FMA 

(1H 

NMR)c 

FMA-centred triadsd,e 

Mn 

(calc.)f 

Mn
 

(GPC)g 

Mn
 

(1H 

NMR)h 

Ðg 

Tg  

[Tg,width] 

(°C)i,j 

MMM MMV VMV 

P0 0 99 38 69 0.723 0.749 0.54 0.38 0.08 12200 16200 13200 1.25 25.1[10.8] 

P0.5 0.5 82 21 52 0.781 0.819 0.65 0.32 0.03 9360 13500 12200 1.14 25.5[11.4] 

P1 1 75 19 47 0.798 0.842 0.63 0.30 0.07 8580 11800 10500 1.15 23.3[13.1] 

a[MA]+[VAc]:[RAFT]:[AIBN] = 200:1.0:0.2, in MeCN, T = 60°C for 24 h, [MA]+[VAc] = 3.33 M; b calculated 

from monomer conversion data; ccalculated from 1H NMR analysis of purified samples; dcalculated from 

integration of 13C NMR resonances of the MA and VAc methine regions49¶; dFVAc-centred triads could not 

calculated due to insufficient 13C NMR sensitivity; fMn(calc.)=([MA]0 + [VAc]0)/[RAFT]0) × ((Mr,MA × FMA(calc.)) 

+ (Mr,VAc × FVAc(calc.))) × total % conv. + Mr,RAFT (where FM(calc) is the calculated mole fraction of monomer in the 

polymer); gGPC DMF eluent, T = 80°C, [LiCl] = 50 mM; hcalculated from 1H NMR analysis; iTg peak analysis 

from first derivative of the DSC heat flow curve; jwidth of Tg in parentheses, calculated as per Kim et al.5 

 

Triad analysis was undertaken by further analysis of the 13C NMR spectrum, following the assignments 

of Brar and Charan,50 facilitating investigation of the effect of Sc(OTf)3 on monomer distributions 

across the three polymer samples (see Figure 4). Inspection of the VAc methine region of the 13C NMR 

spectra (–CH(V); Figure 4b) indicates a vast predominance of MVM triads indicative of an MA-rich 

structure for each of the polymer samples. MVV and VVV triads appear to be present albeit in low 

quantity in P0 (where MA had reached full conversion), and to a lesser extent in P0.5 and P1. 

Quantitative analysis of this region could not be conducted because of insufficient spectral sensitivity 

due to the low mole fraction of VAc in these polymers. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4: 13C NMR spectra (a) of copolymers P0 (black), P0.5 (red) and P1 (blue) with expansions of the 

(b) VAc methine (–CH (V)), and the (c) MA methine (–CH (M)) regions. (Triad nomenclature: M = MA and 

V = VAc; bold indicates resonance observed) 

 

Comparison between integrations of the MA methine regions in the 13C NMR spectra of P1 to P0.5 

(Figure 4c and Table 1) indicates an appreciable increase in the fraction of VMV triads with increased 

Sc(OTf)3, indicative of increased incorporation of VAc units into P1.¶ This observation is in agreement 

with our reactivity ratio observations. P0 also has more VMV triads than does P0.5, likely due to 

enhanced incorporation of VAc into P0 at higher total monomer conversion brought about from the 

increased rate of polymerization in the absence of Sc(OTf)3. 
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From DSC analysis of P0, P0.5 and P1, each polymer was found to display a single glass transition 

temperature (Tg) between that of PMA (~10°C)46 and PVAc (~32°C),46 indicating the absence of 

microphase separation in bulk phase (see Figures S3 and S4). DSC was unable to provide any 

demonstrable correlation between the Tg of the copolymers and their composition (see Table 2); the Tg 

of P0, P0.5 and P1, were found to be very similar (see Table 2). 

CONCLUSIONS 

Herein, we have demonstrated how addition of the Lewis acid Sc(OTf)3 improves the control over the 

RAFT copolymerization involving MAMs and LAMs (namely MA and VAc) controlled by an acid/base 

switchable dithiocarbamate RAFT agent, cyanomethyl (4-fluorophenyl)(pyridin-4-yl)carbamodithioate 

(8), through modulation of its activity. 

The introduction of either 0.5 or 1 molar equivalents of Sc(OTf)3, with respect to RAFT agent 8, into a 

RAFT copolymerization of methyl acrylate and vinyl acetate gave substantially improved control 

resulting in significantly reduced Ð (~1.1-1.3) when compared to that obtained in its absence (ca. 

Ð~1.3-1.4). Additionally, similar introduction of Sc(OTf)3 into a homopolymerization of MA mediated 

by RAFT agent 8 also delivered polymers of low Ð (~1.15).  

Sc(OTf)3 was found to reduce the rate of polymerization, and alter the copolymerization reactivity ratios 

for MA and VAc.  Increasing the Lewis acid concentration provided enhanced incorporation of the less 

active monomer, VAc, into the copolymers (indicated through the change in the reactivity ratios rMA and 

rVAc). This enhanced VAc incorporation was confirmed by 13C NMR analysis of preparative samples.  

High end-group fidelity was observed for all of the RAFT copolymers indicating, importantly, that the 

inclusion of Sc(OTf)3 does not deleteriously affect the thiocarbonylthio end-group.  
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Supporting Information. Full experimental conditions and characterization data for kinetic and 

preparative polymerization reactions, joint confidence internal region plots for reactivity ratio 

determinations, DSC and 1H NMR data for polymers P0, P0.5 and P1, 1H NMR spectra of RAFT agents 

8, 9 and 10 with and without Sc(OTf)3. This material is available free of charge via the Internet at 

http://pubs.acs.org.  
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NOTES 

‡ The 1H NMR spectrum of RAFT agent 8 in MeCN-d3 shows a significant shift of the pyridyl 

resonances in the presence of one molar equivalent of Sc(OTf)3 from that of 8 alone (see Figure S6). 

The 1H NMR spectra of RAFT agents 9 and 10 in MeCN-d3 show no significant differences whether 

acquired in the presence or absence of one molar equivalent of Sc(OTf)3 (see Figures S7 & S8). 

¶ Quantitative analysis may be conducted using 13C NMR provided resonances of the same type are 

compared (in this case methines, CH); see Otte et al.49 for further information. 
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