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Effect of Selfish Node Behavior on
Efficient Topology Design

Ramakant S. Komali, Student Member, IEEE, Allen B. MacKenzie, Member, IEEE, and Robert P. Gilles

Abstract—The problem of topology control is to assign per-node transmission power such that the resulting topology is energy
efficient and satisfies certain global properties such as connectivity. The conventional approach to achieve these objectives is based
on the fundamental assumption that nodes are socially responsible. We examine the following question: if nodes behave in a selfish
manner, how does it impact the overall connectivity and energy consumption in the resulting topologies? We pose the above problem
as a noncooperative game and use game-theoretic analysis to address it. We study Nash equilibrium properties of the topology control
game and evaluate the efficiency of the induced topology when nodes employ a greedy best response algorithm. We show that even
when the nodes have complete information about the network, the steady-state topologies are suboptimal. We propose a modified
algorithm based on a better response dynamic and show that this algorithm is guaranteed to converge to energy-efficient and
connected topologies. Moreover, the node transmit power levels are more evenly distributed, and the network performance is

comparable to that obtained from centralized algorithms.

Index Terms—Game theory, selfish nodes, topology control, network connectivity, power efficiency, ad hoc networks.

1 INTRODUCTION
1.1 Preliminaries

WITH widespread proliferation of mobile, portable,
communication, and computing devices, continuing
advancements in technology, and increasing demand for
ubiquitous connectivity, there is an overwhelming interest
in ad hoc network research. These networks consist of
autonomous, independent, and heterogeneous devices,
which communicate wirelessly in a multihop manner
without a fixed infrastructure.

Energy efficiency is one of the most crucial requirements
in ad hoc networks [1]. Nodes are equipped with radios,
memory, and processors, all of which are often powered by
a battery. Hence, it is imperative that every node be energy
efficient: this not only increases the node’s own operational
lifetime but also contributes to an overall increase in the
network performance. Thus, energy is a limiting factor for
desirable network performance.

Ad hoc networks are typically communication oriented;
therefore, their performance can be improved by develop-
ing energy-efficient protocols. Transmitting with low
power is one way of increasing energy efficiency.! Topology
Control—the study of how to assign per-node transmission
power level so as to achieve certain network-wide goals—is

1. Low transmission power also promotes spatial reuse, potentially
leading to higher end-to-end network throughput [2].
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one such design technique used to enhance global network
performance. Here, an ad hoc network is often abstracted
as a graph consisting of a set of vertices representing
wireless devices (nodes) and an edge set containing all
potential communication links between these nodes. (We
describe a formal model in Section 3.) A topology control
(TC) algorithm then dynamically assigns per-node trans-
mission powers that determine an optimal set of neighbors
for each node; the resulting set of feasible communications
forms a transmission digraph. The purpose of TC is to
generate graphs that are “efficient” and satisfy certain
properties such as connectivity and energy efficiency:
attributes related to global network performance. By
reducing the transmission power level of nodes, usually
to much smaller values compared to their maximum levels,
TC helps build energy-efficient networks and thereby
prolong network lifetimes. For an elaborate survey on the
subject of TC, we refer the reader to [3] and [4].

1.2 Motivation

Most protocols and design paradigms for ad hoc networks
are based on the fundamental assumption that nodes
cooperate in order to simply establish a network, let alone
to achieve better network performance. These networks are
inherently distributed and controlled by end users. From a
user’s perspective, it is difficult to justify the cooperative
assumption because nodes are either competing for net-
work resources (for example, bandwidth) or conserving
their own limited resources (for example, battery lifetime).
For instance, why would a node choose to forward packets
along its next-hop interface and drain its battery resource
when it has no incentive for doing 50?2 In this scenario,

2. From a broader perspective, it may be in the best interest of nodes to
cooperate with each other and do well; however, each node faces a
temptation to “defect” and increase its payoff at the expense of other nodes
and network performance in general. Such problems are classified as social
dilemma games [5].
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nodes may behave in exactly the opposite way: conserve
their resources and act in their self-interest. In some sense,
the problem is further exacerbated by network heterogene-
ity, where user objectives may conflict. These issues pose
serious questions regarding the applicability of cooperative
algorithms for ad hoc networks and may render the
solution they provide infeasible.

In pursuit of conserving energy, nodes in an ad hoc
network can be selfish and may act in their self-interest. This
is further substantiated by the lack of a centralized
controller (such as a base station in cellular systems) in
these systems to enforce node cooperation. Taking such
selfish node behavior into consideration, we model the
interactions between nodes as a game and analyze the
TC problem as a noncooperative game.

Several TC algorithms (for example, [6], [7], [8], and [9])
have been proposed to create power-efficient topologies.
These algorithms are based on the underlying assumption
that communicating agents are altruistic, and they collec-
tively optimize power to achieve the desired global
objective of network connectivity. While these assumptions
may hold in some applications where nodes are controlled
by a single administrative entity, they may not hold in
commercial applications or in competing environs. We relax
these assumptions and formulate the problem as a non-
cooperative game, where each node selfishly maximizes
its individual utility. Modeling systems based on selfish
algorithms have been shown to work well and improve the
performance of ad hoc networks [10]. The focus of this work
is on developing a distributed algorithm to create topologies that
are globally energy efficient. This work is a follow-up to [11],
where the authors guarantee local energy efficiency of the
steady-state topologies but not global efficiency. While
centralized algorithms that create energy-efficient networks
exist [8], the task of developing a distributed algorithm for
the same is nontrivial. This becomes even more challenging
when the network consists of selfishly motivated nodes;
there is little work that encompasses all these aspects of the
problem. Nonetheless, the problem is of great practical
importance and has also been underscored in [12], which
provides an excellent motivation to consider selfish
behavior in topology design.

1.3 Contribution

We consider the TC game and the Max-Improvement
Algorithm (MIA)® developed in [11]. The utility function of
the game specifies that nodes have enough incentive 1) to
establish and maintain connectivity with a sufficient number
of neighbors and 2) to ensure that the network does not
partition. In [11], it has been shown that this TC game is a
potential game. The potential game formulation guarantees
the existence of a Nash equilibrium (NE) [13], as well as the
convergence of MIA to an NE [11] (because the action space
is compact). The TC game admits many NEs; which
NE topologies emerge depend on the order in which
nodes update their strategies under MIA. We prove that
only a subset of these NE topologies is desirable from an

3. This was called the Best Response algorithm in [11]. However, since
the algorithm is initialized to the maximum power topology, it is a specific
instance of a general best response scheme.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.9, SEPTEMBER 2008

energy-efficiency standpoint. Specifically (as shown in
Section 5), every NE is locally energy efficient, but only a
subset of these is globally energy efficient.

We propose a é-Improvement Algorithm (DIA), where
each node makes small decrements in its power level if the
change improves its utility; otherwise, the node reverts to
its previous power level. First, we prove that under DIA,
the induced topologies are energy efficient and preserve
network connectivity. Second, a main drawback of
MIA is that, being greedy, it leads to a biased steady-state
power-level distribution. Following DIA, the transmit
power distribution is much fairer than that produced by
MIA. We point out that the issue of whether or not a given
power-level allocation is fair has received little attention in
the domain of TC problems. In general, there may be a
fundamental conflict between an efficient allocation and a
fair allocation.

1.4 Organization

The rest of the paper is structured as follows: Section 2
overviews key concepts of game theory and potential games
as applicable to our problem. Section 3 presents our
network model, assumptions, and definitions used through-
out this paper. Section 4 formalizes the TC algorithms that
account for selfish node behavior. Section 5 analyzes our
game-theoretic model and algorithms and discusses the
results of this paper and their implications. Section 6
validates our model through simulations. Section 7 briefly
reviews the related work. Section 8 presents concluding
remarks.

2 GAME THEORY AND POTENTIAL GAMES

In this section, we present a brief overview of important
elements and notations of noncooperative strategic-form
game theory. For a rigorous treatment of these and other
topics in game theory, refer to [14]. Here, we specifically
focus on potential games.

The main object of game-theoretic study is the game,
which is a formal model of an interactive decision-making
situation. A strategic non-cooperative game I' = (N, A, u)
has three components:

1. Player set N:N={1,2,...,n}, where n is the
number of players in the game.

2. Action set A:a€ A= x]} A; is the space of all
action vectors (tuple), where each component a; of
the vector a belongs to the set A;, the set of actions of
player i. Often, we denote an action profile
a = (a;,a_;), where q; is player i’s action, and a_;
denotes the actions of the other n—1 players.
Similarly, A_; = x4 A; is used to denote the set of
action profiles for all players except «.

3. For each player ¢ € N, utility function u; : A — R
models his or her preferences over action profiles.
uw=(uy,...,u,) : A — IR" denotes the vector of such
utility functions.

NE is the most prevalent and an important equilibrium
concept in noncooperative strategic-form game theory. This
solution concept is defined as a stable point because no
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player has any incentive to unilaterally change his or her

action from it.

Definition 1. An action profile a* = (a},a’;) is an NE if
Vi € N and Va; € A;

ui(a) > ui(a;, a;). (1)

A game may possess a large number of NEs or none
at all. Some classes of games are known to possess at least
one NE.

Definition 2. A strategic game I' = (N, A,u) is an ordinal
potential game (OPG) if there exists a function V : A — IR
such that Vi € N, Va_; € A_;, and for all a;, b; € A;

Vl(ai,a—;) = V(bi,a—i) > 0 < ui(ai, a—;) —wi(bi,a—;) > 0. (2)
V is called the ordinal potential function (OPF) of T

In essence, an OPG requires payoffs that exhibit the same
“directional” behavior, when that individual unilaterally
deviates.

Potential games with compact action spaces are known
to possess at least one NE in pure strategies [13]. The
following lemma due to [13] establishes how NEs of the
game can be identified:

Lemma 1. Let I' be an OPG and V be its corresponding OPF.
If a € A maximizes V, then it is an NE.

Thus, potential maximizers form a subset of the NE of a
potential game. If we can identify potential functions for a
game, we can immediately identify some NE of the game by
solving for the potential maximizers.

Potential games also exhibit certain convergence proper-
ties that we make use of in our algorithms (see Section 5).
Rather than delving into these technical details, we simply
refer to [13] and [15] for a primer. We will revisit and
address the issue of convergence to NE in the following
sections.

3 FRAMEWORK AND ASSUMPTIONS
3.1 Network Model

The wireless medium is subject to losses like fading
and multipath effects; therefore, it is desirable to have
link-level acknowledgments for packets received. Link
bidirectionality is also crucial for proper functioning of
MAC protocols such as 802.11 [16]. Hence, we assume
that links in our ad hoc network model must be
bidirectional in order to be useful. Also, our focus is on
single-channel networks. As a consequence, wireless
channels are characterized by interference between nearby
transmissions. We suppose that a MAC protocol ensures
the temporal separation of conflicting transmissions and
disregard interference in our model. In our current
ongoing research, we explicitly model interference and
design efficient interference-aware topologies using color-
ing techniques [17].

For our model, let the network consist of heterogeneous
nodes embedded in a 2D planar region IR?. Each node may
have different maximal power p; yax, allowing asymmetries
in the network. It is then convenient to represent an ad hoc
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network as a graph H = (N, E,Q) consisting of a set of
nodes N = {1,...,n} and an edge set E C N> = N x N. An
edge between any two nodes represents an abstraction of
the communication link between them. Let = [w;;] be a
matrix of edge weights with the weight function
w: E — IR, where w(i, j) is the power required to close a
link ij = (¢,4) € E. We leave w(i,j) unspecified since the
exact threshold is a function of channel attenuation and
internodal separation; as such, our model is generalized to
accommodate varying channel characteristics. Following an
adjustable power model, each node can adapt its transmis-
sion power appropriately and select a set of neighbors. The
transmit level determines the transmission range of a node;
a necessary (but not sufficient) condition for node ¢ to hear
node j is that it be within the range of node j. In other
words, the transmission level p : N — IR" such that p(i) =
pi > w(i,j) determines the subset of edges £’ C E that are
supported. Likewise, a bidirectional link ¢j exists if the
power setting at 4 is sufficient to meet the signal-to-noise
ratio (SNR) threshold* at receiver j, in the absence of any
interferer, and vice versa. Thus, given (2, a bidirectional link
(i,7) exists if and only if min{p;,p;} > max{w(i, j),w(s,7)}.
The collection of all such bidirectional links results in a
subgraph G = (N, ') of H, called a transmission graph, that
contains edges (i, j) if j is present in ¢’s transmit range and
vice versa. With a slight abuse of notation, we use G to
represent the set of all possible graphs generated by various
power assignments p; and g(p) is a typical element in G.
More precisely, for each node i, define a link state

variable ;; as
lij (pi) = {0 otherwise.

3)

When node ¢ broadcasts with a transmission power p;, it
forms a neighborhood containing every node that is within
its transmission range. Due to the broadcast nature of the
wireless medium, each node can obtain its neighborhood
information by broadcasting “hello” beacon messages at a
certain power level and by gathering the ACK replies. The
hello messages should at least include the node’s identifica-
tion, current transmission power, and maximal transmis-
sion power. Let N;(p;) = {4 | li;(p:) - Lji(p;) = 1} be the set of
(direct) neighbors of node ¢. The collection of such
neighborhoods forms a topology on N. In other words,
the joint transmit power-level profile p = (p1,...,pn)
induces a network, given by

9(p) = {ij | lij(pi) - Li(pj) = L;i # j € N} (4)
We denote the above network, in short, by g¢,. Also, note
that the inclusions ij€ gy, jeN;, and i€ N, are all
equivalent. If every node ¢ transmits at p;max, we call the
induced topology gma.x a maximum power network. Because
our model acknowledges only bidirectional links, g, is
connected if and only if there exists a bidirected path—a

4. We assume that when a node j receives a message from node i, it
knows the power and SNR with which the message was received. The
received power is much lower than the transmit power, following the
model of radio signal attenuation in space. Using this information, w(i, j)
can be estimated.
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collection of contiguous bidirectional links—between every
node pair i, j € N.

Assumption 1. gy, is a connected network.

The objective of our distributed TC algorithm is then to
derive a subgraph g, of gu.x that is energy efficient and
preserves the connectivity of gpax.

In the literature, energy efficiency has been defined in
different ways: minimizing the maximum transmission
power, minimizing the sum of radii, or maximizing energy
stretch factor (for a definition, see [4]). Throughout this
paper, we use the following definitions of energy efficiency:

Definition 3. A connected network g, is said to be locally
energy efficient if no node can reduce its transmit power level
without disconnecting the network.

Definition 4. A connected network g, is said to be minmax
energy efficient if max;cy p; is minimized.

Definition 5. A connected network g, is said to be globally
energy efficient if Y, p; is minimized.

3.2 Game Mapping

Here, we formally describe the TC process as a normal-
form game. Individual radios form the player set
N={1,2,...,n} of the game. Each radio can autono-
mously set its transmit power level p; € [0,pimax]. The
individual power levels can be collected into a power
vector p = (p1,p2, ..., ps), which forms the action space A
for the game. The power vector induces a topology g,,
which is a collection of feasible links, as defined by
(3) and (4).

Let G={g,|p € %[0, pimax]} denote the collection
of all possible networks that can be generated by
power vectors p. Note that for all g, € G, g, C gmax. Each
node perceives a trade-off between the benefit it derives
from a connected topology g, and the cost it incurs in
establishing g,. A utility function captures these trade-offs
and maps the power vector to a payoff for each node. For
every i € N, the utility function u; is expressed by

u;(p) = »i(9(P)) — xi(pi)- (5)

Here, ¢; : G — IR represents the benefit node ¢ derives from
network g, and x; is the cost incurred. In the context of
network connectivity, each node perceives a benefit in being
connected and, therefore, in being able to establish com-
munication sessions with other nodes in the network. The
specific utility function we adopt is discussed in Section 4.

4 TopPoLOGY CONTROL ALGORITHMS

We propose two TC algorithms for wireless ad hoc network
formation in the presence of self-interested nodes: MIA and
DIA. Both algorithms consist of three phases: an initializa-
tion phase, an adaptation phase, and an update phase. The
two algorithms primarily differ in how the adaptation
phase is implemented. In MIA, nodes adapt their transmit
levels according to a “greedy” best response process. Under
DIA, nodes adapt their transmit levels according to a
“restrained” better response process.
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Given these preliminaries, we formalize the initializa-
tion, adaptation, and update phases as follows:

1. (Initialization) Each node i transmits at its maximum
power level p;n.x and discovers its neighborhood
Ni(pimax); the induced topology is g(Pyax) = Gmax-

2. (Adaptation) Node i, selected via some sequential
order, improves its utility (given by (5)) by adjusting
its power setting from p; n.x—according to a best or
better response adaptation process—to a value
pi S Dimax-

3. (Update) The neighborhood of i N;(p;) is recom-
puted, and the induced topology g(p;,p—i) is
updated for the new power setting.

4. Repeat steps 2 and 3 until no node revises its power
setting in a given round.

We now elaborate on each of these phases.

4.1 Initialization Phase

Every node initializes its power setting to p; max. Each node
then discovers its neighborhood by broadcasting neighbor
request messages at p;max and collecting the responses
provided by the receivers at pjm... Upon successful
reception of ACKs from each responding neighbor j, node ¢
sets its link state variable [;; to 1 according to (3). The
collection of all such individual neighborhoods defines the
initial topology gmax-

4.2 Adaptation Phase

In this phase, each node is chosen from a permutation—
round-robin or random—to determine its transmission
power. All nodes execute either MIA or DIA during the
course of game. We emphasize that only one node
adapts its power setting at a time.” If a node alters its
power setting, other nodes are made aware of this
adaptation through control messages. In Section 5, we
discuss the outcome of the TC game when these update
strategies are implemented.

4.2.1 MIA Adaptation

Each iteration of the game can be viewed as a normal-form
game, wherein every node chooses to maximize its utility in
that iteration. This iterative process allows the network
topology to evolve dynamically. In a best-response-based
algorithm, whenever a node has an opportunity to revise its
power setting, it chooses a transmit level that maximizes its
utility (5), given the transmit levels of all other nodes,
according to

Pp; = arg max ui(qi,p—i) (6)
GiEA;

4.2.2 DIA Adaptation

For the ease of exposition, we discretize the action space.
Intuitively, it is sufficient to search for the optimum action
over those power values that correspond to the power

5. This is reasonably justified because, in a practical setting, the
probability of any two nodes updating their strategies at the same time
instant is zero. To realize this restriction, one can imagine nodes embedded
by a random timer; nodes update their strategies whenever the timer goes
off. Alternately, a token passing scheme, as part of the protocol, can also
serve the purpose.
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thresholds entries of Q2. This requires each node to maintain
per-neighbor power levels and may necessitate modifica-
tions at the MAC layer. Instead of introducing additional
complications, we form a modified set A that consists of a
finite number of power levels, common for all nodes. We
envision the network-interface-card (NIC) hardware to only
be capable of power control in such discrete steps.
For each node i € N, define a modified action set as

Ai = {pmax = p(o),p(U, A ,p(o = pmin}a (7)

where 4; is an ordered set, that is, p*) < p*~1_ (In Section 5,
we show that maintaining network connectivity is always a
better response strategy; therefore, 3¢ (and thus a pyi, # 0)
such that p; > pVi is a necessary (though not sufficient)
condition to ensure connectivity.) One way to construct A;
is to let the transmit level of all nodes be initialized to the
Pmax that guarantees connectivity with sufficiently high
probability [18] and decrement power in steps of a
predefined step size 6. (In Section 5, we show that when a
sufficiently small ¢ is chosen, DIA converges to an energy-
efficient state. Because A is a compact set, sucha é > 0 (as a
function of node density) can always be chosen).

Under DIA, each node i chooses a power level one level
lower® than its current level if the chosen action gives a
better payoff than its current action. Otherwise, the node
reverts to the power level it was currently transmitting at.
More concisely, let pgk) be the current level at which node :
is transmitting, k¥ =0,1,...,¢ — 1. Given the transmit level
of all other nodes, each node chooses to transmit next at a
level given by

argmax  u;(g;, p—i). (8)
q[E{pEkvqufL)}

In some sense, nodes are more aggressive when
following MIA; whereas nodes following a DIA adaptation
process are more restrained when improving their payoffs.
These contrasting selfish behaviors lead to significantly
different steady-state outcomes. In the context of potential
games, these two simple adaptive processes are assured to
converge; the latter goes one step further and aligns node-
centric objectives to network-level goals (we formally prove
this in the Section 5).

4.3 Update Phase

The nodes’ choice of power level in each iteration redefines
its neighborhood; this, in turn, modifies the overall
topology. Once a particular node adapts its power level to
the current topology, it broadcasts its current power-level
information. Upon receiving these control messages, other
nodes update their respective link state tables. In turn, these
nodes respond to the topology change by choosing an
appropriate power level.

If none of the nodes update their power-level setting
from its current level, the algorithm is said to have to
converged to a steady state (NE). For arbitrary games,
convergence is to an NE not assured. However, since the
TC game we consider is a potential game, the network is

Di =

6. Given the ordering of fll, note that if the current power is pik), the
node makes a switch to p/*™") at the next opportunity.
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assured of converging to an NE steady state when nodes
selfishly update their power settings in a sequential manner
(see the proofs of Proposition 1 and Lemma 2).

5 A ToproLoGY CONTROL GAME

Consider a multihop network constituting of independent
and autonomous nodes that adapt their transmit power
levels according to their connectivity and energy consump-
tion preferences. Such adaptations could potentially affect
the performance of other nodes and thereby influence their
decisions. This kind of an interactive and distributed power
control process impacts the topology of the network. In the
context of this paper, the above interactive process defines
our TC game.

We address the problem of designing energy-efficient
topologies that preserve network connectivity in the
presence of complex interactions among nodes in a net-
work. A network designer may prefer to minimize the total
power consumption (global energy efficiency) of the net-
work or minimize the maximum power consumption of a
node (minmax energy efficiency) in the network and seek to
design an efficient topology. On the other hand, individual
nodes may choose to reduce their own power consumption,
regardless of the network performance. More often than
not, such myopic behavior may lead to an undesirable
equilibrium from a network perspective. This inherent
conflict can sometimes be reconciled if the system
designer’s objective function (social welfare function) is a
potential function for the game. A potential game also offers
strong convergence properties of simple dynamic processes
such as MIA and DIA, described in Section 4.

5.1 Utility Function

We consider the same normal-form game model as in [11].
Using the general utility function given by (5), a specific
utility for each node is given by

u;(p) = M fi(p) — pi- 9)

Here, f;(p) is the number of the nodes that can be reached
(possibly over multiple hops) by node ¢ via bidirectional
links and paths.” Naturally, f is nondecreasing, that is,
fipi,p—i) > fi(gi,p-i), Vi€ N and ¢ <p;,. The scalar
benefit multiplier M signifies the value each node places
on being connected to other nodes; we assume that
M = max{p; ma|t € N}.

Network connectivity is a basic requirement in TC as it
provides the means for nodes to establish communication
sessions with their destinations. The benefit component in (9)
signifies the reachability of a node. It implicitly assumes
that each node has some traffic for every other node in
the network. This is a reasonable assumption because
traffic load and selection of destinations are typically not

7. In other words, a node places the same “value” whether it can reach
another node in one hop or in 10 hops. From a connectivity standpoint, this
assumption is reasonable since at the topology formation level, we only
need to know whether there exists a path to any given destination. In reality
though, we may prefer shorter paths to longer ones depending on the QoS
(for example, minimum latency) requirement of the traffic, which may alter
the benefit structure.
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available during topology formation. This necessitates that
the underlying topology be connected.

Connectivity is a function of the transmit power of all
nodes in the network. Each node chooses a transmit level
based on its objective function and not for the objectives of
other nodes. However, we make a slight distinction here
and emphasize that once a node decides the power level to
transmit at, it continues to forward packets at its chosen
transmit power. The validity of node cooperation for packet
forwarding in ad hoc networks is a research thread in itself;
we refer interested readers to [19], [20], [21], and [22].

The cost component in (9) suggests that transmission
power is the primary source of energy consumption.
Transmission costs may include energy consumed in
sourcing or in forwarding packets in a given session
between two consecutive executions of the TC protocol.
We ignore all additional energy consumed when receiving,
storing, and processing packets. It is important to under-
score that we make these assumptions to keep the utility
function simple; the essence of the problem is nonetheless
still preserved.

Consider the case of neglecting the reception power,
which may be unrealistic in certain applications. From a
game-theoretic viewpoint, the present cost function can be
easily extended and modified to incorporate the received
power as well. The number of incoming edges in the
topology that terminate at ¢ specifies which other nodes can
be heard by i. According to (3), an incoming edge to i from j
is defined by the power level of j; thus, nodes in general
have little control on their received cost. In the semantics of
game theory, the received cost component of each node ¢
can be modeled by C;(p_;), a “dummy” function that
depends on the power levels of all nodes except i. The
addition of a dummy function does not alter the potential
game property of the TC game. Consequently, the subse-
quent analysis of the TC game such as its convergence
properties and the efficiency of NE topologies, discussed in
the following sections, are unaffected. Nonetheless, the
topologies that minimize the total cost (that is, the sum of
data transmission and reception powers) may, in fact, be
different from those that minimize transmission power
alone. As we shall see in Section 6, the topologies produced
by DIA are quite sparse with very few extraneous
unidirectional edges on the average; thus, we believe that
the reception costs will be comparable to those in optimal
topologies. Additionally, the received cost can further be
reduced by decoding a few header bits and turning off the
receiver for the rest of the transmission period in case the
transmission was intended for some other receiver.

More aggressive energy consumption models can be
used to create energy-efficient networks. For instance, a
protocol where nodes turn their radio off and go to “sleep”
mode if their participation is not mandated by the network
can significantly save energy. Likewise, a node may choose
to selectively forward packets in order to conserve energy.
The study of such energy models is beyond the scope of this
paper; we refer the readers to [23] and [21] for further
discussions.

A quick note before we move on: our utility function
given in (9) is quite generic and works even without the
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knowledge of exact node locations, so long as the threshold
power levels w required to establish links are estimated
accurately. Certainly, many other utility functions can be
used to model the specific systems under study. An
example, for instance, is one in which each node views
benefit from covering a given area (instead of connecting to
a certain number of nodes as considered in (9)). Such a
construct models applications such as sensor networks well
but requires the knowledge of node locations in assessing
the sensor field coverage. For instance, two nodes that are
within the proximity of each other do not add to the
individual coverage areas of each node because both nodes
more or less “observe” the same information. However, if
the two nodes are distant from each other, each node, with
location information of the other, can improve its utility by
connecting to the other node and thereby increasing the
coverage area.

We next study the implications of the utility function
given in (9) and analyze the TC game properties.

5.2 Game-Theoretic Analysis

We begin by showing that the game I' = (N, A, @) with the

objective function of each node given by (9) is a potential

game.

Theorem 1. The game T = (N, A, ), where the individual
utilities are given by (9), is an OPG. An OPF is given by

Vip) =M fi(p) =D pi

i€EN i€EN

(10)

Proof. We prove by applying the asserted OPG in (10). First,
we have

Aty = (pi, p—i) — (g5, P—i)

11
= M[fi(pi,p-i) — fi(@i,p-i)] — (pi — @) (1)
Similarly
AV =V (pi,p-i) — V(i r—s)
= M|fi(pi,p=i) — fi(¢,p—=i)] — (i — @)
+M Z {fi(Pmp—L) - fj(Qiap—i)} :
Lj€e N;j#i J
Thus, we have
AV = Au, + M Z {f] Di, D f](q77 )} . (12)
LieN;j#i |

Since f;(p) is monotonic and M > p; maxVi, it follows
from (11) that

ZO 1pr >qL a‘nd fl(p) >fl(ql7p*i)7

— SO ifpi <Qi and fL(p) <f¢(qL7P—i)»
Ad; = ) 13
G= 20 it g > g and fi(p) = flgnpo), L)

>0 if p; < g and fi(p) = fi(qi, p-i)-

The sign of the second term in (12) is the same as the sign
of A, for the first two cases of (13). For the last two cases
of (13), the second term in (12) is zero, because the
connectivity profile of every node remains unchanged;
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therefore, AV =Ag;. In general, sgn(AV)=sgn(Au;)=V
is an OPF, and T is an OPG. ]

One of the overaching consequences of being a potential
game is the possible relationship between a potential
function and a social welfare function. In the context of
our TC game, the social welfare function is the energy-
efficiency metric. Alternately, the potential maximizing
NE of the TC game can be interpreted as the optimal
power assignment vectors, that is, steady-state topologies
that are globally energy efficient.

Theorem 2. For the game T' = (N, A, u), the class of global
potential maximizers coincide exactly with the class of
topologies that are globally energy efficient.

Proof. Let p belong to the set of potential maximizers. For a
given p, we show that g(p) is connected and globally
energy efficient. We prove this by contradiction:

Case 1. Say g(p) is not connected. Then, fi(p)=
ki <n, the number of nodes in the network, Vi. In
other words, k; <n —1. Since p is a potential max-
imizer, V(p) must be greater than the value V(p*)
generated by another (connected) network, say, g(p*).
Note that since g(p*) is connected, fi(p*)=mn, Vi, and
V(p*) =M -n*— (3 ;cnp;). In other words

V(p) =M<Zk) - (Zp) > M -n?— (ij)

iEN iEN iEN

:>M<n22ki) < (Zp; Zpl).

ieN €N ieN

(14)

Since k; <n —1, the left-hand side of (14), M(n?—
Yienki) > Mmn*—n-(n—1))=n-M >n-pjmwm. On
the other hand, the right-hand side of (14),
O ien P — X ienPi) S M- Dimae- Thus, (14) is a contra-
diction. Hence, g(p) is always connected when p is a
potential maximizer.

Case 2. Now, suppose g(p) is connected, but p; is not
minimum for some 4. This implies that (3>, ypi) >
(> ien Pf). However, since p is the potential maximizer,
V(p) =M1 —(3,cnpi) > M-1* = (3 e npi) = (i) <
(> ,en pPi), a contradiction to our assumption.

Combining Cases 1 and 2, we conclude that g(p) is
always globally energy efficient when p is a potential
maximizer.

We now prove the reverse direction. Let g(p) be
globally energy efficient. We show that p is a potential
maximizer.

Since g is globally energy efficient, Vi, fi(p) =n, and
(Y;cn pi) is minimal. Thus, V(p) = M -n? — (3,cy pi) is
maximal. Thus, p is indeed a potential maximizer.

Thus, we conclude that the network g(p), resulting
from the game T,is globally energy efficient if and only if
p is a potential maximizer of (10). O

5.3 Analysis of the MIA

An immediate upshot of Theorem 1 is that both MIA and
DIA are guaranteed to converge to an NE [13]. Consider the
MIA: in every round, each node plays a best response to the
power setting of other nodes. This defines a sequence of
action profiles, where contiguous action vectors differ in
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exactly one element. Using the finite-improvement-path
property of potential games, it can be shown that this
sequence always converges to an NE profile. Besides, the
topology induced by the NE has some desirable properties,
as shown in the following proposition:

Proposition 1. MIA converges to an NE of the game T that is
locally energy efficient and preserves the connectivity of gmax.

Proof. From Theorem 1, we have that I' is an OPG.
From [13], it follows that MIA will converge to an NE.
However, we are interested in only those NE that
preserve connectivity in the final topology. Recall that
the input to MIA is the topology gmax, With every node
transmitting at p; max. The best response for each node is
to reduce its transmission power (and maximize its
utility) to a value p; so that the resulting topology
remains connected. We prove this by contradiction.
Suppose node i maximizes its utility at ¢ <p;,
given p_;, and the network is not connected. This implies
that w;(¢;,p—i) =M -ki—q > M -n—p;, where k; <n,
the total number of nodes in the network. This implies
that M- (n—k;) <pi —¢, an impossible inequality,
because the term on the left-hand side is larger than
Dimax and the term on the right-hand side is smaller than
Pimax- Thus, in every round, the topology is always
connected.

Since the topology is always connected at every stage
of the iteration, Vi, fi(p) =n, a constant. The utility
maximization problem now becomes a power minimiza-
tion problem. Thus, the final steady-state topology is also
locally energy efficient. O

5.4 Analysis of the DIA

We have shown that MIA is guaranteed to converge to
locally efficient topologies, by Proposition 1. Under the
dynamics of this process, any initial state p,,,, forms the
basin of the attraction and the system converges to the local
maxima of the potential function.

Theorem 2 identifies the existence of globally energy-
efficient states; thus, if the global maxima of the potential
function are the attractors of a dynamical system, conver-
gence to efficient topologies can be assured. Recall that the
outcome of MIA depends on the order in which nodes take
turn in updating their updating their actions. Unfortunately,
the problem of finding the optimal order, and consequently
the problem of minimizing the total sum power in a network,
is an NP-hard problem [24]. Hence, one needs to resort to
developing efficient heuristics to closely approximate a
global solution at best. We instead adopt an alternate
approach and develop a DIA that is guaranteed converge to
minmax energy-efficient topologies (that minimize the
maximum power of a node in the network).

In the DIA process, each node selects a power setting
with a higher payoff than its current payoff. Given that each
node transmits at py. and the induced gy.x is connected at
the start of the algorithm, any p; < pm.x that preserves
connectivity is sufficient to improve i’s payoff. As
described in Section 4.2.2, each user adapts by decrement-
ing his or her transmission power, albeit one level at a time,
as long as it improves his or her payoff; otherwise, the
user continues transmitting at his or her current level. In
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order to guarantee the convergence of DIA to the minmax
energy-efficient states, the step size é6—the amount by
which power levels are decremented in each step—should
be sufficiently small.

Assumption 2. The step size 6 is chosen so that at most
one connection (link) is dropped from the network when the
powers are adapted from p*) to p*+1), where p®, ph+1) e A,
from (7).

Similar to MIA, this DIA dynamic also specifies an
improvement path—a sequence of improving action pro-
files. The improvement path is finite, and as a result, the
DIA dynamic converges to an NE [13].

The following result is the cornerstone of this paper: we
show that when nodes employ DIA, the process converges
to an NE that induces a minmax energy-efficient topology.
The proof of this theorem is based on a minimum spanning
tree (MST) property. Recall from Section 3.1 that we adopt a
network model where the edge weights of the underlying
graph are the power thresholds. Taking into account the
wireless broadcast property, we first define a power-based
MST (PMST) as follows:

Definition 6. A graph g is a PMST if it contains the MST, as
well as any additional edges induced by the wireless broadcast

property.

We first present the following two lemmas, which are
essential in proving our main result:

Lemma 2. Consider the game I' = (N, A, i), where nodes employ
DIA under Assumption 2. Starting with an initial topology
gmax induced by the power vector p.., the algorithm
converges to a subgraph g4, of the PMST.

Proof. The proof is by induction. For the ease of presentation,
we suppose, without loss of generality, that gy.« is a
complete network. Also, let the power thresholds w(i, j)
be identical to the euclidean distance d;; between
the corresponding nodes (therefore, €2 is symmetric).
Consider a gmax comprising of three nodes: A4, B, and C.
Suppose dap > dac > dpc is the relationship between
euclidean distances. Based on Assumption 2, nodes start
at power level dsp and keep decreasing their power in
steps of ¢ until dsc. At this point, nodes A and C will not
reduce their power any further; otherwise, the network
would disconnect, and the nodes’ payoff would decrease.®
Because py = dac and dap > dac, link AB is severed as a
result. Thus, DIA converges to a topology containing
links AC and BC, the two shortest bidirectional links
needed to connect the three nodes.

Now, consider a fully connected topology with four
nodes: A, B, C, and D. Let dps > dpc > dpp > dag >
dac > dpc. All nodes keep decreasing their power from
dpa until dpp. Node D now has only a single link DB
that is bidirectional. The problem then reduces to a three-
node topology as before. Thus, the algorithm converges
to a topology containing the three shortest bidirectional
links AC, BC, and BD (and possibly some extraneous
unidirectional links as well).

8. According to the argument in Proposition 1, which also applies for a
DIA dynamic, network connectivity is preserved at every stage of the game.
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Fig. 1. (@) The MST. (b) The induced PMST. (c) The g4, derived
using DIA.

The above line of reasoning can be generalized to any
arbitrary network of size n. Therefore, the algorithm
always hits a state that consists of the shortest n —1
bidirectional links needed to maintain connectivity. Note
that at this point, the network is a PMST by definition.

If the PMST contains a bidirected cycle (a cycle with
all bidirectional links), at least one node in the cycle may
still reduce its power level further and still maintain
connectivity. Otherwise, the PMST contains exactly all
the bidirectional links of MST. In either case, the steady-
state topology gdi, is a subgraph of PMST (the subgraph
may not be proper). This completes the proof. 0
For a visual illustration on the difference between MST,

PMST, and g4, see Fig. 1. Note that because the bidirected
link BE in the PMST is incidental, node C can lower its
power level further.

Lemma 3. MST minimizes maximum power of any given node in
the network.

Proof. The main idea behind the proof is the fact that MST
minimizes the maximum edge weight of the network.
We show this by contradiction.

Let us assume, on the contrary, that there exists another

tree T' that minimizes the maximum edge weight. Let
e™ = arg max;jer w(ij) and €N = arg max;jemsr w(ij),
where wis the edge-weight function. By our contradiction,
w(e™) < w(em2¥). Introduce a cut—and partition the
nodes into two sets IV; and No—in MST by removing ela¥

from the graph. Since T'is a tree, we can find anedgeé € T

tojoin N; and N, and create an new tree T. Because e is

the edge in T with the maximum weight, we have

w(&) < w(e™) < w(e™). Since T is essentially created

from the MST, Y _;w(e) < Y ,cpgrw(e); we obtain a

contradiction. Therefore, MST is indeed the tree with the

minimum maximum edge weight.
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Fig. 2. Impact of 6 on the steady-state outcome. The higher the number
of power levels in the search space, the closer the margin between
optimal and suboptimal convergent states.

The edge e with the maximum weight determines
the node with the maximum power. Therefore, it follows
that MST minimizes the maximum power of any node in

the network. 0

Using the above two lemmas, the following main
theorem of the paper is an immediate consequence.

Theorem 3. DIA converges to a minmax energy-efficient
topology—one that minimizes the maximum power of any
given node.

Proof. We know that PMST contains MST and all the
additional induced edges. Because none of the induced
edges increase the maximum edge weight of the graph,
PMST preserves Lemma 3. From Lemma 2, the steady-
state topology gui, is a subgraph of PMST; therefore,
every edge in g4, is contained in PMST. It follows
immediately that Lemma 3 still holds for g4;,. Hence, the
result follows. O

We have shown that if a sufficiently small ¢ is chosen,
DIA converges to the minmax energy-efficient topologies.
As a general rule, § decreases with increasing network
density. Because 6 specifies the number of power levels in
the search space, it requires fine granularity in power
adaptations in order to converge to efficient topologies; in
real applications, using such small 6 can be prohibitive. In
Fig. 2, we consider a random topology with a density of
30 nodes/unit® and quantify the impact of various ¢ values
on the efficiency of the steady-state network. Minmax
energy-efficient topology ¢* is identified using a 6* value
that satisfies Assumption 2; then, the maximum edge
weight and sum of edge weights of g* are computed. Using
this optimal 6* as the reference, several different § values
are chosen leading to this optimal value. For each 6, the
DIA converges to (a possibly) different steady state g. We
compare the energy-efficient metrics (max edge weight and
sum of edge weights) for these suboptimal topologies to
those of the optimal topology g*. For the sake of clarity, we
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necessitates A and C to not lower their power in order to preserve
connectivity.

plot the number of power levels in the search space A in
log scale along the z-axis in Fig. 2.

From the figure, we note that as the size of the search
space increases (that is, as 6 decreases), the resulting steady-
state topologies approach the optimal topology configura-
tion. As an engineering trade-off, one can choose a
suboptimal topology with performance comparable to that
of the optimal one while reducing the algorithm complex-
ity. In the context of Fig. 2, choosing a 6 that corresponds to
20 power levels (size of A) reduces the search space to a
more practical value while still generating a good approx-
imation of the optimal solution, which requires a search
space of 500 power levels.

5.5 Comparative Discussion

The difference between MIA and DIA can perhaps be best
explained by a simple example. Consider a three-node
topology consisting of nodes A, B, and C; for the sake of
illustration, assume identical and symmetric channel states.
The dynamics of the game when nodes employ MIA is
shown in Fig. 3. We note that different steady-state
outcomes emerge depending on the order in which nodes
update their actions. For instance, if the order is {C, A, B} or
{4, C, B} instead of {B, A, C} as in Fig. 3, then the outcome
would be a topology containing links AB and BC' (same as
that obtained from DIA).

The dynamics of the game when nodes employ DIA is
shown in Fig. 4. Unlike in MIA, the outcome of DIA is a
unique PMST, regardless of the order in which players
update their power setting.

In all the discussions above, we assume that nodes
are “programmed” to follow the rules specified by DIA or
MIA. Both DIA and MIA are selfish algorithms, each at
two extremes on the “selfishness scale”; MIA is extremely
selfish, allowing nodes to minimize power consumption
in one shot, whereas DIA is more moderate, mitigating
the first mover advantage by restricting the amounts by
which each node can reduce its power. The DIA we
developed is essentially a protocol for selfish nodes that, if
they follow, is assured of converging to efficient NE states.
The algorithm, although conservative, is certainly true to
the noncooperative theory and adheres to the rationality
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Fig. 4. DIA dynamics. In round 1, A, B, and C decrement their power
level to w(A, B). In round 2, only C' minimizes its power further, to
w(C, B). Power levels in the parenthesis indicate a change from its
previous state.

principle. Given this, it is nonetheless worthwhile investi-
gating the outcomes when nodes disobey the selfish rules.
Specifically, we study what NE states are likely to emerge
in systems where nodes are selfish but not programmed
to behave strictly according to some selfish algorithm
(like MIA or DIA). In such systems, some nodes may
behave more selfishly than others (perhaps because the
more selfish nodes have stricter energy conservation
requirements).

We simulate one version of the above scenario by
considering a noncooperative network in which a certain
percentage (q) of selfish nodes employs MIA and the
remaining employs DIA. Observe that when ¢ = 0 percent,
the steady-state topologies are minmax efficient (by
Theorem 3), whereas when ¢ = 100 percent, the topologies
are locally efficient (by Proposition 1). For any other value
of g, we expect that the resultant NE topologies are efficient
in some degree between local efficiency and minmax
efficiency. This result is corroborated in Fig. 5. The figure
displays the loss in network efficiency due to the greedy
nature of MIA. DIA overcomes this first-mover advantage
inherent in MIA, and thus, the NE topologies are more
efficient as ¢ decreases.

5.5.1 Fairness and Pareto Optimality

MIA converges to one of the many NE of the game T}
which NE state emerges depends on the order in which
nodes update their power. While all NE states satisfy
Proposition 1, the power assignment vectors that define
these states may be substantially different. The “greedy”
nature of the algorithm immediately suggests that the nodes
that update their actions earlier, in a given round, choose
the minimum power necessary to preserve connectivity.
Consequently, the nodes that update later are forced to
transmit at a higher power in order to maintain connectivity
(recall that maintaining connectivity is always a best
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response for all nodes). Thus, the “first-mover advantage”
inherent in the MIA results in a biased and unfair power
allocations. To a certain extent, updating in a randomized
ordering alleviates this bias in power assignment.

In DIA, power levels are more evenly distributed across
all nodes. In some sense, the node with maximum power is
the “weakest link” of the network; therefore, minimizing
the maximum power prolongs the network operability and
maximizes the network lifetime.” The distribution of steady-
state power levels is comparable to that obtained from a
centralized algorithm such as [8], [9]. We conjecture that the
loss of network performance due to the presence of
selfish nodes in the network is significantly small; in other
words, the price of anarchy is close to one.

Definition 7. A power assignment vector p € A is Pareto
optimal if
u(P) =

where = implies strict equality in at least one element of
vector u.

u(p)Vp € A, (15)

In other words, it is impossible to increase the utility of a
player without decreasing the utility of some other player.

Theorem 4. Any algorithm that starts at gmay and implements a
selfish strategy—such as MIA or DIA—converges to a Pareto-
optimal NE. Alternately, every NE that preserves network
connectivity is Pareto optimal.

Proof. Any selfish algorithm that starts at gn.x converges to
an (locally efficient) NE that preserves the connectivity of
gmax; See the proof of Proposition 1. First, by Definition 3,
no node can reduce its power any lower; otherwise, the
network would be disconnected and hence violate
Proposition 1. Second, no m-node (where m > 2) reduc-
tion in power levels can preserve the network connec-
tivity either. This is because if some node reduces its
power (and therefore disconnects the network), some
other node must increase its power to reconnect the

9. Network lifetime is defined as the time span between the start of a
network to the death of the first node.
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network. It follows that the new configuration is not
Pareto optimal. O

As a corollary to Theorem 4, observe that the NE
topology T™ obtained by DIA is Pareto efficient: Suppose,
on the contrary, that there exists another topology 7' that is
Pareto efficient. This implies that every edge in T has a
lower or equal weight w than the edge weights in 7™. This
suggests that the Y _,w(e) <Y . w(e); we obtain a
contradiction because T* is a subgraph of PMST.

Proposition 2. For any random topology, the steady-state power
assignment vector under DIA is unique.

Proof. Note that MST (and therefore PMST) is unique if the
edge weights are distinct because the edges can be
uniquely ordered by their weights. Thus, the result
follows immediately. O

From the Pareto efficiency and uniqueness of NE, it can
be deduced that power allocation p* under DIA is lifetime
optimal: every other power distribution that preserves
connectivity results in a lower network lifetime; hence, no
node can reduce its power without degrading the network
performance and, thereby, its own performance. To get a
feel for the performance of the topology that results from
DIA, we generate NE topologies for a 30-node topology,
using various permutations of the order in which nodes
update their power settings under the MIA, and compare
against the topology generated by DIA. To demonstrate
this, we plot a distribution of the total power consumed by
an arbitrary NE state in Fig. 6. The figure corroborates the
fact that DIA performs much better than an average
NE state generated by any other selfish algorithm; in
addition, the plot also suggests that g4, performs signifi-
cantly close to the globally efficient topology.

5.5.2 Convergence and Overhead Issues

As in any engineering algorithm, there is a trade-off
between the efficiency and convergence rate of the
algorithm. While the topologies that emerge from MIA are
only locally (and not globally) efficient, the algorithm
convergence speed is linear in network size.
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Proposition 3. For the TC game given by T, MIA converges at a
rate O(n), where n is the number of nodes in the topology.
More specifically, the algorithm converges in exactly n steps.

Proof. As shown in the proof of Proposition 1, at each step,
the best response for each node is to choose the
minimum power level required to remain connected—no
node can reduce its power level any lower and still get a
higher payoff. After the first round (when every player
has updated his or her strategy), the payoff of
each player i is given by wu;(p*) = M.n—p}. In the
second round, no player i can choose a power level
pi < p; and still be connected. If this was possible, then p;
would not be the best response of player i in the
first iteration. Thus, after n steps, MIA converges to the

NE given by p* = {(p},...,p;)|fi(p") = n Vi}. 0

The following proposition formalizes the convergence
speed of DIA. The step size ¢ of the algorithm should be
sufficiently small to assure the convergence to the minmax
energy-efficient NE. On the other hand, the small step size
also reduces the rate of convergence significantly. The
choice of ¢ depends on the internode separation or, more
generally, is a function of the network size.

Proposition 4. For the TC game given by T', DIA converges at a
rate O(n?), where n is the number of nodes in the topology.

Proof. The initial topology gmax, induced by p,,,, is at most a
complete graph and therefore contains at most n(n — 1)/2
bidirected edges. According to Assumption 2, in each
iteration of DIA, exactly one edge is severed when nodes
revise their power levels. Consider the extreme case: the
node j that chooses minimum power (at the end of the
algorithm) is located at the periphery of the topology. In
this case, the algorithm converges only after j chooses its
minimum power. This means that j severs all its links
except the smallest one. Under this scenario, the
algorithm traverses through the maximum number of
iterations, that is, through n(n —1)/2 — 1 steps. There-
fore, the convergence rate of the DIA algorithm is O(n?).
Also, note that in each iteration, one edge is severed;
therefore, one update is required in terms of message
complexity. Therefore, the maximum number of updates
required is n(n —1)/2 —1. For the example topology
shown in Fig. 4, DIA requires two updates (powers are
first reduced to w(A, B), and then, C reduces its power
level further to w(C, B)), and the convergence is achieved
in two rounds. o

Both MIA and DIA, although distributed, require large
control overhead; each node, as it makes power adapta-
tions, needs to know whether or not it is connected to all
other nodes in the network. The worst case message
complexity is on the order of O(n?), where n is the
number of nodes in the network. Having such information
helps in the convergence to maxmin efficient topologies, as
shown in Theorem 3; this, however, comes at a cost
(overhead). Analyzing this trade-off between the cost of
control information and the steady-state network optim-
ality is beyond the scope of this paper (see [25] for a
formal analysis); nevertheless, the problem is important
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and warrants some discussion on how the overhead cost
can be reduced.

One way of reducing the overhead cost of DIA is by
designing its local counterpart. Consider, for example,
Local-DIA (LDIA), a localized version of DIA, which is a
more practical algorithm than DIA in terms of its
implementation feasibility. A possible utility function that
can be conceived is one in which utilities are functions of
neighborhood connectivity and not the entire network
connectivity as in DIA. The present utility function (9) can
be modified to a localized one as

@ (p) = Mf" (p) - pi,

where fi(k) is the number of nodes within i’s k-neighborhood,
that is, the nodes that can be reached in at most k£ hops
from i (ideally £ must be as low as possible).

In LDIA, each node observes its current k-neighborhood
and strives to maintain connectivity with every node in
its k-neighborhood while making power adaptations. (Note
that maintaining the k-neighborhood is always a dominant
action for each node, by Proposition 1.) Observe that as
node i reduces its power level, it may remove a node
from the #k-neighborhood of some other node j; this
happens if i drops a connection with one of its current
one-hop neighbors that belongs to the k-neighborhood of j.
Unless i broadcasts its new neighborhood, the nodes in
the k-neighborhood of i may be unaware of the changes in
their respective k-neighborhoods. To avoid this, it is
critical, from an implementation viewpoint, that each
node broadcast its neighborhood table every time there is
a change in its one-hop neighborhood. Note that it is
sufficient for nodes to send updates only to those nodes
that are within their k-neighborhood and not to all nodes
in the network (as done in DIA). It is also sufficient for
each node to broadcast its one-hop neighbor table and not
the entire k-hop neighbor information. By propagating the
control updates only to small neighborhoods, LDIA
greatly reduces the overhead cost. Besides, this idea of
k-hop neighborhood prevents the overhead cost from
growing with the network size. We are currently studying
this modification of DIA in our ongoing work [25].

6 SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the validity of our results. In the simulation study, nodes
are placed randomly on a 2D plane in a [-1,1] x [-1,1]
grid. We assume omnidirectional antenna gain patterns
with a path loss exponent of two (however, the results hold
for any exponent); the power required to support a link 45 is
w(i, j) =pij = dfj, where d;; is the euclidean distance
between nodes i and j (again, all results hold even when
1 is asymmetric). The simulation is implemented in C++
and GUI in Gnuplot. Nodes are chosen to update their
transmission level in a round-robin manner. Under MIA,
each node carries out the best response update scheme
given by (6). Under DIA, each node carries out the better
response update scheme given by (8).

Consider the initial state topology ¢max, containing
75 nodes, with each node transmitting at pyax = 2 units. We

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.7, NO.9, SEPTEMBER 2008
1
-
“ouApuLE b
; AF) >
2 T S R A2 T8
09 4 4
/10
y 7o
& " *25 46
‘38
o8
e
0 P
. o A gt
> ‘3
b= I 28
08 1 8
54t 43
2412 Vs
! Y0 s 2
(16) [ L] b §32 18
V'n
72
o 56
r 49
R f ¥ r 87
03 Il 8 s
A4z war ol gy
“ia 2 4B
02 Ly tie
50
2 + 53
o1 “as 8
73 1 69
‘e
“5ta3.

[} “3

a a1 o2 o3 04 08 o6 oy o8 08 1

Fig. 7. Output of MIA. A steady-state topology that emerges when nodes
implement MIA (Average power = 0.041 units and Maximum power =
0.596 units).

let gmax be the input to the two TC algorithms, MIA and DIA.
A possible steady state when nodes implement MIA is
shown in Fig. 7. The topology is much sparser as nodes
operate at power levels significantly lower than their
maximum levels. The steady-state topology, when nodes
implement DIA, is shown in Fig. 8. As expected, the topology
is much sparser than that produced by MIA. This topology is
a subgraph of PMST and contains a few induced cycles.'
As evident from the figures, both MIA and DIA preserve
network connectivity as there exists a bidirectional path
between any two nodes; besides, DIA produces a minmax
topology: no other topology configuration can reduce the
maximum power of any node in the network.

7 REeLATED WORK

Broadly, our work belongs to the body of research that
addresses the impact of selfish node behavior on
network performance. It is generally perceived that even
if nodes act selfishly, some amount of cooperation is
required to sustain an autonomous ad hoc network (see
[20] and references contained therein). The crux of the
problem is how to stimulate the nodes to cooperate—by
using reputation-based or pricing-based frameworks—
when they are driven by self-interested objectives. The
need for cooperation is a fundamental problem, which
manifests in various forms at all layers of the protocol stack
in a communication system [26].

10. For the sake of clarity, we suppressed the unidirectional links from
Figs. 7 and 8 and depicted only bidirectional links.
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Fig. 8. Output of DIA. The steady-state topology that emerges when
nodes implement DIA (Average power = 0.001 units and Maximum
power = 0.023 units).

The research efforts to address the problem of TC in the
presence of selfish nodes are fairly recent. Game theory and
mechanism design are the commonly used approaches to
address this problem. We now discuss the related work that
uses these two approaches.

Eidenbenz et al. are the first to pose the TC problem as a
noncooperative game and study connectivity properties
[27]. Much of their work is devoted to the analysis of
algorithmic complexity in finding an NE, when it exists,
and deriving bounds on the price of anarchy. In [11], the
authors formulate TC games as potential games. Potential
games guarantee the existence of at least one NE. In
addition, if the nodes employ a best response algorithm to
choose an appropriate power setting, convergence to these
equilibria is also guaranteed.

In [27], the existence of NE is not guaranteed. Further-
more, the authors do not provide the energy-efficiency
characteristics of the topologies that emerge. In [11], the
steady-state topologies that emerge are locally efficient but
are not necessarily globally efficient. In contrast, we prove
the existence and present convergence results pertaining to
a global NE.

Mechanism design seeks to achieve global efficiency by
aligning the selfish objectives of individual users with
the socially desirable outcome. In the context of TC,
mechanism design is employed to provide the adequate
incentives to individual users so that they maximize their
objective function when the network minimizes total
energy consumption, subject to connectivity constraints.
This approach has been adopted in [28] and [12] by
engineering a payment system that leads selfish nodes to
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forward packets for others. The utility function proposed in
[12] requires that each node declare the per-edge price that
it intends to charge in exchange for forwarding packets.

The approach of assigning prices on a per-link basis does
not account for the wireless broadcast advantage. The cost
incurred by a node when forwarding packets along a link is
a function of the transmit power required to establish that
link; therefore, a node incurs uniform energy costs in
maintaining links to each of its one-hop neighbors, all
accessible at the same power level. In our model, we
evaluate costs as a function of the transmit power and do
not assume any link-based charges.

8 CONCLUSION

Nodes in an ad hoc network have restricted communication
radius and limited battery capacity. This forces the nodes to
rely on intermediate nodes, not only to extend their reach,
but also to conserve their energy consumption. This gives
rise to conflicting dynamics in the network, where nodes try
to selfishly maximize their own performance.

We show that a particular instance of TC games can be
viewed as a potential game. Using potential game theory,
we show that the game I' admits many locally efficient NE,
a subset of which are also globally efficient. We develop
two algorithms that deal with selfish nodes: MIA and DIA.
MIA converges to topologies that preserve network con-
nectivity but are inefficient from an energy consumption
standpoint. In contrast, DIA algorithm guarantees conver-
gence to minmax efficient and connected topologies.

In developing the game models, we assume that
information about the existence of bidirectional paths,
between nodes that are beyond each other’s transmission
range, is available from the network layer. We are currently
studying the impact of modifying the utility function (5) so
that each node views benefit from only its neighborhood
and establishing a localized TC algorithm. We speculate
that this modification will still retain the core results.

The present work considers relatively static topologies,
where the TC algorithm converges faster than the changes
in the network due to node mobility. Analyzing TC games
in the presence of network dynamics is a natural extension
of this work and a subject of future work. We believe that
repeated games form an appropriate basis for game-
theoretic models of dynamic TC. Repeated games allow
nodes to choose actions that improve their expected payoffs
that take histories into consideration. Because the network
configuration changes in each time slot, optimizing
individual performance by considering a history of past
topology states, instead of just the most recent topology
state (as in a potential game), is likely to converge faster
and to better NE topologies.
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