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ABSTRACT

The strength of wood in tension perpendicular-to-grain has been studied by several
authors and found to depend on specimen geometry. In this paper, the weakest-link concept
has been applied to predict the relationship between specimen volume and load-carrying
capacity for Douglas-fir specimens loaded in uniform tension perpendicular-to-grain. The
theory allowed the prediction that logarithm of maximum strength should decrease linearly
with logarithm of volume. Experimental data taken from the literature were used to
evaluate the theoretical model and agreement was found to be high (R*> 0.85). Average
strength of a unit volume is approximately 460 psi, whereas the predicted strength of a
10- X 10- X 20-inch specimen (2000 inches®) is approximately 100 psi. The magnitude of
the size effect may depend on the quality of material in the specimens, but certainly any
rational development of working stresses for tension perpendicular-to-grain must consider
effects of specimen (or structural component) size.

Additional keywords: Pseudotsuga menziesii, size effects, tension, Weibull distribution,
strength, duration of load, glued-laminated beams, pitched-tapered beams, design of

structures.

SYMBOLS

B risk of rupture
1D beam depth
F  cumulative distribution function giv-
ing probability of failure
f frequency distribution
function of volume
k  shape parameter of Weibull distribu-
tion
n an integer
P probability indicator
S cumulative distribution function giv-
ing probability of survival
s size effect parameter
V  volume
X a generalized strength value
X stress parameter
%, a lower limit on strength (location
parameter of Weibull distribution)
X, scale parameter of Weibull distribu-
tion
B stress-volume cocfficient
" gamma function
¢ avariable
& stress distribution coefficient
o a generalized stress
a, scale parameter
p A parameter

WOOD AND FIBER 1

INTRODUCTION

The relationship between structure load-
carrying capacity and the size, shape, and
stress distribution within members has been
documented for many materials, including
wood (Weibull 1939a,b; Pierce 1926; Tucker
1927, 1941; Frankel 1948; Epstein 1948;
Bohannen 1966; Johnson 1971; Leicester
1973; Keenan and Selby 1973; Schniewind
and Lyon 1973). The size, shape, and stress
distribution effects observed in materials are
a manifestation of material strength as de-
fined classically. In the classical theory of
strength, as embodied in the maximum-
stress theory, for example, it is assumed that
strength is controlled by a combination of
stress components, with failure occurring
when this generalized stress reaches a maxi-
mum value. This strength concept makes
use of the mean strength obtained from a
number of geometrically similar tests as the
measure of material strength. The implica-
tions of natural variability observed in tests
of similar specimens are often neglected
and it is this variability that gives rise to
various “statistical” effects that influence
load-carrying capacity (Weibull 1952).
6 SUMMER 1974, V. 6(2)
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The normal scatter in material propertigs
has been attributed to a natural statisticpl
distribution of flaws characteristic of the
material, with strength being controlled hy
the size of the critical flaw in the critically
loaded volume. Since the flaw distribution
is a material characteristic, the resulting
measured strength values will exhibit |a
characteristic statistical variation. Strength,
which cannot be completely represented lyy
the single average value normally presentetl,
can be more completely characterized by|a
cumulative distribution function. Effects pf
size, shape, and stress distribution on
ultimate load-carrying capacity have been
studied in detaill by several authars
(Weibull 1939a,b;  Tucker 1927, 1941;
Epstein 1948; Bohannen 1966). In addition,
a vast amount of statistical literature exigts
that is directly applicable to the study of
size effects. Recently, Johnson (1971) pub-
lished a detailed discussion of the theo-
retical statistical foundations of size-effegts
theories as part of a dissertation on concepts
of size, safety, and economical structural
design. The economical design of a stryc-
ture was shown to be dependent on the
distribution functions of strength and
applied loads, as well as the costs of the
structure and anticipated costs of failyre
and personal injury. In this paper only the
effects of material variability on strength
will be reviewed. The statistical concepts
employed by Weibull (1939a,b) will be used
to quantify size effects in tension perpen-
dicular-to-grain  for Douglas-fir [Pseudo-
tsuga menziesii (Mirb.) Franco].

Motivation for the study of size effects
presented in this paper was based on the
need to develop fundamental strength data
for use in design of curved beams and, |in
particular, pitched-tapered beams. The
purpose of this paper is to (1) present
the experimental information that suggests
effect exists in tension tests
perpendicular to grain, and (2) present a
theoretical model consistent with the experi-
mental observations.

4 size
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EFFECT OF SIZE, SHAPE, AND STRESS
DISTRIBUTION ON STRENGTH

Theoretical concepts

To simplify the discussion, it is assumed
that all variability in load-carrying capacity
is due to natural material variability.
Johnson (1971) has discussed in more
general terms the effects of statistical vari-
ation of loads and strength. A complete
evaluation of risk of failure would neces-
sarily require a thorough knowledge of
statistical variation of load quantities, but in
the following sections loads will be con-
sidered deterministic.

Weibull (1939a) presented the first
theories capable of quantifying effects of
stress distribution and volume on strength
of materials. The weakest-link concept,
previously used by Pierce (1926) and
Tucker (1927), was fundamental to the
development. By considering the strength
of a material to be analogous to the strength
of a chain, Weibull showed how strength of
rods would be a function of length as fol-
lows:

Assume that strengths of specimens of
unit (or elementary) volume are repre-
sented by a cumulative distribution func-
tion. The distribution function of strength
is denoted by F(x), where F(x)=
P(X <x) and x and X are the generalized
stress and strength components. The fre-
quency distribution f(x), is obtained from
the cumulative distribution according to
f(x) = dF(x)/dx. Given this definition of
strength, we want to predict the behavior
of a structure containing n unit (or elemen-
tary) volumes.

At this stage it is necessary to make some
assumptions about material fracture. For
these purposes Johnson (1971) considered
three material types:

1. Perfectly brittle—materials in which
total failure occurs when fracture oc-
curs at the weakest point;

9. Perfectly plastic—failure by ductile
yielding; failure occurs when maxi-
mum load capacity of any cross section
is exceeded;

3. Brittle materials that do not follow



the weakest-link concept; maximum
load-bearing capacity does not neces-
sarily coincide with fracture of weak-
est element.

Weibull (1939a,b) developed the theory
to explain effects of volume and stress
distribution on strength of perfectly brittle
materials. Using the chain analogy, the
effect of the number of elementary volumes
can be calculated using the cumulative
distribution function for the eclementary
volumes. F(x) gives the probability that
strength is less than or equal to x; therefore
1-F(x) gives the probability of strength
being greater than x. The probability that
a chain of n links will have strength greater
than or equal to x is given by:

T-F00 =01 -r0)" =5 (1)
where F, is the probability distribution for
chains of n links, and S, is the survival
probability.

Tuking logarithms:

N Sn =B =nsL1 - F(x)3. (2)

If the elementary volumes have unit
volume, then the cumulative distribution
function has the form F,=1-exp(B)
where B=Vin [1-F(x)]. Generally the
stress distribution within the body varics
with position and the contribution to B from
each elementary volume dV is given by
dB = n(x)dv where n(x) =In [I-F(x)].
Therefore dB is a function of position and
the total value of B is given by:

B = /n(x)dy (3)

Therefore, we observe that the cumu-
lative distribution function for materials that
follow the weakest-link concept is of the
exponential type. To this point we have
considered the effect of number of elements
on strength when elements are assumed to
act in series. In this case, it is obvious that
strength of the weakest element controls
strength of the structure. Weibull also
argued that the same weakest-link model
applied for elements in parallel. Certainly
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it is possible to conceive of structures where
this is not the case—for example, structures
composed of parallel strands where a single-
component failure redistributes load to the
remaining components. Such 1materials
would not fall in the class of perfectly
brittle materials.

Pierce (1926), one of the first scientists
to study the statistical nature of strength
and size effects, recognized the relationship
between size effects and the general statis-
tical problem of determining the distribu-
tion of extreme values of a sample taken
from a parent distribution. Johnson (1971)
discussed the distribution of cxtreme values
in detail as they related to size, shape, and
stress distribution effects. Using very gen-
eral arguments, it is possible to show that
three types of exponential distribution are
possible, which are called the Type I, 11,
and III extreme-value distributions. The
Type TII distribution function is given by
{Gumbel 1958)1

P(X ¢ x) = F(x)
<1 - expl-( (- x )M ()

where 4 is a scale factor and x; an arbitrary
lower limit of possible values. This distribu-
tion is identical to that chosen by Weibull
(1939a). Tt appears that Weibull's choice
of the form of B (Eq. 2) was purely
expedient, in that it provided a mathe-
matically simple distribution function. The
specialization of B according to

B = ‘n{x)dv = [{x - x‘)/xO]k dv (5)

produces a cumulative distribution function
of general form:

F(x) = 1 - expl-s((x - x )x)¥ avl . (6)

If we assume a uniformly loaded volume,
then

FOO = 1= expl=((x = x)/x)* V] (7)
which is identical in form to the Type 1I
U This cumulative distribution function has been

defined as Type II by Johnson (1971) which

appears to contradict conventional notation.
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extreme-value distribution. The coefficient
of variation (cv) is given by (Johnson 1971)

Lr(1+2/K)/(r(1+1/7k)) 2y 17172
[(xlv1/k/m]—x2)+1]

where m; = mean strength at a reference
volume V, and I'(x) is the gamma function.

Therefore, when x; > 0 the coefficient of
variation decreases as V increases; however
cv remains constant if x, =0 (i.c. two-pa-
rameter Weibull).

Using the concepts presented above,
Weibull was able to show effects of volume
and stress distribution on strength. The
previous applications of size-effects theory
to studies of wood strength have relied on
applications of the two-parameter Weibull
distribution  (Bohannen 1966; Leicester
1973). This choice appears rational, par-
ticularly for studying tensile strength
perpendicular-to-grain and additionally af-
fords benefits by reducing the complexity of
the analysis.

Effect of volume variation

To evaluate the predicted change in
strength with volume in geometrically sim-
ilar specimens with similar loading, Eq. 7
is employed. Assume that the cumulative
distribution function, F(x), has been deter-
mined for a specimen of volume V;. Then
according to Eq. 7 (assuming x; = 0).

(9)

and the values of k and x, are obtained by
fitting the experimental data.
The strength of specimens of volume Va

is obtained by considering any fixed value of
F(x) =0.5; then

F(x) =1 - exp[(-x/xo)kvl]

expl-(x/%)¥ 1 = expl-(xy/x )% V]

and

Therefore

PERPENDICULAR-TO-GRAIN 129

Combined volume and stress
distribution variation

Effects of different stress distributions
and volumes in specimens can be assessed
by generalizing the method developed to
study volume effects alone. The integral to
be evaluated in all cases is (from Eq. 6):

,:‘(x/xo)k dv (13)
which has, in the general case, a value that
can be expressed in the form

\/;(x/xo)k dv = (x )k (14)

/%) N

max
where V = specimen volume, ¢ a constant
depending on the stress distribution and the
shape parameter (for a uniform stress distri-
butiony =1). From Eq. 1, define a survival
probability S and using Eq. 14:

| SIS

S=1-F{x)=exp[-(x__./x )" V] .

max’ o (]5)

Evaluation of Eq. 14 for simple bending
vields

; k N § 2

Hxf dv = () g2t s DE 0 (16)
where op = maximum bending stress, Vg =
volume of bending specimen, o, and
k =scale and shape parameters, respec-
tively.

The strength of an equivalently loaded
volume in pure tension can be calculated
according to:

K oow (o, 0k
)T av = (/e o)t Vg
k
Ciplig)” Vg/2lx + 1

J‘(x/xO

i

2o
Therefore

oplog = Dig/(2 vyl + A1 VR (8

and in general the effects of stress and
volume differences are given by:

5115, = [fa, (0% av)/(fg, (1)K av)17% . (19)

It can be shown that the combined effect
of diffcrences in stress distribution and vol-



130

ume can be reduced to a change in equiv-
alent volume. Comparing the predicted
strengths of simple bending and tension
specimens in which ultimate capacity is
controlled by tensile strength shows that for
the same specimen the strength in uniform
tension would be less than in simple bend-
ing, according to:

L 2.1/k
ip = oglizete + HTTE (20)

Or equivalently, to have a tensile strength
equal to the bending strength, the volume
of the specimens must be related by:
Vp = V2t + 2 (21)
It will also be important for subsequent
analysis and discussion to observe that if we
assume a weakest-link model as an hypothe-
sis, then the theory predicts that the relation-
ship between strength and volume for
geometrically similar specimens, similarly
loaded, should be linear on a log-log plot.
From Eq. 15.

S = exp[-(xmax/xo)k W] (22)
and therefore

n(1/5) = (xy, /%)% WV - (23)
Accordingly

log x . =a- (1/k) log Vv (24)
where

a = (1/k) Tog [an(1/S)]

+ log X, - (1/k) log ¢ . (25)

The applicability of the weakest-link
hypothesis can be assessed by studying the
relationship between logarithm of failure
stress and logarithm of specimen volume for
geometrically similar structures with similar
stress distributions. The slope of the rela-
tionship should be the inverse of the shape
parameter. Therefore, working with a
strength hypothesis, we are provided with
information about the theoretical relation-
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ship between variables that otherwise could
be deduced only by trial.

APPLICATIONS OF THE
WEAKEST-LINK MODEL

Although the distribution presented by
Weibull has found a great variety of appli-
cations, it does not appear to have been
widely applied in studying wood mechan-
ical behavior. In fact, the principal appli-
cation appears in the study of size effects in
bending by Bohanmen (1966), who found
that changes in strength of clear beams
produced by changes in span and depth
could be accounted for satisfactorily by a
weakest-link model.

TENSILE STRENGTH PERPENDICULAR-TO-GRAIN

Design of structures that results in devel-
opment of tensile stresses perpendicular-to-
the-grain generally should be avoided ( DIN
1969; Gower 1974). Tensile strength per-
pendicular-to-grain in all structural species
is low, usually less than 1000 psi, even for
small clear specimens. Additionally, the
radial and tangential planes are natural
cleavage planes in which natural cracks
(checks) often develop because of initial
drying or subsequent moisture content and
temperature changes. Checks, once present,
can propagate because of changing environ-
ments. Tensile strength perpendicular-to-
grain characteristically exhibits a high vari-
ability, a fact recognized by design code
requirements that mean tensile strength
perpendicular-to-grain  be reduced by a
larger percentage than any other strength
property in the calculation of allowable
stress.

Significant tensile stresses perpendicular-
to-grain can develop in curved beams, con-
nections, and any structural element where
applied loads are at an angle to the grain.
In particular, the development of adequate
radial tensile strength in pitched-tapered
beams has received considerable attention
recently. In general, the performance of
pitched-tapered beams has been adequate,
but a few beams have developed radial ten-
sion cracks in service at loads considerably
below design-load levels. In the search for
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an explanation of these failures, a more exact
linear-elastic stress analysis was developed
(Foschi and Fox 1970) and experimentally
veritied (Fox 1970; Foschi 1971). More
accurate stress analysis showed that the
previously used design formula (Wilson
1939) could significantly underestimate the
maximum radial stress in pitched-tapered
beams, although the validity of the Wilson
formula was verified for curved beams
of constant depth. Independently, Thut
(1970) and Gopu et al. (1972) have verified
the findings of Foschi and Fox, but unfor-
tunately, even using the improved stress
analysis, some in-service failures cannot be

explained. In addition to accurate stress
analysis, successtul design relies on a

reliable knowledge of the ultimate load-
carrying capacity of the material. If it is
assumed that currently available stress
analyses are adequately accurate, then it is
logical to assume that our knowledge of
ultimate strength is deficient. This con-
clusion is supported by the anomalies that
exist in the literature.

At the present time in Canada, the allow-
able tensile stress perpendicular-to-grain is
65 psi for dry service conditions and normal
load duration in glued-laminated Douglas-
fir (CSA 1970). The maximum radial
tensile stress allowed by the American
Institute of Timber Counstruction for un-
reinforced members is currently 15 psi
(AITC 1972). These allowable stresses are
normally derived from tests of small, clear,
grecn specimens according to ASTM proce-
dures (ASTM 1971). The average strengths
obtained from the tests must be modified to
account for material variability, moisture
content, duration of load, grade, and a fac-
tor of safety. The allowable tensile stress
perpendicular-to-the-grain of 65 psi has
been modified accordingly from an average
air-dry strength of 444 psi for ASTM speci-
mens (Kennedy 1965). This allowable
stress is used for all curved and pitched-
tapered beam designs independent of beam
geometry and loading. Presumably, it has
been tacitly assumed that the actual factor
of safety against ultimate load is a constant,
independent of other strength criteria. In
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subsequent scctions, the effect of speci-
men volume on the tensile strength of
clear and glued-laminated uniformly loaded
specimens will be summarized. The applica-
ble size-effect theories will be discussed
and used to evaluate size effects in ten-
sion perpendicular-to-the-grain under static
short-term loading conditions and constant
envirommnental conditions.

SIZE EFFECTS IN TENSION
PERPENDICULAR-TO-GRAIN

Markwardt and Youngquist (1956) re-
viewed the development of tensile test
methods and presented some experimental
information showing effects of specimen
size and stress distribution on strength
measured in tension. No attempt was made
to explain differences in strength observed,
however. Of particular interest to the
present study is the information presented
on test methods and results for tension
perpendicular-to-grain. It appears, from
the great number of different standard test
specimens, that no universally accepted test
method has been found. The results pre-
sented show that strengths obtained are
specimen-dependent, which makes evalu-
ation of material properties extremely
difficult. For example, reducing the width
of the ASTM specimen (Fig. la) from 2
inches to 1 inch was found to increase
strength of Douglas-fir from 254 to 312
psi and from 395 to 398 psi for radial-
and tangential-failure surfaces, respectively
( Markwardt and Youngquist 1956).

Several authors have wused uniformly
loaded rectangular blocks (Fig. 1b) to study
tensile strength of Douglas-fir (Fox 1974;
Madsen 1972; Thut 1970; Schniewind and
Lyon 1973; Peterson 1973). The major ad-
vantage of this type of specimen is that a
more uniform distribution of stress is ob-
tained, but problems are sometimes encoun-
tered in that failures may occur at or near
the load-application points. Such failures
also occur in necked specimens, however.
Stieda® (1965) compared the strength of
ASTM specimens with that obtained from

* Unpublished data, Western

Laboratory.

Forest  Products
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a. ASTM Standard b.

c. Necked Specimen

(Schniewind and
Lyon 1973)
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Rectangular Blocks— .
uniform tension(Schniewind

and Lyon 1973; Fox 1974 |
Madsen 1972 :Peterson
1973)

Simple Bending
(Stieda 1965)

Fic. 1. Specimens used for measuring tensile strength perpendicular-to-the-grain cited in this study.

small, clear bending specimens of different
sizes (Fig. 1d). Schniewind and Lyon
(1973) also studied tensile strength of
Douglas-fir using a small necked-down
specimen (Fig. 1¢) and a rectangular block.
Although all authors recognized effects of

specimen size, no attempts were made to
relate the test results by applying size-
effects theories.

Experimental studies of tensile strength
perpendicular-to-the-grain in glued-lami-
nated blocks studied by Thut (1970),
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TasLe 1. Tensile strength results for uniformly loaded glued-laminated Douglas-fir blocks of commercial
material loaded perpendicular-to-the-grain

Nominal*

ne n Average Average Standard Coefficient Source
dimensions “ voiume strength deyiation of variation
inch psi psi

inches
4.5 x 4.5 x 13 12 22 263 128 42 .33 Thut (1970)

Ix3x7 29 66 191 49 .26

3x3x22 6-18 75 187 152 59 .39

5x5x7 28 172 171 49 .29 Fox** (1974)

5x5x 22 66 506 126 37 .30
5.13 x 5.13 x 24 12 15 632 141 42 .30 Madsen {(1972)
2.5 x2.5x9 7-9 44 56 198 67 .34 Peterson (1973)
* Al Tamination thickness 1.5 inches except Peterson (1973) where thickness was 9/16 inch.

**  [ndicated as Fox (1974-1) on Fig. 2 and 2.

Madsen (1972), Peterson (1973), and Fox
(1974) suggest that tensile strength of
blocks is less than that obtained from ASTM
specimens. Blocks studied were cut from
glued-laminated beams of commercial ma-
terial, except for one set of clear glued-
laminated blocks studied by Madsen
(1972). The dependence of strength on
specimen geometry raised many questions,
particularly for the assignment of allowable
working stresses in tension perpendicular-
to-grain for curved beams.

In a most detailed study of tensile strength
perpendicular to grain, Fox (1974) used
large glued-laminated blocks to study ef-
fects of testing speed, moisture content,
specimen cross-section area, and length on
strength of blocks obtained from four manu-
facturers. A statistical analysis showed that
the effects of moisture content (6% vs. 18%)
and testing speed (0.02 inch min? vs. 0.10
inch min-') were not significant. Changes
in specimen length (7 inches vs. 22 inches)
and cross section (3 inches X 3 inches vs.
5 inches X 5 inches) produced significant

changes in strength. Results are summa-
rized in Table 1 with results on uniformly
loaded blocks obtained from the literature.
These data provided information that
could be used to evaluate a size-effect
theory. Since results of Fox (1974) showed
that both the transverse and length dimen-
sions of test specimens influenced strength,
a volume effect was anticipated, and a plot
of log strength vs. log volume for data of
Table 1 appeared to support a hypothesis
that a weakest-link failure mode was oper-
ative. On such a plot, the specimen volumes
covered approximately one decade (56
inches® to 632 inches?). Three additional
tests were undertaken to extend the range of
specimen sizes to cover approximately 2.5
decades (16 inches® to 3650 inches®). The
geometry of these additional specimens was
chosen to test new cross-section areas and
new lengths with volumes adjusted to pro-
vide the wide range of volumes required to
evaluate the weakest-link hypothesis. As
pointed out by Fox (1974), the material for
the three additional tests was obtained and

TabLE 2. Additional tensile test results for the glued-laminated Douglas-fir blocks Fox (1974)* used to
assess weakest-link hypothesis

Nominal mc n Average Average Standard Coefficient
dimensions % volume Strength deviation of variation
inches inch3 inch3 .

psi
2 x2x4 12 30 16 355 100 0.28
2 x2x20 12 30 80 181 71 0.39
10.75 x 10.75 x 34 12 22 3650 100 19 0.19

* Indicated as Fox (1974-2) on Fig. 2 and

w
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Fic. 2. Relationship between strength and volume for uniformly loaded Douglas-fir blocks.

tested approximately three years after the
original experiment summarized in Table 1.
Results for the three additional specimen
sets are summarized in Table 2.

Tensile strength perpendicular-to-grain
of small clear specimens is usually mea-
sured using ASTM specimens. However,
Schniewind and Lyon (1973) measured

tensile strength perpendicular-to-grain in
Douglas-fir dimension lumber using a uni-
formly loaded block and a small necked-
down specimen. Stieda (1965) studied the
strength perpendicular-to-grain of small
clear bending specimens in relation to
ASTM tests. The results of these tests are
summarized in Table 3.

TasLe 3. Tensile strength results for clear Douglas-fir blocks loaded perpendicular-to-grain

Specinen

o n Nominal Average
type dimensions volume
inches inchd

Uniform tension 12 N 5.13 x 5.13 x 24 632
ASTM 12 24 - -
Bending 12 23 .5 x 1.5 <2 4.5
Bending 12 25 1.5 x2x2 6
dniform tension 12 ¢ 1.625 x 2 x 6 19.5
Hecked specimen 12 23 - 0.225%
ASTM 12 374 - -

Coefficicnt

Average Standard
strength deviation of variation

psi psi

191 40 0.21 Madsen (1972}
317%% 62 0.20 ) Stieda (1965)
911 m 0.12 5

336 131 0.16

363 87 0.24 Schniewind

& Lyon {1973)

564 123 0.21

443 154 0.35 WFPL (unpublished

data)

*

** A11 failure surfaces in PL plane

Assumed uniformly loaded volume was twice velume of the volume in the minimum cross section
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@« (dry service condition, normal load duration, CSA-086)
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= “transformed values a Thut (1870)
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» Peterson,(1973)
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1. 3. Lincar regression cquations relating strength to volume for uniformly loaded blocks of

commercial and clear Douglas-fir.
VERIFICATION OF THE WEAKEST-LINK MODEL

It is now possible to study the validity of
the theoretical model using the results of
tests on uniformly loaded specimens. The
particular advantage of employing the
model of behavior is that the theoretical
analysis has shown an appropriate form for
plotting of the data. Recall that Eq. 24 indi-
cated that a log-log plot of stress vs. volume
should be linear, if strength is controlled by

TasLe A, Summary of regression results obtained for

the strength of the weakest volume element.
All results cited are plotted accordingly in
Fig. 2, with the range of experimental obser-
vations at specific volumes indicated by the
vertical bars. The solid symbols represent
data collected on glued-laminated blocks of
commercial grades (1.5- and 0.56-inch
lamination thickness, see Tables 1 and 2).
The open symbols represent data derived
from clear material and the partially solid

clear and glued-laminated blocks loaded in uniform

tension perpendicular-to-grain

Clear Commercial A1l data
a* k* 2wk DFaek a k R2 DF a kR DF
Individual data 2.673 7.68 0.76 50 2.675 4.584 0.35 359 2.656 4.884 0.54 411
Means only (no weighting) 2.676 7.369 0.97 1 2.659 4.857 0.83 8 2.656 5.182 0.85 n
Means only (weighting by
sample size) 2.673 7.680 0.97 1 2.671 4.628 0.84 8 2.654 4.902 0.87 11
* Coefficients of regression egn. log o = a - ]F Tog V

Coefficient of determination

Degrees of freedom
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Fic. 4. Frequeney distributions for computed
shape parameters of the clear and commercial
material.
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symbols correspond to glued-laminated clear
material. For the purposes of plotting, the
effective uniformly loaded volume of the
necked-down specimen  (Schniewind and
Lyon 1973) was chosen as 0.225 inch®. An
analysis based on fitted-shape parameters
will show this was an acceptable estimate.
Initially, linear-regression coefficients a
and k of Eq. 24 were calculated using data
from all tests, then the data for clear and
commercial material separately. The results
are presented as the first entry in Table 4.
The coefficient of determination (R?) gives
a measure of goodness of fit. The R2 values
obtained using all data points are not high
and would not support the hypothesis of a
weakest-link strength concept with a high
degree of confidence. The analysis does
suggest that the clear material and com-
mercial material behave differently with
increases in volume. The reductions in
strength with increasing volume in clear

J. D. BARRETT

material do not appear to be as large as
observed in the commercial material. It was
then recognized that, as part of the devel-
opment of the weakest-link theory, the vari-
ation in strength at a given volume was
assumed to be explained, and consequently,
a rational evaluation of the theory should be
made by studying the change in mean
strength with volume. Regression coeffi-
cients were then obtained for the three cases
previously studied, by relating mean
strength to mean volume first by using indi-
vidual means and second by weighting the
means by sample size. The results of these
analyses are also presented in Table 4. The
plotted regressions are shown in Fig. 3. As
expected, the R? values improved and the
lowest R? value is 0.83 for commercial ma-
terial. The logarithm of strength of a
unit volume predicted by the regression
equation is essentially unchanged by method
of analysis or material category ranging
from 2.654 to 2.676. Weighting of the mean
values improved the R? values and changed
the shape parameters only slightly.

In order to plot the corrected ASTM
strength values and the results of Stieda,
values of the shape parameter are required.
In the theoretical analysis it was shown
that the value of the shape parameter ob-
tained from individual cumulative-distri-
bution functions should be the same as
that obtained by fitting a linear-regression
equation to the log-strength vs. log-vol-
ume plot. Cumulative-distribution functions
were fitted to the data at individual vol-
umes. For sample sizes of less than 50, the
method of White (1969) without weights
was used. For the larger sample sizes the
methods of Miller and Freund (1965) and
moments were used. Computed shape and
scale parameters for the commercial and
clear groups are presented in Table 5.
Average shape parameters for clear material
and commercial material were 6.35 and
4.04, respectively.

The frequency distributions for computed
shape parameters for the clear and com-
mercial material are given in Fig. 4. To test
the significance of a given departure from
a mean k value, a simulation was performed.
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Fi. 5. Frequency distributions for k determined from a two-parameter Weibull distribution with
specified shapes of (a) 4.0 and (b) 4.9 (sample size 30).

Samples of size 30 were selected at random
from a known parent distribution. A two-
parameter cumulative-distribution function
was fitted and values of the estimated
shape parameter k recorded. The frequency
distributions for 1000 realizations of the

simulation are presented in Fig. 5 for values
of k = 4.0 and 4.9. The ranges of estimated-
shape parameters for various intervals when
the true values were 4.0 and 4.9 are given in
Table 6. Based on the simulation, one could
not reject the hypothesis that the shape
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TaBLE 3. Parameters of cumulative distribution functions by specimen and source
Zpecimen* Average SampTe  ~ Scale ~"Shape Source T
volume size parameter parameter
inch3 psi
Commercial Material
2x2 x4 16 30 393.5 3.92°
3x3 a7 66 29 210.3 4.44
2 x 2 x20 80 30 202.6 2.91 Fox (1974)
5 x5 %7 172 28 189.0 4.24
3 %322 187 75 171.6 2.74
5 x5 x 22 506 6% 138.8 4.04
10.75 % 10.75 x 30 3650 22 106.6 6.69
4.5 x 4.5 x 13 263 22 138.0 4.84 Thut ({1970)
5.13 x 5,13 x 24 632 15 157.4 3.72 Madsen (1972)
2.5 x 2.5 %9 56 44 223.2 2.90 Peterson (1973)
Mean  4.04°
s.d. 1.14
Clear Material
Necked specimen 0.225 23 606.1 6‘21{ Schniewind
2 x 1.625 x 6 19.5 13 394.6 5.204 & Lyon (1973)
1.5 x 1.6 x 2 1.5 23 956.2 10.45] Stieda (1965)
1.5 x2x2 6 25 893.4 7.30 0
ASTM - 24 340.0 6.52’
5.13 x 5.13 x 24 - 11 208.9 5.18 Madsen {1972)
ASTM - 374 489,8+ 3.61 WFPL {unpublished)
Mean 6.35 "
s.d. 2,16

Nominal moisture content of all tests 120
Miller and Freund (1965

Mann-Whitney test hetween shape parameters of commercial and clear material attain the 2% Tevel (2 tail)

puarameters computed for individual tests
were representative values that would be
obtained from a parent distribution with the
shape parameter equal to means given in
Table 5. The shape parameters estimated
by the average of individual test values
(6.35 and 4.04) were lower than the least-
square fit estimates determined by the plot-
ting method, which were 7.7 and 4.7 for
the clear and commercial groups.

For the purposes of subsequent analyses,
it is important to determine whether a
“best” estimate of the shape parameter for
the commercial and the clear material can
be obtained. The 95% confidence limits for
the two estimates of the shape parameters
were calculated using conventional tech-
niques. The upper and lower bounds for the

shape parameter k determined according to

=
|—
o1 =

(26)

=3
-

are
K+ ts (27)
where
n “
= (kR m-1 (28)
i=1
and
Sk = ¥sé/n (29)

and t = the appropriate value of Student’s
t for n— 1 degrees of freedom.

For the commercial material 3.19 < k < 4.83
and for the clear material 4.35 <k < 8.35.
To compute the range of k estimated by the
regression method, recall the regression
coefficient b = 1/kK’, where kX’ is the shape
parameter estimated by regression methods.
The 95% confidence limits for the slope b
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can be computed according to

b+ tsy (30)
where
2 2 4. 2
sg = (s, )/5(x - %) (31)
where  s*,.y = conditional variance of vy

given x, i.e. residual mean
square after fit,
t = the appropriate value of Stu-
dent’s t for n - 2 degrees of freedom.

For the commercial material -0.149 <b <
-0.258, or 3.87<k’'<6.69 and for the
clear material — 0437 < b < 4+ 0.177, or
2.286 < k' < undefined. The upper bound
on k was labelled undefined because it is
predicted to be negative.

The confidence bounds predicted for k
and k’ for both the commercial and clear
material have considerable overlap; there-
fore there does not appear to be any basis
for accepting one particular estimate over
another. Initially it was anticipated that the
least-squares regression estimate (k’) would
be the “best,” but the analysis has shown
that the confidence limits are wider for k’
than k. However, for the purposcs of sub-
sequent analyses, the value of k determined
from the regression of log strength vs. log
volume by weighting mean specimen
strengths by sample size for all data com-
bined are used, i.e. k = 4.9.

Recall that Eq. 8 showed the relationship

TENSION PERPENDICULAR-TO-GRAIN
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TasLE 6. Range of shape parameter corresponding
to given central intervals obtained by simulation

Central Range of shape parameter
interval
) true value 4.0 true value 4.9
50 3.57 - 4.60 4,38 - 5,63
30 3.02 - 5.39 3.78 - 6.76
95 2.94 - 5,77 3.61 - 7.18
99 2.59 - 6.47 3.20 - 8.19

between coefficient of variation and volume.
If a weakest-link model was applicable, then
the coefficient of variation should decrease
if a nonzero lower limit on strength exists,
or remain constant if x;,=0. The experi-
mentally determined coefficients of vari-
ation are plotted vs. volume in Fig. 6. These
results suggest no distinct trend except
that the coefficient of variation does not
appear to be increasing with volume.
Therefore, using this measure of fit the
weakest-link hypothesis is supported.
Experimental results provided by Stieda,
Schniewind and Lyon (1973), and the
ASTM strength values can now be corrected
for effects of the nonuniform stress distribu-
tion using the techniques presented earlier.

1. Bending tests

The tensile strength of a uniformly loaded
volume Vi =V, can be computed from a
bending test according to Eq. 20.

3= oglizzk + DAV (32)

assuming k = 7.68
ap = 0521 OR.

Therefore the equivalent uniform tensile
stresses are 474 and 435 psi for the 4.5

-

TasLE 7. Effect of fitting technique on computed
shape and scale parameters for 374 ASTM tension
perpendicular-to-grain specimens

Fitting K B
technique
Miller and Freund 3.6060 489,80
Moments 3.1508 494,85
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inches® and 6 inches® specimens, respec-
tively. These results are plotted in Fig. 3.

2. ASTM tests

The strength of an equivalent uniformly
loaded unit volume is given by

o = OfeFan (33)

v
Because of the complex distribution of
stresses perpendicular to the grain, the
integration was performed numerically us-
ing stresses derived from a two-dimensional
finite element analysis of the ASTM speci-
men. The results of the analysis can be
expressed according to

T T Pnax (34)
where o, is the nominal stress at failure
for the ASTM specimen and 8 is a parameter
that incorporates the effects of the non-
uniform stress distribution and volume
change to unit volume. The dependence of
B on the assumed shape parameter is given
in Table 8. The transformed strength of the
ASTM specimen computed using Eq. 3 is
467 psi for k =7.68 and 482 psi for k = 4.63.
These values agree closely with the strengths
for a unit volume predicted from the regres-
sion equations for clear and commercial
material, which were 470 psi and 460 psi,
respectively.

3. Necked specimen

By replacing the curved portions at the
ends of the specimen with straight lines
joining the ends of the arcs, the following
approximate analysis was obtained:

. 1/k
7 = (0.1538/V;) . (35)

Transforming to a uniformly loaded volume
of 0.225 inch®, ¢y =093 ¢ for k=7.68.
Therefore, the error in the assumed strength
at a uniformly loaded volume of 0.225 inch?
is less than 5%. For the purposes of this
investigation, no additional refinement was
considered necessary.

DISCUSSION
On the basis of an analysis of tensile tests
perpendicular-to-grain in Douglas-fir, a size

J. D. BARRETT

TasLe 8. Factors used to correct for effects of
volume and stress distribution in the ASTM tension
block

Shape

parameter i
3 1.1770
4 1.1046
5 1.0741
6 1.0602
7 1.0547
8 1.0533

effect has been identified and the weakest-
link concept of failure has been applied to
explain changes in mean strength with vol-
ume. The hypothesis that a weakest-link hy-
pothesis applies was accepted on the basis
of the high coefficients of determination
(R®*>=0.85) obtained by least-squares re-
gressions relating log volume to log strength.
The strength-volume relationships obtained
suggest that, for specimens cut from com-
mercial glued-laminated beams, the average
tensile strength perpendicular-to-grain is
reduced to the present allowable stress of 65
psi (dry service conditions and normal load
duration; CSA 086) at a specimen volume of
approximately 10,000 inches® (Fig. 3).
From the limited data available, it appears
that a reduction in strength with increasing
volume for clear material may be consider-
ably less. It is important to note that the
reductions in strength observed experi-
mentally were obtained in short-term tests
under essentially constant environmental
conditions. Effects of time and environ-
mental change would be expected to further
reduce these strength values and must be
accounted for in the development of work-
ing stresses. Recent work by Madsen
(1972) and Peterson (1973) suggests that
the duration of load effect in tension per-
pendicular-to-the-grain may be considerably
larger than previously anticipated.

It is important to realize that the weakest-
link model provides a conservative estimate
of the relationship between strength and
volume, as it assumes that total failure
occurs when the weakest element fails.
There is no possibility of load transfer or
load redistribution assumed, which may be
possible in the real material. The analysis
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presented in this study suggests that, while
the weakest-link assumption is conservative,
it does in fact accurately model the behavior
of wood loaded in tension perpendicular-to-
grain for the range of specimen volumes
studied.

The choice of a two-parameter Weibull
distribution function (i.e. minimum strength
assumed to be zero) simplified analysis. It
also is considered acceptable, particularly
for representing strength in tension perpen-
dicular-to-grain. No minimum nonzero
strength for wood, particularly in tension
perpendicular-to-grain, can be justified theo-
retically without employing some selection
process such as proof loading. Normally,
in the process of specimen preparation, a
selection process is operative that provides
ultimately a truncated distribution, if only
by virtue of the fact that specimens must
have a finite strength to survive until a
specimen reaches a testing machine. The
two-parameter cumulative distribution func-
tions, when plotted, show an acceptable fit
to experimental data. There are cases, how-
ever, where the skewness suggested by the
experimental data is not consistent with the
skewness defined by the cumulative-distri-
bution function. Larger sample sizes would
be required accurately to characterize the
skewness and the material cumulative-
distribution functions, a fact dramatically
demonstrated by the simulation results even
with small samples.

Leicester (1973) defined a size parameter
s according to

,;f:A_'/LS s 7;0 (36)
Leicester has shown that the theoretical size
parameter s can be determined from the

coefficient of wvariation of an assumed
Weibull distribution according to
s = n(ev) 08 (37)

where cv = coefficient of variation and n=
1,2,3 depending on whether failure is depen-
dent on length, area, or volume. Single-
parameter estimates of this type can be use-
ful in studying the fundamental aspects of
underlying distribution, but considerable
care must be exercised in any attempts to
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use such estimates to predict behavior. For
example, Leicester (1973) suggests that the
size effect s = 0.10 determined from test of
geometrically similar, clear Douglas-fir
beams would suggest an area effect and an
area effect was not reported by Bohannen
(1966) in similar tests. Although a cross-
sectional area effect was not reported,
Bohannen did retain Weibull assumptions to
predict a size effect for geometrically sim-
ilar beams loaded similarly according to

T 1/9
5q/a5 = (Dy/Dy) (38)

where ¢ is the maximum strength in bending
and D is the beam depth.

Using Eq. 14 and Eq. 36, the relationship
between the size coefficient and the shape
parameter can be determined, for similarly
loaded beams of constant width, s = 2/k.
The theoretical size parameter s = 1/9 (k=
18) agrees very closely with the value s =
0.10 (k= 20), which Leicester (1973) pre-
dicted from the data of Comben (1957).

The danger of relying on single-parameter
estimates of size parameters (s or 1/k) is
emphasized by the variations in computed
shape parameters obtained using different
fitting methods. The shape parameters
obtained for the 374 ASTM specimens using
two different fitting methods are presented
in Table 7. The variation of k with fitting
method, even for large sample sizes in con-
junction with the sampling variation to be
expected with small sample sizes (see Fig.
5), suggests that great care must be taken in
predicting size effects. Certainly tests at
one volume, even with a large sample size,
should not be used to estimate size effects.
This is exemplified by the difference
between k determined from the cumulative
distribution function for the 374 ASTM
specimens and the k computed from Fig. 3
for the clear or commercial material.

This research has demonstrated that a
large size effect exists for Douglas-fir that
has not previously been documented or
quantified for tensile strength perpen-
dicular-to-the-grain. Rational development
of allowable working stresses must account
for the size effect. This has been accom-
plished in development of allowable bend-
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ing stress by reducing the basic working
stress in accordance with Eq. 38. A similar
technique could be applied to the develop-
ment of working stresses for tension perpen-
dicular-to-the-grain. The basic working
stress is normally derived by reducing
average strength to account for material
variability. The regression equations plotted
in Fig. 3 show the change in mean strength
with volume and a tolerance band can be
computed that will encompass a given per-
centage of the data points plotted. The
lower bound of a 90% expectation tolerance
interval cuts off an expected 5% of the
population. This bound is plotted in Fig. 2
for all data cited. The use of such a simple
size-effect model employed for bending
would probably severely restrict design and
it appears that a more refined analysis may
be required to optimize design of structures
such as pitched-tapered or curved heams. It
is important to recognize that these size
effects have been characterized for stati-
cally loaded specimens under essentially
constant  environmental conditions ( Fox
1974). Results of recent studies on load
duration effects in tension perpendicular-to-
grain have accentuated the need for further
study of load duration effects before final
decisions are made on new working stresses
tor tension perpendicular-to-grain.

CONCLUSIONS

1. The tensile strength of Douglas-fir
perpendicular-to-the-grain is strongly af-
fected by the volume and stress distribution
within a specimen.

2. The strength-volume relationship ob-
served is described by a weakest-link
strength concept based on a two-parameter
Weibull camulative-distribution function.

3. The experimental data suggest that a
short-term test of a specimen with volume
10,000 inches® would have a mean strength
of approximately 65 psi, which is the cur-
rently allowable working stress for dry
service conditions and normal load duration.

4. The experimental data suggest that the
magnitude of the size effect is dependent on
the quality of the material in the specimen.

. D. BARRETT
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