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1 Introduction

Active flow control techniques including pulsed jets, suc-

tion, synthetic jets, and plasma-based actuation are studied 

extensively (Cattafesta and Sheplak 2011). Compared with 

other methods, plasma-based actuators are characterised by 

extremely fast response, wide-bandwidth and very simple 

and robust construction. These features attracted consider-

able attention from the flow control community in the last 

15 years (Corke et al. 2010; Li et al. 2012; Bletzinger et al. 

2005; Popkin et al. 2013a, b).

Dielectric barrier discharge actuators (DBDA), arc dis-

charge actuators (ADA) and plasma synthetic jet actuators 

(PSJA) are three typical types of plasma actuators. DBDA 

are characterised by low energy consumption (O(W)), but 

the application is so far confined to low-speed flows, owing 

to the weak induced velocity (typically less than 10  m/s) 

(Corke et al. 2010; Li et al. 2012; Forte et al. 2007). ADA 

mainly utilise arc heating effect to interact with high-speed 

flows. Although some promising results were obtained 

towards shock wave manipulation and jet noise mitiga-

tion, the power consumption (O(kW)) has been prohibitive 

for practical applications (Utkin et  al. 2007; Wang et  al. 

2009). By converting the heating energy of pulsed arc to 

gas mechanical energy, PSJA successfully realises the pro-

duction of high-speed (>400 m/s) high-frequency (>5 kHz) 

jets, while utilising an acceptable power consumption (0 

(100  W)) (Grossman et  al. 2003; Narayanaswamy et  al. 

2010; Zong et al. 2015a, b; Wang et al. 2014). Several eval-

uation studies on the control authority of PSJA have been 

performed, such as shock wave manipulation, jet noise mit-

igation, shock wave boundary layer interaction control and 

aerofoil trailing edge separation control (Narayanaswamy 

et al. 2012; Emerick et al. 2014; Caruana et al. 2009, 2013; 
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Hardy et al. 2010; Anderson and Knight 2012; Greene et al. 

2015).

A major outcome of the previous studies is that the 

performance of PSJA is not sufficient for high Reynolds 

number flows. This is because the control effect is short-

lived and only confined in the near region of exit orifices 

(Emerick et al. 2014; Anderson and Knight 2012). In order 

to further improve the control authority, the influence of 

actuation parameters on the characteristics of PSJA should 

be investigated systematically including the geometrical 

configuration of the PSJA and the architecture of the used 

power supplies.

For the power supply, different approaches result in vari-

ous discharge types, deposited energy levels and discharge 

timescales. Following an increasing energy level criterion, 

commonly used discharge types can be classified into nano-

second-pulsed discharge, pulsed DC discharge and capaci-

tive discharge (Zong et  al. 2015; Zhu et  al. 2015; Shin 

2010; Reedy et  al. 2013; Belinger et  al. 2011). Nanosec-

ond-pulsed discharge merits from a high heating efficiency 

(>40%), however can only be used to feed small-volume 

PSJA (tens of  mm3), due to the low discharge energy avail-

able from standard nanosecond pulses (<20  mJ) (Zhu 

et  al. 2015; Xu et  al. 2014). When pulsed DC discharge 

is exploited to accommodate the PSJA, both the discharge 

current and the discharge time can be tuned independently, 

whereas the majority of discharge energy is converted into 

the molecular vibrational energy, leading to a low heat-

ing efficiency (~10%) (Narayanaswamy et  al. 2010; Shin 

2010; Reedy et  al. 2013). Additionally, at high frequency 

(10 kHz), misfires are commonly observed due to the lim-

ited refresh time (Narayanaswamy et  al. 2010). Finally, 

for capacitive discharge type, the discharge efficiency can 

reach as high as 90% (Wang et al. 2014a, b; Belinger et al. 

2014). As the stored capacitor energy increases, the jet 

velocity, jet duration time and pulsed thrust also increase, 

while the heating efficiency decreases (Golbabaei-Asl et al. 

2013, 2015). With capacitor energy of 4 J, a peak jet veloc-

ity of 500 m/s can be attained (Reedy et al. 2013).

Geometrical features of PSJA include cavity parameters 

[volume, aspect ratio (diameter/height)], electrode param-

eters (distance, location, and shape), and exit orifice param-

eters (exit diameter, throat length). When the deposited 

energy is fixed, an increase in the cavity volume results in 

a decrease in the peak jet velocity and pulse thrust (Cybyk 

et  al. 2003). Increasing inter-electrode distance results in 

an enlarged heating volume and a significant improvement 

of jet strength (Zong et al. 2016). This variation is directly 

related to the mechanical energy dissipation due to the arc-

induced shock waves. When the discharge location moves 

from the cavity bottom towards the actuator exit, jet dura-

tion time decreases but strong temporal oscillations of the 

exit velocity are observed, possibly due to the enhanced 

shock wave reflections (Zhang et al. 2015). Electrode shape 

can affect the impedance matching of the discharge circuit, 

and a large length-to-diameter ratio of electrodes results 

in a high cut-off working frequency (Popkin et al. 2013b). 

As the exit diameter increases, an increase of the peak 

jet velocity is observed while the jet duration time drops. 

Additionally, if the deposited energy is kept constant, the 

saturation frequency, which corresponds to the maximum 

jet mechanical energy, increases linearly with the exit 

diameter (Zong et al. 2015). Throat length has no influence 

on the single-pulse performance of PSJA (peak jet velocity, 

pulsed thrust etc.), but a long throat length has detrimental 

effects on the repetitive working performance of PSJA at 

high frequency (Zhang et al. 2015).

Overall, several studies have provided the description of 

the effect of several geometrical and electrical parameters 

on the performance of PSJA. In contrast, the orifice shape 

of PSJA has received no attention to this point, although its 

effect on the evolving jet can be significant. The influence 

of exit orifice shapes on the performance of traditional, 

non-plasma-based synthetic jets has been researched exten-

sively in the literature (Hashiehbaf and Romano 2013; Ho 

and Gutmark 1987; Dhanak and Bernardinis 1981; Glezer 

and Amitay 2002; Krothapalli et al. 1981; Grinstein 1995). 

Results show that a noncircular exit jet has a much higher 

entrainment rate than a circular jet with the same exit area 

(Hashiehbaf and Romano 2013; Ho and Gutmark 1987). 

Additionally, some complex phenomena including azi-

muthal distortion, break-up and axis switching are present 

in the self-induced motion of vortex rings issued from slot 

orifices (Dhanak and Bernardinis 1981; Grinstein 1995). 

This distinction in mixing and vortex evolutions can sig-

nificantly change a given outer flow, such as the velocity 

profiles of boundary layer and its ability to resist an adverse 

gradient flow (Caruana et  al. 2009, 2013; Greene et  al. 

2015). Hence, the influence of orifice shape on flow field 

of PSJA needs to be identified towards improving control 

authority. In the present study, two actuator configura-

tions with different exit orifice shapes (round orifice and 

slot orifice) but same exit area are characterised. High-

speed Schlieren imaging and phase-locked PIV systems are 

adopted to investigate the influence of orifice shape on per-

formance characteristics of PSJA.

2  Experimental setup

2.1  Actuator and power supply

A three-electrode PSJA is constructed for the purposes 

of this study, mainly comprised of a ceramic cavity and a 

metallic lid, as shown in Fig. 1. The cavity structure, made 

of glass ceramic (MACOR), is 15 mm in height and 12 mm 
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in diameter. Four holes of a diameter of 1.2 mm are drilled 

at equidistant azimuthal locations in the plane lying at 7.5-

mm distance from the cavity bottom. Three of the avail-

able holes accommodate tungsten needles, which serve as 

the anode, cathode and trigger electrode, respectively. The 

remaining hole is connected with a metal capillary tube 

(inner diameter 0.6 mm), serving as a supply port for seed-

ing particles into the cavity during PIV measurement. Dis-

tance from the anode, cathode and trigger electrode to the 

actuator axis is fixed as 1, 2 and 0.5 mm, respectively. Two 

metallic lids with different orifice shapes but same exit area 

are machined, as shown in Fig. 1b. The first lid features a 

conventional circular exit orifice with a diameter of 3 mm. 

The second lid carries a rounded slot orifice, with a length 

of 7.3 mm and width of 1 mm resulting in an aspect ratio 

(AR: length/width) of 7.3. The throat length for the two 

orifices is 2 mm.

The adopted power supply system is constructed using 

a high-voltage amplifier (Trek Model 20/20 C) and several 

electrical components, as shown in Fig. 2. Compared with 

the power supply system previously used in Zong et  al. 

(2015a, b), this power supply system is similar in working 

principle (trigger discharge–capacitive discharge) but sim-

pler in construction (no DC power supply is involved).

For the activation of the discharge sequence, both trig-

gering and charging functions are realised by the high-

voltage amplifier. Initially, a 2.5  kV pulse (pulse width: 

1600 ms) is provided, to charge the high-voltage capacitor 

C1 (1 µF) while the resistor R1 (200 kΩ, 100 W) is limiting 

the charging current in order to protect the HV amplifier. 

Shortly after the charging process terminates, an 8 kV high-

voltage pulse (pulse width: 100 µs) is produced in order to 

ignite the discharge channel. Once air breakdown is estab-

lished, a low-resistance channel will be formed between 

the cathode and the anode, facilitating the rapid release of 

the energy stored in capacitor C1. Resistor R2 is used to 

prevent the large capacitive discharge current from flowing 

back to the amplifier.

2.2  Measurement system

High-speed Schlieren imaging and phase-locked Par-

ticle Image Velocimetry (PIV) are exploited to visual-

ise the induced flow field of the PSJA. A typical Z-type 

Schlieren system, consisting of a light source, two con-

cave mirrors, and a high-speed camera (PCO Dimax S4, 

12 bit, 4MPix), is constructed on a self-balancing opti-

cal table. A continuous light source (Euromex Illumina-

tor, EK-1) in conjunction with an adjustable circular iris 

provides illumination to the Schlieren arrangement. The 

light beam radiated from the point light source is first 

reflected by two concave mirrors (diameter: 30 cm, focal 

length: 3  m), subsequently converged by a convex lens 

(focal length of 200  mm) and finally projected directly 

on the camera sensor. Between the camera sensor and 

the convex lens, a knife edge is placed in vertical orien-

tation, facilitating visualisation of density gradients in 

the direction parallel to the exit plane. 12 bit Schlieren 

images are recorded at 1.28-µs exposure time and 20 kHz 

acquisition frequency. The resolution and scaling factor 

of the images are 240 × 500 pixels and 0.0926 mm/pixel, 

respectively. After the acquisition, Schlieren images are 
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Fig. 1  Actuator components. a Ceramic cavity. b Metal lids for round and slotted exit orifice
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post-processed, using techniques of background subtrac-

tion and intensity range normalisation (scaling 0–255), in 

order to improve the contrast ratio. For each case, 20 rep-

etitions of single-pulse actuation are recorded to obtain 

the statistically averaged jet front positions.

The planar, two-component PIV system consists of a 

dual-head Nd: YAG laser (Quantel, CFR PIV-200, 200 mJ/

pulse) and a LaVision camera (Imager Pro LX, resolution: 

3248 × 4872). The laser beam is conditioned using a set 

of optics and knives into a sheet of approximately 0.6 mm 

thickness, illuminating the area in the vicinity of the actua-

tor exit orifice. A field of view of 34 × 51  mm2 is imaged 

with a Nikon Micro-Nikkor 200-mm macro lens. The actu-

ator is placed in a close Plexiglas box to ensure quiescent 

flow conditions. Both the box and the cavity are seeded 

with dielectric oil-based particles (Shell Ondina, mean 

diameter: 1 µm), generated by an atomizer (TSI, 9302). The 

seeding provided to the actuator cavity is controlled by a 

solenoid valve (FESTO, MHJ10), and kept switched off 

before the discharge, in order to eliminate the interference 

on the developing flow field. Davis 8.3 software is used to 

record and process the particle images. For vector process-

ing, an interrogation window of 32 × 32 and an overlap 

ratio of 75% is adopted resulting in a final vector spacing of 

12 vectors /mm.

The deterministic time delay between discharge ignition 

and PIV recording (t) ranges from 100 to 2000 µs in order 

to track the evolution of the developing flow field. The time 

step between two subsequent phases is chosen to be 50 or 

100  µs to facilitate the direct comparison with Schlieren 

results. For each phase, 200 PIV image pairs are recorded 

to obtain phase-averaged velocity fields. For the round ori-

fice, only the symmetry plane is chosen as the measure-

ment plane. However, in the case of slot orifice, a total of 5 

planes are measured, as shown in Fig. 3. One of the meas-

urement planes is the coordinate plane xz (y = 0 mm). The 

remaining four planes are aligned in the yz plane, starting 

from x = 0  mm and ending at x = 3  mm, with a step of 

1 mm.

Additionally to the Schlieren imaging and PIV meas-

urements, electrical measurements are performed towards 

quantifying the discharge behaviour. The trigger voltage 

(Ut), discharge voltage (Ud) and discharge current (Id) are 

measured by a high-voltage probe (LeCroy, PPE20kV) and 

a current monitor (Pearson, Model 325), and recorded by 

a digital oscilloscope (Tektronix, TDS 3054 C) at 25 MHz 

sampling rate. Measurement stations are indicated in 

Fig.  2. Based on the measured discharge voltage and dis-

charge current, the instantaneous discharge power (Pd) can 

be calculated.

Typical discharge waveforms are shown in Fig.  4. The 

breakdown instant is set as the origin of time axes. Prior 

to the breakdown of electrode gap, Ut increases almost lin-

early with time and peaks at about 7 kV. During discharge 

ignition, the capacitor voltage drops sharply from 2.5  kV 

to approximately 0.1 kV. This sharp drop is caused by the 

change of load characteristics in the discharge channel. 

Prior to breakdown, the discharge channel can be treated as 

an infinite resistor and all the capacitor voltage is applied 

on the gap. During ignition, a spark (arc) is formed and 

resistance of the discharge channel drops significantly from 

~∞ to 0 (100 mΩ) (Laurendeau et al. 2014). Note that the 

discharge capacitor is not an ideal capacitor. Its parasitic 

resistance and inductance can be comparable to or even 

larger than the wire inductance and the arc resistance. 

Thus, a considerable portion of the initial voltage (2.5 kV) 

is burdened by the parasitic resistance and inductance of 

the discharge capacitor. As a result, the voltage drop at the 

arc, namely the measured discharge voltage after ignition, 

is very small (0 (0.1 kV)).

After discharge initialisation, the capacitor voltage 

experiences a quasi-periodical oscillation (ringing) with 

a period of about 75  µs. During the oscillation, the volt-

age envelope amplitude gradually decreases. Based on the 

measured voltage and current signals, the duration of the 

discharge is estimated to be approximately 260  µs. The 

variation of the discharge current is similar to the arc volt-

age, and the observed peak discharge current is 183 A. This 

Fig. 3  PIV measurement 
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periodical oscillation behaviour of discharge waveforms 

indicates that the discharge circuit behaves similarly to a 

RLC circuit (Belinger et al. 2014). Regarding instantaneous 

discharge power, 7 pulses with decreasing amplitudes are 

observed. The power pulse period is estimated to be 38 µs, 

half of the oscillation period of the discharge voltage. 

Moreover, the peak discharge power reaches 20 kW and no 

negative values are observed. By integrating the instantane-

ous discharge power, total discharge energy is estimated to 

be 1056 mJ.

3  Experimental results

In this section, Schlieren imaging snapshots and phase-

averaged PIV measurements are presented sequentially. 

Based on these results, the evolution characteristics of the 

starting vortex ring and high-speed jet, emanating from the 

actuator exit orifice, are analysed. Influence of the orifice 

shape on major performance parameters of PSJA, including 

jet front velocity, penetration length and exit velocity are 

investigated in detail.

3.1  Schlieren imaging

3.1.1  Flow field evolution

Shortly after initiation of the discharge, a series of weak 

compression waves (shock waves) are formed. Since the 

coherence of these flow structures would be compro-

mised in statistically averaged Schlieren images, instan-

taneous Schlieren images between t = 100  µs and t = 

350 µs are shown in Fig. 5 for clarity. Instances between t 

= 400 µs and t = 2000 µs are shown in Fig. 6. At t = 100 

µs, several shock waves are formed due to the rapid pres-

sure rise in the actuator cavity caused by the capacitive 

arc discharge. In the case of the slot orifice, the observed 

shock wave is in a bow shape in the xz plane, slightly dif-

ferent from the half-circle shape of the other shock waves. 

A clearly identified starting vortex ring is observed at t = 

150  µs. Combining the two Schlieren views in xz plane 

and yz plane, it becomes evident that the starting vortex 

ring of the slotted actuator exhibits an elongated shape. 

This is rather expected, since vorticity distribution of the 

starting vortex ring is conditioned from the shear layer 

developing in the throat of the exit orifice. Additionally, 

some weak shock waves, possibly caused by shock wave 

reflection in the cavity, can still be seen at t = 150 µs. For 

the round orifice, the front vortex ring gradually grows 

in size, and finally evolves into a spherical vortex (as 

indicated in the Schlieren image at t = 250  µs), due to 

rigorous entrainment of surrounding fluid. However, for 

slot orifice, quite different scenarios are observed in the 

two measured planes. The jet body in the xz plane shrinks 

during the propagation, and distance of the developing 

vortex pair reduces. In the yz plane, the jet body quickly 

expands and assumes a mushroom shape at t = 250  µs. 

Overall, the projections in xz and yz planes suggest a 

rapid deformation of the starting vortex for the case of 

the slot orifice.

As the grayscale in Schlieren images reflects the integra-

tion of density gradient along the view direction, a bright/

dark region suggests a large density variation. Regard-

less of orifice shape, between t = 350 µs and t = 700 µs, a 

distinctive jet is expelled from the cavity, illustrating that 

the exiting fluid density changes significantly during this 

period. The initially issued jet typically is of high density 

close to the ambient value (cold gas), while the low-density 

jet (hot gas) always comes out at a later time. This agrees 

well with the simulation results in Dufour et  al. (2013). 

After t = 800  µs, the slot jet assumes almost the same 

width in both x direction and y direction, indicating that 

(a) (b)

Fig. 4  Discharge waveforms. a Trigger voltage, discharge voltage and discharge current; note that the vertical axis for applied voltage has a 

break point (BP) and the scale jumps from 0.2 to 2.3 kV. b Instantaneous discharge power
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the narrow jet body is gradually evolving into a cylindrical 

shape (Krothapalli et al. 1981).

3.1.2  Jet front velocity

In Fig. 6, the jet front positions are indicated by yellow tri-

angles. It is clear that the slot jet propagates significantly 

slower than the round jet. This is attributed to viscous drag. 

More specifically, it is noted that although the exit area 

between the round and slot orifice is identical, the perim-

eter of the slot is significantly larger than the perimeter of 

the round orifice. As such, the contact area between the 

high-speed core of the jet and the surrounding quiescent 

fluid is larger for the slot jet, which results in a higher vis-

cous drag and lower propagation speed.

Through accurate detection of the position and trajectory 

of the jet front, the temporal evolution of the jet front veloc-

ity (Up) can be estimated. Statistically averaged results of 

20 pulse repetitions are shown in Fig. 7. The camera sensor 

detection error is approximately 2 pixels, while the vari-

ation of jet front position from shot to shot is typically 3 

pixels. Based on these error bounds and the corresponding 

frame interval (50 µs), the uncertainty in velocity calcula-

tion can be determined, as indicated by error bars in Fig. 7. 

Note that the performance parameters pertaining to the slot 

orifice shown in Fig.  7 are the average of the two values 

obtained from the two view directions, respectively.

Within one actuation cycle, the jet front velocity 

increases, and then decreases. Peak velocity is reached 

between t = 200 µs and t = 250 µs. For the slot orifice, the 

peak jet front velocity is slightly lower than that for the 

round orifice. Note that this peak value is only half of the 

peak exit velocity as will be shown in the next section.

3.2  PIV results

3.2.1  Uncertainty analysis

Four sources of velocity estimation errors are identified in 

the current PIV measurement. The first source of error (�u
1
) 

is related to the inherent cross-correlation operation. With a 

typical particle displacement error of 0.2 pixel and a maxi-

mum particle displacement of 10 pixels, (�u
1
) is estimated 

to be 2% umax, where umax denotes the maximum velocity in 

flow field. The second source of error is related to the finite 

ensemble size used for the phase averaging of the measured 

flow fields. On the premise that observed velocity fluctua-

tions obey a Gaussian distribution can be estimated as fol-

lows (Sciacchitano and Wieneke 2016),

�
u
 where is the standard deviation of velocity and N is the 

sample number (200 in this study). For the investigated 

(1)�u2 =

�
u

√

N

,
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Fig. 5  Instantaneous Schlieren images between t = 100 µs and t = 350 µs. Orifice shape and view direction are indicated on the top line
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case, the peak value of is just above 30 m/s, leading to a 

typical value of of less than 2 m/s.

The third source of error (�u
3
) is related to the finite 

laser sheet thickness (denoted as �L). Theoretically, the 

jet velocity distribution across the laser sheet is nonuni-

form and has a top-hat shape for the investigated case, as 

shown in Fig. 8a. Due to the projection in the 2D PIV vec-

tor field, the averaging effect will be proportional to the 

laser sheet thickness. The effect is particularly important in 

the case of the slot orifice, where the laser sheet thickness 

(0.6 mm) is comparable to the length of the minor axis of 

the slot (1 mm). Here, the worst case is considered, where 

the velocity distribution across the laser sheet is assumed 

to be parabolic. Based on this assumption, the measured 

velocity (u
m
) and the produced estimation error are deduced 

as follows.

where u(0) is the true velocity; w is the orifice dimension 

along the coordinate direction (width/length/diameter). 

As a result, the exit velocity is always underestimated. 

The estimation error is positively proportional to the ratio 

of laser sheet thickness to orifice dimension. For the slot 

(2)

⎧⎪⎪⎨⎪⎪⎩

u
m
= ∫

�L∕2

−�L∕2

u(s)ds = ∫
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Fig. 6  Instantaneous Schlieren images between t = 400 µs and t = 3000 µs. Orifice shape and view direction are indicated on the top line
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orifice in this study, the peak relative error �u
3
∕u(0) in y = 

0 mm measurement plane is approximately 12%. By com-

parison, the maximum of �u
3
∕u(0) for the round orifice is 

only 1.3%.

The last source of error (�u
4
) pertains to the discharge 

timing uncertainty, as illustrated in Fig.  8b. Based on the 

obtained electrical signals of the 200 pulse, the discharge tim-

ing is demonstrated to be normally distributed, which agrees 

well with the results in Laurendeau et al. (2015). The stand-

ard deviation of the discharge timing (�T) is around 2.7 µs. 

Under the assumption of a local linear approximation, the 

relationship between �u
4
 and the temporal evolution of veloc-

ity [denoted as u(t)] can be deduced, as shown in Eq.  (3). 

Considering a typical jet acceleration time of 100 µs and a 

peak jet velocity of 120 m/s (Zong and Kotsonis 2016), the 

peak value of �u
4
 is estimated to be 3.3 m/s.

The total measurement uncertainty (denoted as) is 

defined as the Euclidean sum of the above four measure-

ment errors, as follows

(3)�u
4
= u(T

0
+ �T) − u(T) ≈ �T

�u

�t

|
|
|
t=T

0

It should be noted that �u is dependent both on space 

coordinates (location in the measurement domain) and time 

delay, and as such not defined by a single value. For the 

remainder of this study, the local measurement uncertainty 

will be propagated through the performed analysis in order 

to produce uncertainty bounds for extracted parameters 

such as penetration length and jet front velocity.

3.2.2  Phase-averaged velocity field

The effect of the orifice shape on the phase-averaged veloc-

ity fields between t = 100 µs and t = 200 µs is shown in 

Fig.  9. Here, the two-dimensional Euclidean sum of the 

measured velocity components is denoted as in the xz 

plane and in the yz plane, where Ux, Uy and Uz and are the 

components of velocity in the three coordinate directions. 

Extensive analysis of the phase-averaged velocity fields 

pertaining to the round orifice shape is available in (Zong 

and Kotsonis 2016). Thus, the following section concen-

trates mainly on the slot orifice actuator and the differences 

of the latter to the round orifice actuator.

At t = 100 µs, a quasi-2D jet is issued from the slot ori-

fice with a maximum exit velocity of 50 m/s, which is con-

siderably larger than that of the round orifice actuator for 

the same delay. For the slot orifice actuator, the jet closely 

resembles the overall shape of the orifice. No spherical 

structures corresponding to shock waves are observed in 

the phase-averaged velocity fields, due to the dispersion of 

the shock wave location caused by discharge timing uncer-

tainty. For the slot orifice actuator, the vorticity in the shear 

layer rolls into an elongated vortex ring at t = 150 µs. As 

the jet propagates away from the orifice (t = 200  µs), its 

major axis (in the x direction) shrinks while the minor axis 

(in the y direction) augments. This signifies the gradual 

transition of the elongated jet body into a cylindrical shape. 

Such behaviour agrees well with observations pertaining to 

(4)�u =

√

�u
1

2 + �u
2

2 + �u
3

2 + �u
4

2
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steady slot orifice jets studied by Dhanak and Bernardinis 

(1981) and Krothapalli et al. (1981).

Under the assumption that projection of the front vor-

tex ring on the xy plane is an ellipse, a schematic diagram 

of the vortex ring transformation can be obtained based on 

the vortex core coordinates extracted from velocity fields. 

This is shown in Fig.  10. During the propagation of the 

starting vortex ring, the length of the minor axis gradually 

increases, and finally exceeds the length of the major axis 

(at approximately t = 250 µs). The axes-switching behav-

iour agrees well with the simulation results in Grinstein 

(1995). In their study, Grinstein et  al. conjecture that the 

fast entrainment rate along the y direction is the principle 

cause of such axis-switching phenomenon. In addition, the 

shape of the vortex ring becomes severely warped at the 

later stages of propagation (t > 150 µs). Warping is directly 

related to the disparate propagation velocity of different 

parts of the vortex ring. The motion of the front vortex 

ring is governed by both the momentum input of the high-

speed core jet and the viscous drag caused by the shear and 

entrainment between the jet core and surrounding quiescent 

fluid. When the vortex ring is initially expelled, it is gov-

erned by an almost constant propagation velocity along its 

perimeter. However, the long edge (along the major axis) 

of the core jet experiences higher viscous drag than the 

short edge (along the minor axis) due to larger contact area 

Fig. 9  Phase-lock-averaged velocity field between t = 100 µs and t = 200 µs. Measurement plane and orifice shape are indicated on the top line. 

The solid lines displayed are streamlines
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with the quiescent fluid. As a result, the strong shear and 

the high entrainment rate along the y direction restrict the 

propagation velocity of the long edge of the front vortex 

ring, leading to the observed warping.

The phase-averaged velocity fields between t = 300 µs 

and t = 500 µs are shown in Fig. 11. In Fig. 11c, f, i, the 

high-speed jet seems to vacillate to the left and right, dur-

ing the downstream propagation. This is possibly caused 

by the Kelvin–Helmholtz instability. In order to verify this 

phenomenon, some post-processing is performed on the 

velocity field shown in Fig. 11f. First, a threshold value of 

70 m/s is selected to extract the high-speed jet body from 

the background, as shown in Fig.  12a. Subsequently, the 

vector angle of each velocity vector is calculated and aver-

aged in the y direction. Variation of the y-averaged jet angle 

(denoted as θ) is shown in Fig. 12b.

When the jet propagates away from the exit, in the z 

direction, the jet angle oscillates in a periodical way, and 

the oscillation amplitude is rapidly amplified. This agrees 

well with the basic features of K–H instability, where the 

initial small disturbance is amplified in an exponential way 

(Lee 1976). This is largely expected since the issued jet 

can be regarded as a thin shear layer, which provides the 

environment for K–H type instability amplification. Yet, 

the identification of the source of instability is less straight-

forward. The evident periodic variation of the jet angle, 

extracted through phase-averaged data, suggests a strong 

initial disturbance periodicity. Based on the averaged jet 

velocity at t = 400 µs (approximately 70 m/s) and the aver-

aged wavelength in Fig.  12 (approximately 2.6  mm), the 

disturbance period is estimated to be 37 µs, in close agree-

ment to the period of discharge power (Fig. 4b). This indi-

cates that the initial disturbance frequency and phase is 

locked to the discharge itself. As stated in Sect.  2.2, the 

discharge power oscillates periodically, with a decreasing 

oscillation amplitude. Due to the asymmetric electrode 

configuration, this periodic energy deposition finally results 

in the periodic disturbance on the jet exit angle.

Figure  13 presents the phase-averaged velocity fields 

between t = 600 µs and t = 1000 µs. From t = 400 µs to t 

= 600 µs, the exit velocity drops sharply from 120 m/s to 

about 40 m/s. The profile of the high-speed jet attains the 

form of a tadpole with its head surrounded by the front vor-

tex ring (Fig. 13b–c). At t = 800 µs, almost no observable 

jet is issued. However, at t = 1000 µs, a second jet appears 

although with a very small velocity (<10  m/s). Addition-

ally, the sizes of the front vortex ring and the body of the 

slot jet show little difference in the xz plane and the yz 

plane, indicating that the quasi 2D jet is evolving into an 

axisymmetric jet.

For ease of visualisation of the topology of the devel-

oping jet, the contour surface of U
av2

 can be obtained by 

virtue of a cubic interpolation method, as shown in Fig. 14. 

Note that the maximum value of U
av2

 at t = 800  µs is 

lower than 50 m/s; thus, the contour surface is changed to 

40 m/s. Although the presented variable is not total veloc-

ity, Fig. 14 provides a good visualisation of the evolution 

of the high-speed jet body. The body of the high-speed jet 

changes from the initial mushroom shape at t = 300 µs to 

a tadpole shape at t = 600 µs. Finally, it assumes an egg 

shape once convected sufficiently far from the exit orifice.

3.2.3  Penetration length and exit velocity

The previous analysis has shown apparent morphological 

differences between the two tested cases regarding the evo-

lution of the jet core and the front vortex ring. It is thus 

instructive to evaluate whether the jet penetration length 

is also affected by the shape of the exit orifice. It must 

be noted here that the choice for an independent meas-

ure of the penetration length in quiescent conditions is 

not straightforward due to the absence of reference veloc-

ity. As such, a velocity contour line of 10 m/s is arbitrar-

ily chosen as the jet edge. The y-coordinate of the upmost 

point of the 10 m/s contour line is defined as the penetra-

tion length, as shown in Fig. 15. A preliminary sensitivity 

Fig. 10  Front vortex ring char-

acteristics. a Variation of axial 

length; b shape transformation 

during propagation
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test shows that when the velocity contour line changes from 

10 to 5  m/s, mean variation of the calculated penetration 

length is less than 2 mm. Due to these considerations, the 

penetration length presented in this study is largely aimed 

for comparison between the two actuators and not as a per-

formance metric. The effect of the actuator orifice shape on 

the estimated penetration length (denoted as δp) is shown 

in Fig. 16. Additionally, the change rate of the penetration 

length (denoted as Vp) is also calculated and presented. 

Note that the values pertaining to the slot orifice shown 

below in Figs. 16 and 17 are the average of the two values 

obtained from the two symmetry planes.

Fig. 11  Phase-lock averaged velocity field between t = 300 µs and t = 500 µs. Measurement plane and orifice shape are present in the top line. 

The solid lines displayed are streamlines
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Shortly after discharge ignition, the developing jet 

propagates and the penetration length gradually increases. 

Before t = 250 µs, the change rate of the penetration length 

for the round orifice is slightly lower than that for the slot 

orifice. The peak rising rate is around 60 m/s, close to the 

peak jet front velocity observed in Fig.  7. Between t = 

250  µs and t = 900  µs, the jet emanated from the round 

orifice penetrates faster than from the slot orifice, which 

agrees well with the basic trend shown in Fig. 7. This dif-

ference in penetration rate can be once again attributed to 

the jet entrainment/spreading rate, which will be quantified 

in the next section. Owing to a constant exit area, the slot 

orifice case has a larger contact surface with the surround-

ing air, compared to the round orifice case. This leads to 

a high entrainment rate of low-energy fluids and finally 

the slow propagation speed of the slot jet. In the case of 

the round orifice actuator, the penetration length begins to 

drop after t = 1000 µs, resulting in a maximum penetration 

length of 33.8 mm. For the jet pertaining to the slot orifice 

actuator, the penetration length at t = 1000 µs is 29 mm, 

and no peak point is observed between t = 100 µs and t = 

2000 µs.

The second indicator of jet intensity can be established 

based on the exit velocity. In order to obtain the averaged 

exit velocity at different phases, a rectangle just above the 

exit is chosen as the monitor region (see Fig. 15). The exit 

velocity presented in the following discussion is the spa-

tial-averaged velocity in the monitor region. The width of 

the monitor region is set as half of the slot size, while the 

height is fixed to 0.5 mm. The variation of the exit veloc-

ity in one period for the two tested actuators is shown in 

Fig. 17.

Prior to t = 200 µs, an acceleration stage is present, and 

the exit velocity increases rapidly from about 30  m/s to 

the peak value. Occurrence of the jet acceleration stage is 

related to the inertia of the throat gas (Zong et  al. 2015). 

Subsequently, between t = 200 µs and t = 400 µs, the exit 

velocity is sustained at relatively high level (100– 130 m/s) 

and is approximately double of the peak jet front velocity. 

This discrepancy can be attributed to the different defini-

tions. The jet front velocity is calculated by tracking the 

motion of the jet front, which is identified by either the 

grayscale change in Schlieren images or the velocity con-

tour in PIV results. In contrast, exit velocity is obtained by 

monitoring the velocity of the gas just expelled from the 

exit orifice. It can be expected that the gas just expelled 

will contain higher momentum. During propagation in the 

z direction, the jet velocity drops rapidly, which leads to 

a significant difference between the exit velocity and the 

jet front velocity. It is beneficial to note that the “peak jet 

velocity” widely determined by Schlieren methods in previ-

ous studies (Narayanaswamy et al. 2010; Zong et al. 2015a, 

b; Wang et al. 2014) severely underestimates the true peak 

jet velocity, as demonstrated by the PIV measurements of 

the current study.

After t = 400  µs, the exit velocity shows a linear 

decrease, and the first minimum value is reached at 

t = 800  µs. Note that this minimum value is still a posi-

tive value, suggesting that the jet is still continuing at this 

time. After that, the jet velocity increases again, reaching 

a second maximum and a second minimum. It is evident 

that the emitting jet intensity presents an oscillatory ampli-

tude variation. The oscillation period of the exit velocity is 

about 600 µs. The refresh stage finally comes at about t = 

1900 µs, indicated by a small negative exit velocity (fluid 

entering the actuator). Moreover, the orifice shape appears 

to have no influence on the exit velocity, which is within 

expectation. The exit velocity is mainly determined by the 

dynamic evolution of the cavity gas. With the energy depo-

sition and exit area kept constant, the exit velocity variation 

should be identical (Zong et al. 2015).

3.2.4  Jet spreading rate in the time-averaged flow field

Based on the above analysis, entrainment rate plays a domi-

nant role in the axes-switching phenomenon and the for-

mation of different jet penetration lengths. For steady jets, 

the entrainment rate can be quantified by the spreading jet 

profile in time-averaged flow field (Gutmark et  al. 2011). 

The boundary of the jet is typically defined as a fixed frac-

tion of the centreline jet velocity [40% in (Gutmark et  al. 

2011)]. Extending this approach to the current study, the 

time-averaged flow field of PSJA (average of all phases) is 

considered in order to analyse the jet spreading rate. Based 

Fig. 12  a Extraction of the high-speed jet body. b Variation of the jet 

angle
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on the phase-averaged flow fields, the time-averaged flow 

fields Ui(x, y, z) (i = x, y, z) are calculated as follows,

(5)

Ūi(x, y, z) =
1

Tjet
∫

Tjet

0

ui(x, y, z, t)dt

≈
1

Tjet

N
∑

j=1

ui(x, y, z, j) ⋅ Δtj (i = x, y, z),

where Tjet is the jet duration time (1.9  ms). ui(x, y, z, j) is 

the phase-averaged velocity at the jth phase. Δt denotes the 

time step between subsequent phases.

Focusing on the axial component of velocity, only 

Uz(x, y, z) is computed. Contours of are displayed in Fig. 18 

as function of the two orifice shapes. The jet bounda-

ries indicated by dash-dot lines are determined by 50% of 

the peak axial velocity at different z positions. For the jet 

Fig. 13  Phase-lock averaged velocity field between t = 600 µs and t = 1000 µs. Measurement plane and orifice shape are shown in the top line. 

The solid lines displayed are streamlines
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emitted from the round orifice, the time-averaged flow field 

is similar to that of the steady jets, where a quasi-linear 

spreading of the jet profile is observed (Hussein et al. 1994) 

In the case of the slot orifice, the jet profile in xz plane first 

contracts and then expands. In contrast, the jet profile in yz 

plane expands monotonically.

To quantitatively compare the influence of the orifice 

shape, the peak jet velocity values at different z positions 

(denoted as Ūz(z)) are extracted, as shown in Fig. 19a. Max-

imum values of Ūz for the two tested cases are almost the 

same, approximately 27  m/s. However, the decay rate of 

Fig. 14  Contour surface of 

U
av2

. a t = 300 µs, U
av2

 = 

50 m/s; b t = 400 µs, U
av2

 = 

50 m/s; c t = 600 µs, U
av2

 = 

50 m/s; d t = 800 µs, U
av2

 = 

40 m/s
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Ūz for the round orifice is moderately higher than the slot 

orifice, which is related to the fast propagation of jet body 

shown in Fig. 16.

The cross-sectional area of the jet body [S(z)] is cho-

sen to characterise the jet spreading rate. To compute 

S(z), width of the jet body at different z coordinates is first 

calculated based on the extracted jet boundaries, as illus-

trated in Fig. 18. For the round orifice, S(z) is defined as 

the square of the jet width in the xz measurement plane, 

w
1

2(z). Whereas for the slot orifice, S(z) is approximated 

by the product of the two jet width values determined 

in both symmetry planes, w
2
(z) ⋅ w

3
(z). Subsequently, 

S(z) is normalised by the cross-sectional area of the jet 

at the exit orifice S(0), resulting in a non-dimensional 

cross-sectional area S̄(z). Variation of S̄(z) is presented in 

Fig. 19b. As expected, the jet body expands rapidly due 

to the entrainment of surrounding fluids. At the same z 

location, the non-dimensional cross-sectional area for the 

slot orifice is almost twice as that for the round orifice. 

This ratio is close to the perimeter ratio of slot orifice to 

round orifice (1.7), testifying the association between jet 

entrainment rate and exit orifice perimeter.

4  Conclusions

A sequential discharge power supply (trigger discharge-

capacitive discharge) is exploited to feed a three-electrode 

large-volume (>1000  mm3) plasma synthetic jet actua-

tor. Two lids with the same exit area but different orifice 

shapes (round orifice and slot orifice) are designed, and 

their performance characteristics are investigated based 

Fig. 17  Variation of exit veloc-

ity for the two tested actuators
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on high-speed Schlieren imaging system and phase-

locked PIV system.

The shapes of the front vortex rings are consistent with 

the shapes of the respective exit orifices, since the front 

vortex ring is rolled from the jet shear layer. For the slot 

orifice, the elongated vortex ring gradually opens up, and 

its two ends become severely warped during the propa-

gation. This transformation results from the difference 

in entrainment rate and propagation velocity. The quasi-

2D slot jet produces a shear layer in the flow field. The 

periodical disturbance on the jet exit angle results in a 

K–H instability phenomenon whereupon the high-speed 

jet continuously vacillates to the left and right during the 

propagation.

For the slot orifice, the entrainment rate of the surround-

ing low-energy fluids is almost twice as that for the round 

orifice, thus resulting in a slower propagation of the jet 

front. In one period, the body of the slot jet evolves from 

a mushroom shape to a tadpole shape, and finally to an 

egg shape. The jet head is always surrounded by the front 

vortex ring. The exit velocity in one period initially shows 

a rapid increase, then maintains at a relatively high level 

(100–130  m/s), and finally drops with some small-scale 

oscillations. The oscillation amplitude is less than 10 m/s, 

and the oscillation period is approximately 600 µs. With the 

deposited energy and exit area kept constant, orifice shapes 

have little influence on the variation of jet exit velocity.
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