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1.1      INTRODUCTION

Foundations of engineering structures are designed to transfer and distribute their 

loading to the underlying soil and/or rock.  This design is required to satisfy three 

main design criteria, namely the ultimate bearing capacity of the foundations (i.e. 

strength); the total and differential settlements (i.e. serviceability); and the economic 

feasibility of the foundation.  This study focuses on the first of these criteria, that is 

the ultimate bearing capacity of shallow foundations and, in particular, foundations on 

cohesive and cohesive-frictional soil.  

Bearing capacity failure occurs as the soil supporting the foundation fails in shear, 

which may involve either a general, local or punching shear failure mechanism

(Bowles, 1988).  For these different failure mechanisms, different methods of analysis 

are used.  Estimation and prediction of the ultimate bearing capacity of a foundation is

one of the most significant and complicated problems in geotechnical engineering

(Poulos et al., 2001).  Consequently, there is extensive literature detailing both 

theoretical and experimental studies associated with this issue.  A list of the principal 

contributions to the study of this subject may be found, for example, in Terzaghi 

(1943), Hansen (1970), Vesic (1973), Chen and McCarron (1991) and Tani and Craig 

(1995).  The focuses of these studies were on the estimation of the ultimate bearing 

capacity of the foundation under the combination of vertical, horizontal and moment 

loading, as well as the effect of foundation shape, soil rigidity, load inclination, tilt of 

the foundation base, ground surface inclination and the depth of the foundation on the 

ultimate bearing capacity of footing.  For example, the ultimate bearing capacity 

equation for rectangular footings, which was suggested by Vesic (1973), is an 

extension of the theory first proposed by Terzaghi (1943).  

In nature, soil deposits are often formed in discrete layers.  As a result, footings are 

usually supported by multi-layered soil profiles, which influence the depth of the 

failure surface and the bearing capacity of the foundation.  Traditionally, deterministic 

methods have been employed in practice to evaluate the ultimate bearing capacity of 

foundations on layered soil (e.g. Brown and Meyerhof, 1969; Meyerhof, 1974; Chen, 

1975; Hanna and Meyerhof, 1980).  The finite element method, which can handle 

very complex layer patterns, has also been applied to this problem and reliable 
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estimates have been presented (e.g. Griffiths, 1982a; Love et al., 1987; Burd and 

Frydman, 1997; Merrified et al., 1999).  These studies are very useful although their

applications are limited to a few situations.  In many cases, the soil may be deposited 

in several layers.  For such cases, reliable estimation of bearing capacity is extremely

complicated.  Modern computation techniques, such as the finite element method, 

require considerable effort before reliable estimates can ultimately be achieved.  The 

question arises whether a simple hand calculation technique can be developed to 

provide reliable estimates of the ultimate bearing capacity of layered soils. 

The deterministic methods are based on the assumptions of uniformity; that is, the 

properties of the soil in each layer are assumed to be uniform and, hence, 

homogeneous.  However, natural soil deposits are inherently anisotropic due to the 

manner in which they are deposited, which is usually in horizontal layers.  The soil 

properties are not distributed randomly, but in a semi-continuous fashion.  It has been 

observed that the performance of foundations is considerably affected by the inherent 

spatial variability of the soil properties (Griffiths and Fenton, 2001).  To date, some 

research has been undertaken investigating the probabilistic analysis of the settlement 

of foundations supported on single-layered soil profiles incorporating spatial 

variability (e.g. Griffiths and Fenton, 2001; Griffiths et al., 2002).  The present study, 

however, focuses on the effects of a multi-layered, weightless and spatially random 

soil profile on the performance of foundations, which includes the bearing capacity of 

different footing sizes, as very limited work has been done in this field.  

1.2      AIMS AND SCOPE OF THE STUDY

This research aims to investigate and quantify the effect of the spatial variation in 

layered soil on the ultimate bearing capacity of strip footings.  This study also aims to 

develop meta-models to provide a first approximation of ultimate bearing capacity of 

strip footings on weightless multi-layered soil profile.  A meta-model is described as a 

precise definition of the constructs and rules needed for creating semantic models.  

The meta-model used in the analysis is the artificial neural network.  This 

investigation focuses on rough strip footings, which have a large footing length to 

footing width ratio, founded on two types of soils, namely purely cohesive soil and 

cohesive-frictional weightless soil.
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In addition, this research seeks to provide:

 an in-sight into the effect of spatial variability of soil properties on the ultimate 

bearing capacity of strip footings founded on two-layered, purely cohesive 

weightless soil; and

 fast, simple and reliable meta-models to predict the ultimate bearing capacity 

of strip footings founded on purely cohesive, and cohesive-frictional, 

weightless multi-layered soil profiles.

It is noted that almost all previous research studies involving probabilistic analysis of 

footings on random soil are numerical, rather than experimental-based.  This is 

because of the large variety of soil types and cases of multi-layered soil profiles that 

exist in nature.  Establishing probabilistic analyses experimentally would be 

extremely ambitious and tedious, even if it is possible.  Therefore, stochastic 

numerical modelling, combined with Monte Carlo simulation, has been adopted in 

this study.  Random field simulation is adopted to simulate a series of plausible 

random soil profiles, taking into consideration the correlation of their properties.  

These issues are examined in detail later in the thesis.  In addition, it should be noted 

that the study is concerned with the cohesion term of the bearing capacity problem.  

Accordingly, the soil is treated as a weightless soil.

1.3      THESIS OUTLINE

The primary focus of this thesis is to provide a rigorous study into the behaviour of 

strip footings, that is, those with infinite length over width ratio (L/B = ∞), on layered 

weightless soil.  As mentioned in the previous section, most engineering properties of 

soil exhibit natural variability in a spatial extent.  Consequently, this study 

incorporates random field theory, which is capable of quantifying and simulating the 

spatial variability of natural soil, and is facilitated, in particular, by finite element 

analysis.  Incorporating random field simulation into finite element analysis allows 

the extent to which spatial variability affects the bearing capacity and load-settlement 
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behaviour of the footing to be evaluated using Monte Carlo simulation.  This 

implementation of random field theory is addressed in Chapter 3.

A brief review of research into the bearing capacity and load-settlement response of 

footings on layered soil will be presented in Chapter 2.  While very few numerical 

studies on the bearing capacity of footings have addressed the influences of spatial 

variability in single-layered soil, none exists for multi-layered, spatially random soil 

profiles.  This will become more apparent in Chapter 2.  

Chapter 3 provides background to selected aspects of classical plasticity and random 

field theories, as well as artificial neural networks.  It also includes detailed discussion 

on the numerical formulations adopted in this study.  In Chapter 4, greater detail is 

given regarding the process adopted for studying footings using these numerical 

formulations.  This includes a discussion of finite element mesh arrangements, footing 

interfaces, implementation of random field simulation and cross-validation. 

As an overview, the research presented in this thesis can be divided into three

principal areas:

(1) the investigation of bearing capacity and load-displacement response of rough 

strip footings on two-layered, purely cohesive, spatially random soil;

(2) the development of a bearing capacity meta-model for rough strip footings on a 

multi-layered, purely-cohesive, homogeneous soil profile;

(3) the development of a bearing capacity meta-model for rough strip footing on a 

multi-layered, cohesive and frictional, homogeneous soil profile.

The structure of the thesis reflects the three main topics listed above.  In Chapters 5 to 

7, the results obtained from the numerical studies are presented.  A wide range of 

cases and problems, which are separated according to soil types are examined and the 

results are discussed.
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A summary and conclusion of this study are presented in Chapter 8, including

recommendations for future research.



CHAPTER 2

HISTORICAL REVIEW
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2.1      INTRODUCTION

In order to provide a general background to subsequent Chapters, a summary of 

previous research into the bearing capacity of footings on multi-layered and spatially 

random soil profiles is presented.

Foundation designs must satisfy both strength and serviceability criteria.  The soil 

beneath the foundations must be capable of carrying the structural loads placed upon 

it without shear failure and consequent settlements being tolerated for the structure it 

is supporting.  Rupture surfaces are formed in the soil mass upon exceeding a certain 

stress condition.  Hence, bearing capacity is defined as the capacity of the underlying 

soil and footing to support the loads applied to the ground without undergoing shear 

failure and without accompanying large settlements (Das, 1997). 

2.2      BEARING CAPACITY OF FOOTING

Shallow footings, which are often referred to as foundations, can be classified into 

two general categories (1) those that support a single structural member, usually 

referred to as “spread or pad footings”, and (2) those that support two or more 

structural members, referred as “combined or strip footings”, as shown in Figure 2.1. 

Figure 2.1    Foundation types: (1) spread or pad footing (2) combined or strip 

footing.

The foundations transmit loads from a structure to the underlying soil.  Their load is 

supported by the shear strength and dead weight of the underlying and surrounding 

(1) (2)

L

B

L >> B

B
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soil.  The bearing capacity of a foundation is defined as the load per unit area of the 

foundation at which the soil shear failure occurs (Terzaghi, 1943).  

Consider a footing resting on the surface of clay or sand.  As the foundation load 

gradually increases, the settlement of the foundation also increases.  At a certain 

point, that is when the load per unit area is equal to the bearing capacity of the 

footing, a sudden failure in the soil will generally take place.  Such failure is often 

accompanied by a large increment of footing settlement and the failure surface may 

extend to the ground surface (Das, 1997).  Figure 2.2 shows a classic example of 

bearing capacity failure, which occurred to the Transcona Grain Elevator, Canada, in 

1913.

Figure 2.2    Bearing capacity and excessive settlement failure of Transcona Grain 

Elevator, Canada. (After Baracos, 1957)

The bearing capacity failure of a strip footing on a single-layered, homogeneous soil 

is presented in Figure 2.3.  In nature, soils often consist of discrete layers, and, as a 

a1172507
Text Box
 
                                          NOTE:  
    This figure is included on page 9 of the print copy of 
     the thesis held in the University of Adelaide Library.
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result, foundations for engineering structures are usually founded on multi-layered 

soil profiles.  If a footing is placed on the surface of a layered soil and the thickness of 

the top layer is large compared with the width of the footing, then the bearing capacity 

of the soil and the displacement behaviour of the footing can be estimated, to 

sufficient accuracy, using only the properties of the upper layer (Poulos et al., 2001).

Figure 2.3    Bearing capacity of footing on single homogeneous soil (After Das, 

1997).

However, if the thickness of the uppermost layer is equal to or less than the width of 

the foundation, such an approach introduces significant inaccuracies and is no longer 

appropriate (Poulos et al., 2001).  This is because the zone of influence of the footing, 

including the potential failure zone, may extend to a significant depth, and thus two or 

more layers within that depth range will affect the bearing behaviour of the footing.  

Consider a foundation supported on a two-layered soil profile.  If the depth of the top 

layer, H, is relatively small compared to the foundation width, B, punching shear 

failure will occur in the upper soil layer followed by a general shear failure in the 

lower soil layer.  Such bearing capacity failure of a footing on a two-layered soil, is 

illustrated in Figure 2.4.  

In general, shear failure of a soil mass supporting a foundation will occur in one of 

three modes; namely, general shear, local shear and punching shear (Das, 1997).  

General shear failure is shown in Figure 2.5, and can be described as follows: the soil 

wedge immediately beneath the footing (an active Rankine zone acting as part of the 

footing) pushes Zone II laterally. This horizontal displacement of Zone II causes Zone 

III (a passive Rankine zone) to move upward.  Although bulging of the ground surface 

may be observed on the both sides of the footing at a stress level below failure, failure 

a1172507
Text Box
 
                                          NOTE:  
   This figure is included on page 10 of the print copy of 
     the thesis held in the University of Adelaide Library.
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usually occurs on only one side of the footing (Das, 1997).  For example, an isolated 

structure may tilt substantially or completely overturn, as shown previously in Figure 

2.2.  A footing restrained from rotation by the structure will increase structural 

moments which may lead to collapse or excessive settlement.  

       

Figure 2.4    Bearing capacity of footing on two-layered soil (A strong layer 

overlying a soft layer soil). (After Das, 1997)

Figure 2.5    General shear failure concept. (After Vesić, 1973; Das, 1997)

The variation of foundation settlement and load per unit area, q, is also shown in 

Figure 2.6.  In the initial loading phase, the settlement increases as the load per unit 

area increases.  At a certain point, i.e. when load per unit area equals qu, a sudden 

a1172507
Text Box
 
                                          NOTE:  
   This figure is included on page 11 of the print copy of 
     the thesis held in the University of Adelaide Library.
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failure in the soil supporting the foundation will take place.  This load per unit area is 

usually referred to ultimate bearing capacity of the foundation.

Figure 2.6   Load settlement plot for general shear failure type. (After Vesić, 1973; 

Das, 1997)

Punching shear failure presents little, if any, ground surface evidence of failure, since 

the failure occurs primarily in soil compression immediately beneath the footing (as 

illustrated in Figure 2.7).  Footing stability (i.e. no rotation) is usually maintained 

throughout failure (Das, 1997). The failure surface in the soil will not extend to the 

ground surface.  Beyond the ultimate failure load, qu, the load settlement plot will be 

practically linear, as illustrate in Figure 2.7.

Figure 2.7    Punching shear failure and its load settlement plot. (After Vesić, 1973; 

Das, 1997)

Local shear failure (shown in Figure 2.8) may exhibit both general and punching 

shear characteristics, soil compression beneath the footing, and possible ground 
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surface bulging (Das, 1997).  As the load per unit area on the foundation equals qu(1)

(refer to load settlement plot in Figure 2.8), the foundation movement will be 

accompanied by sudden jerks.  The qu(1) is referred to as first failure load (Vesić, 

1973) and it is less than the ultimate failure load per area, qu.  Therefore, this type of 

failure is referred to as local shear failure in soil. 

Figure 2.8    Local shear failure and its load settlement plot. (After Vesić, 1973; Das, 

1997)

In practice, the general shear failure case is the one normally analysed, as the other 

failure modes are accounted for implicitly in settlement calculations (Coduto, 2001).  

A rational approach to predict the bearing capacity of a foundation was developed by 

Terzaghi (1943) and is given as follow:

For a square footing:

 BNNcNq qzcult 4.03.1  (2.1)

For a strip footing:

 BNNcNq qzcult 5.0 (2.2)

where c is the soil cohesion; z is the vertical stress at the base of the foundation;  is 

the unit weight of soil; B is the width of the foundation; Nc, Nq and N are non-
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dimensional bearing capacity factors, which can be derived from following 

relationships:







 

2
45tan 2tan 

eN q (2.3)

tan

1
 q

c

N
N (2.4)

where  is the internal friction angle of the soil.  

However, significant discrepancies have been noted in the values proposed for N

(Poulos et al., 2001).  It is has not been possible to obtain a rigorous closed form 

expression for Nbut several authors have proposed the following approximations:
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e
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N

N (2.5)

More recently, quasi-exact values for N were obtained and presented by Hjiaj et al. 

(2005) and Makrodimopoulos and Martin (2005) using numerical finite element limit 

analysis.  Davis and Booker (1973) compared the rigorous solutions, which were 

obtained using the theory of plasticity for a rigid plastic body, with the approximate 

values suggested by Terzaghi (1943), and the comparison clearly indicated that 

Terzaghi’s approximation can overestimate the bearing capacity by factors as large as 

3.  

Although Equations 2.1 and 2.2, provide reasonable estimates of bearing capacity for 

general engineering purposes, recent work by researchers working in experimental 

soil mechanics has shown that the soil behaviour is highly non-linear (e.g. Chen and 

Mizuno, 1990; Head, 1997).  Therefore, the simple assumption of superimposing 

Equations 2.1 and 2.2 do not necessarily hold (Davis and Booker, 1971).
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The use of superposition simplifies the mathematical analysis considerably and, 

because of the complication that are introduced by the inclusion of self-weight, the 

general bearing capacity problem is usually solved in two stages. In the first stage, the 

analytical solution of Prandtl (1921), which assumes a weightless material, is used to 

give the bearing capacity factors Nc and Nq in closed form. In the second stage, the 

contribution of the soil weight is typically found using a numerical solution technique 

to give the bearing capacity factor N.  

While the exact values for N remain unknown, the values for Nc and Nq, as given by 

Prandtl (1921), and Reissner (1924) are exact for a strip footing on a weightless soil. 

As discussed by Chen (1975), the analysis of cohesionless soil with self-weight is 

complicated by the fact that the shear strength increases with depth from a value of 

zero at the ground surface. This means that the Prandtl failure mechanism is no longer 

capable of yielding exact results, since any velocity discontinuity that is initially 

straight for the weightless case now becomes curved. This leads to the conclusion that 

the bearing capacity obtained using this mechanism can, at best, only be an upper 

bound on the correct value. Similar conclusions may be drawn regarding the 

mechanism suggested by Hill (1949).

As mentioned earlier, due to the complexities that are associated with the introduction 

of self-weight, this study is focus on the cohesion term of the bearing capacity 

problem.  Accordingly, it is assumed that the soil is weightless.  

2.3      MULTI-LAYERED SOIL PROFILE

Due to the sedimentation and weathering processes, most natural occurring soils are 

formed in discrete layers; thus, in most cases, footings are founded on layered soil.  

Bowles (1996) pointed out that there are three general cases of footings on a 

two-layered soil, as follows:

Case 1.  Footing on layered clays.

a.  Upper layer weaker than underlying layer (c1 > c2)

b.  Upper layer stiffer than underlying layer (c1 < c2)
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Case 2.  Footing on layered c- soils with a, b same as Case 1.

Case 3.  Footing on layered sand and clay soil.

a.  Upper sand layer overlying clay layer

b.  Upper clay layer overlying sand layer

In many cases, soils may be deposited in several layers and the zonal boundary along 

the contact between two geological formations is often indistinct.  

In order to simplify the problem, consider a strip footing of width B, founded on the 

surface of soil deposit consisting of three different horizontal layers, as illustrated in 

Figure 2.9.  The thickness of the upper two layers is assumed to be less than B.  The 

strength of each layer is characterised by the Mohr-Coulomb shear strength 

parameters (c and ), and its self-weight, .  Various cases of possible practical 

problems are outlined as follows and are indicated in Table 2.1.

1. Layered clays with a soft clay layer at the centre (Case 4)

2. Layered clays with a stiff clay layer at the centre (Case 5)

3. Three clay layers, strengthening with depth (Case 6)

4. Three clay layers, weakening with depth (Case 7)

5. A layer of sand at the centre of two clay layers (Case 8)

Figure 2.9    Strip footing on three-layered soil deposit.

6. Layered sands with a soft sand layer at the centre (Case 9)

7. Layered sands with a stiff sand layer at the centre (Case 10)

8. Three sand layers, strengthening with depth (Case 11)

c 1 ,  1 ,  1

c 2 ,  2 ,  2

c 3 ,  3 ,  3

B

< B

Infinite 
depth

z

a

c i ,  i ,  i
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9. Three sand layers, weakening with depth (Case 12)

10. A layer of clay at the centre of two sand layers (Case 13)

Table 2.1    General cases for soil deposits with three layers.

Case Layer 1 Layer 2 Layer 3

c 1  1  1 c 2  2  2 c 3  3  3

4 c 1 0 0 < c 1 0 0 = c 1 0 0

5 c 1 0 0 > c 1 0 0 = c 1 0 0

6 c 1 0 0 = az1 c 1 0 0 = az2 c 1 0 0

7 c 1 0 0 = {1/(az1)} c1 0 0 = {1/(az2)} c1 0 0

8 c 1 0  1 0  2 = 1 = c 1 0 = 1

9 0  1  1 0  1  2 0  1 =  1

10 0  1  1 0  1  2 0  1 =  1

11 0  1  1 0 = az1  1  2 0 = az2 1 =  1

12 0  1  1 0 = {1/(az1)}  1  2 0 = {1/(az2)} 1 =  1

13 0  1  1 c 2 0 =  1 0  1 =  1

Note: The parameter a is defined as the variation of strength with regard to depth, z, as shown in Figure 

2.9.  

In an assessment of bearing capacity and load-displacement behaviour of footings, if 

the thickness of the uppermost layer is significantly larger than the footing width, then 

a reasonably accurate estimation of the collapse load and displacement behaviour can 

be made by using the properties of uppermost layer alone (Poulos et al., 2001).  

However, if the proposed footing has large physical dimensions (e.g. offshore 

foundations) and the thickness of upper layer is comparable to the footing width, 

special consideration needs to be given to account for the effect of any soil layers 

within the zone of influence of the footing.  For such cases, reliable estimation of the 

bearing capacity is more complicated.  With aid of modern computation techniques, 

such as finite element method, reliable estimations can be ultimately achieved.  

However, these methods often require some experience and considerable effort.  The 

question arises as to whether simple hand techniques can be devised to provide 

realistic first estimates of the ultimate bearing capacity of layered soil.
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The following sections provide a brief review of previous research into this problem.  

Previous investigations into the behaviour of the bearing capacity of footings on 

layered soil takes one of two forms, namely experimental and numerical/theoretical 

studies.  In the interest of brevity, a selective summary of this research, which has the 

greatest relevance to the thesis, is presented rather than a complete bibliography of all 

such investigations.  Where possible, the review is given in chronological order.

2.4      PREVIOUS THEORECTICAL ANALYSES OF 

BEARING CAPACITY OF FOOTINGS ON A 

MULTI-LAYERED SOIL PROFILE

Until recently, most of the theoretical investigations into the bearing capacity problem 

have been limited to plane-strain conditions, as illustrated in Figure 2.10.  In this 

problem, a strip footing of width B rests upon an upper layer of clay with undrained 

shear strength, cu1, and thickness, H.  This layer is underlain by another clay layer of 

undrained shear strength, cu2 ≠ cu1, and infinite thickness.  The bearing capacity of this 

problem will be a function of two ratios, H / B and cu1 / cu2.  As shown in Figure 2.10, 

it is important to note that both clay soils are assumed to be weightless.

The bearing capacity of a strip footing on a single clay layer in the absence of 

surcharge is usually written in the form:

qult = cu Nc (2.6)

where, as indicated earlier, qult is the ultimate bearing capacity of footing, cu is 

undrained cohesion and Nc is the bearing capacity factor.  For the case of a two-

layered soil profile, it is convenient to rewrite Equation 2.6 in the form (Merifield et 

al., 1999; Poulos et al., 2001):

N*c = 
1u

ult

c

q
(2.7)
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where N*c is a modified bearing capacity factor which is a function of both 

parameters H / B and cu1 / cu2.  For a homogeneous profile, where cu1 = cu2, then N*c is 

equal to the well-known Prandtl solution of (2+Prandtl.

Figure 2.10    Bearing capacity approximation on two-layered clay profile. (After 

Chen, 1975)

To solve the problem of the bearing capacity of a shallow foundation on a two-layered

clay profile, the limit equilibrium method can be adopted.  The use of such a method 

in determining bearing capacities is widely accepted practice in geomechanics.  In 

limit equilibrium analysis, the assumption of a simple semi-circular failure surface is

usually made and simple static equations are applied by equating the applied and the 

resultant forces, thus enabling the bearing capacity to be subsequently determined 

(1975).  The first to do this was Button (1953), followed by Chen (1975), both of 

whom used a circular arc to determine the upper bound value for the bearing capacity 

factor, N*c, for a strip footing, which was supported on a two-layered clay profile (as 

illustrated in Figure 2.10).  Reddy and Srinivasan (1967) used a similar failure 

mechanism to obtain results by applying the limit equilibrium method.

For footings that are supported on stiff sand layers overlaying soft clay, one widely 

used approach to estimate bearing capacity is to assume that the sand layer spreads the 

r
θqu
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load from the footing to the underlain clay layer through a load spread mechanism, 

and the rupture surfaces are formed within the clay layer (Houlsby et al., 1989).  The 

load in the sand layer is assumed to spread at a load-spread angle, , so that the 

effective width of the loaded area, B', on the clay is B' = B + 2D tan , as illustrated in 

Figure 2.11 (Houlsby et al., 1989).  In practice, the value of  = tan-1 0.5 is often 

adopted (Houlsby et al., 1989), although it is known that  is dependent on the shear 

strength of the sand (Burd and Frydman, 1997).  Furthermore, an investigation by 

Brocklehurst (1993) found that  is also strongly influenced by the strength of the 

underlying clay.  More recently, Burd and Frydman (1997) provided a series of 

figures of their investigation on the variation of  with respect to the shear strength 

ratio (cu / D) and friction angle of sand using a numerical approach.

Several investigators have adopted kinematic analysis methods to obtain approximate 

solutions to the bearing capacity of a footing supported on sand overlying clay.  

Florkiewicz (1989), for example, presented solutions for a range of cases involving 

both cohesive and cohesionless soil.  Michalowski and Shi (1995) used a similar 

approach to carry out a parametric study and the results were presented in the form of 

design charts.  Their results were studied by Burd and Frydman (1996) and concluded 

that they may overestimate the bearing capacity due to the assumption that the sand is 

a fully associated material. 

Figure 2.11    Load spread mechanism. (After Houlsby et al., 1989)

a1172507
Text Box
 
                                          NOTE:  
   This figure is included on page 20 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Burd and Frydman (1997) employed two different numerical methods, namely the 

finite element and finite difference methods, to conduct a parametric study on the 

bearing capacity of a sand layer overlying clay under plane-strain loading.  They 

adopted unstructured meshes of six-noded triangular elements with three Gauss 

points.  The tangent stiffness technique was used to solve the finite element 

algebraics.  Most of the results were presented in figures in the form of plots 

illustrating the bearing capacity (p / B) and shear strength ratios (cu / D) with respect 

to variation of  and B/D.  They also presented the results of their finding into the 

variation of load spread angle with different values of  and cu / D and B/D.

Okamura et al. (1998) proposed an alternative bearing capacity formulation for thin 

sand overlying soft clay based on their new limit equilibrium mechanism, which 

illustrated in Figure 2.12.  Consideration of equilibrium of forces acting on the sand 

block, including its self-weight, provides the following bearing capacity formulae for 

a strip footing:
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where c is an angle which is a function of the friction angle of the sand, , the 

geometries of the layer and footing, and the undrained shear strength of clay, su, such 

that:
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Figure 2.12    Failure mechanism proposed by Okamura et al. (1998) for thin sand 

overlying soft clay.

The parameters p and c are the normalised overburden pressure and the normalised 

bearing capacity of the underlying clay respectively, given by:

B

p o

p
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'


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Ns cu

c
'

  (2.12)

Finally, the parameter Kp is the Rankine’s passive earth pressure coefficient for the 

sand, which can be expressed as:

Kp = (1 + sin) / (1 - sin) (2.13)

Okamura et al. (1998) concluded that the Equation 2.8 provides reliable estimate of 

ultimate bearing capacity of footing on thin sand layer overlying clay for cases where 

c < 26 and p < 4.8, however, it is important to recognise that the method may not be 

applicable over full range of these value.
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Many of the previous attempts to develop numerical models of the behaviour of 

footing on layered soils (e.g., Love et al., 1987; Griffiths, 1982a; Brocklehurst, 1993) 

were based on the use of a finite element method (FEM).  It is well known that the 

finite element analysis method tends to overestimate the bearing capacity due to the 

addition of kinematic constraints imposed on the system by the specified volumetric 

strains associated with plastic flow (Sloan, 1981; Sloan and Randolph, 1982).  

Moreover, finite element analyses involving bearing capacity of frictional materials, 

particularly those with a large friction angle, are often have instability problems (e.g. 

Griffiths 1982b).  This problem may be overcome by selecting 15-noded triangular 

elements, or by reduced integration procedures (Nagtegaal et al., 1974).

Recently, Merifield et al. (1999) presented the results of their investigation into the 

upper and lower bound solution of the bearing capacity factor of two-layered clay 

profile under strip footings by employing the finite element in conjunction with the 

limit theorems of classic plasticity.  In their paper, the results were presented for 

different cases of H/B and c1/c2.  The results of their extensive parametric study have 

been presented in both graphical and tabular form.  Some of the results are presented 

in Figure 2.13 and 2.14.  

More recently, Shiau et al. (2003) applied the finite element limit analysis to 

determine the bearing capacity of dense sand underlain by a soft clay layer.  Bearing 

capacity of this problem is expressed in the non-dimensional form:
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Figure 2.13    Bearing capacity factors, N*c, for two layered clay 

(H/B = 0.125 and H/B = 0.25). (After Merifield et al., 1999)
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Figure 2.14    Bearing capacity factors, N*c, for two layered clay 

(H/B = 0.375 and H/B = 0.5). (After Merifield et al., 1999)

In their paper, they introduced a fan mesh for a lower bound analysis, and the fan of 

elements centred on the footing edge, where there is an abrupt change in the boundary 

conditions.  The advantages of these stress fans are that each discontinuity allows a 

jump in the tangential stress, thus providing the potential for a rapid change in the 

stress field and a higher lower bound.  The study covered a range of parameters, 

including the depth of sand layer (D/B), the friction angle of sand (’), the undrained 

shear strength of the clay (cu / B), and the effect of a surcharge (q /B).  The 

influence of footing roughness and increasing strength with depth for clay were also 

investigated.  Some of the results are reproduced and presented in Figure 2.15.

Whilst, as shown above, research has been carried out with respect to profiles 

consisting of 2 soil layers, virtually no work has been carried out on calculating the 

bearing capacity associated with a number of thin layers.  Bowles (1988) suggested a 

possible alternative for c - soils with n thin layers is to use average values of c and 

in the traditional bearing capacity equations (i.e. those of Terzaghi (1943), 

Meyerhof (1963), Brinch Hansen (1970) and Vesić (1973)) obtained by:
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where ci = cohesion of the layer of thickness Hi and i = internal friction angle in of 

the i
th layer.  This method assumes these average values of c and  represent the 

average response of a multi-layered soil mass.  As will be demonstrated later, Bowles’ 

approach is a gross simplification of the bearing capacity problem.

Figure 2.15    Bearing capacity of sand on clay for (a) D/B = 0.25 (b) D/B = 1. (After 

Shiau et al., 2003)

2.5      PREVIOUS EXPERIMENTAL WORK

There has been little experimental verification of any of the numerical methods 

described above except by using model footings.  Models of B = 25 to 75 mm  L = 

25 to 200 mm are popular because the ultimate load can be developed in a small box 

of prepared soil in the laboratory using commonly available equipment of the order of 

400 kN capacity.  A full-size footing as small as 1 m  1 m can develop ultimate 

loads of 3,000 to 4,000 kN so that very expensive site preparation and equipment are 

necessary to develop and measure loads of this magnitude.  Moreover, the results 

produced from the experiments may be biased, because models, particularly on sand, 

do not produce reliable test results compared to full-scale prototypes due to scale 

effects.  
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Examples of studies that were based on a series of model tests are Brown and 

Meyerhof (1969) and Meyerhof and Hanna (1978).  With a combination of theoretical 

analyses and model tests, Brown and Meyerhof (1969) provided approximate 

solutions for Nc of several cases and footing types, as follow:

For strip footing:  
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For circular footing:
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where B is the diameter of the circular footing.

Perhaps the most widely used semi-empirical methods in practice are those provided 

by Meyerhof (1974) and Meyerhof and Hanna (1978).  They suggested that, if the 

thickness of uppermost layer, H, is relatively small compared to the foundation width, 

B, punching shear failure will occur in the uppermost layer, followed by general shear 

failure in the lower soil layer, as illustrated in Figure 2.16.

With respect to this figure, the bearing capacity of a footing supported on layered soil 

can be expressed as (Meyerhof, 1974):
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where   is the angle of inclination of the passive force Pp with horizontal; qb is the 

bearing capacity of bottom soil layer, which can be determined using 
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Figure 2.16    Punching shear models on layered soil (After Meyerhof, 1974; Das, 

1997).

qb = c2 Nc + 1 (Df +H) Nq + 
2

1
2 BN (2. 20)

and Pp is passive force per unit length of the faces aa’ and bb’ that is expressed in 

form
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where Kph is horizontal component of passive earth pressure coefficient.  Let Ks is the 

punching shear coefficient and is presented in form (Hanna and Meyerhof, 1980)
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Note HcC aa   and therefore the Equation 2.19 can be rewritten as (Das, 1997):
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The relationship between Ks and 1 is plotted and presented by Hanna and Meyerhof 

(1980) as a function of c1 and the ratio / 1.  However, these charts are not presented 

in non-dimensional form and useful only for the values of sand unit weight and layer 

thickness that were adopted in the analysis (Burd and Frydman, 1996).  Alternatively, 

useful design charts that cover a broad range of parameters are given by Michalowski 

and Shi (1995) using limit equilibrium method, which is not experimentally.  These 

solutions, by their very nature, are upper bounds, and they may overestimate the 

bearing capacity by a significant amount (Burd and Frydman, 1997).  

2.6      PREVIOUS ANALYSIS OF BEARING CAPACITY 

OF FOOTING ON NON-HOMOGENEOUS SOILS

Progress has been made in predicting the bearing capacity on non-homogeneous soils, 

in particular, the two cases of where the undrained shear strength of the soil varies 

linearly with depth below the soil surface, i.e. (Poulos et al., 2001):

su = c0 + z (2. 24)

or below a uniform crust:

su = c0      for 


0c
z  (2. 25)

su = z      for 


0c
z  (2. 26)

where c0 is the undrained shear strength of the soil at the ground surface,  is the 

strength gradient; and z is the depth below the soil surface.  Davis and Booker (1973) 

used the method of stress characteristics from the theory of plasticity and, assuming 

the soil obeys the Tresca yield criterion, their plane strain solution was expressed as:
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where F is the bearing capacity factor which is a function of the soil strength non-

homogeneity (B/c0) and the roughness of foundation-soil interaction.  The bearing 

capacity factor, F, is reproduced graphically in Figures 2.17 and 2.18 for two different 

cases of undrained shear strength of the soil, which varies linearly with depth below 

the soil surface.

Figure 2.17    Bearing Capacity factor, F, for a strip footing on non-homogeneous 

clay (After Davis and Booker, 1973)

As mentioned earlier, soils and rocks are heterogeneous materials created by complex 

geological processes.  The engineering properties of soil vary from point to point,

even within the same stratum.  Because of the uncertainties associated with their 

inherent variability, as well as limited information from site investigation, soil and 

rock properties may be regarded as random variables.  Therefore, in the process of 

engineering analysis and design, the spatial variability of geotechnical properties 

should be recognized and accounted for (Jaksa, 1995; Paice, et al., 1996; Kaggwa, 

2000; Fenton and Griffiths, 2002; 2003; Griffiths and Fenton, 2001).
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Figure 2.18    Bearing Capacity factor, F, for a strip footing on non-homogeneous

clay (After Davis and Booker, 1973)

In the past few decades, the effects of heterogeneity of engineering properties on 

foundation performance have been studied by a number of researchers.  For example, 

with particular relevance to this research, Fenton and Griffiths (2003) examined the 

bearing capacity of a strip footing located on spatially random c -   soil using elasto-

plastic finite element analysis.  The soil parameters c and   were simulated as 

lognormal and correlated random fields. These concepts are treated in the following 

chapter.  In this study, only the Markovian correlation function was used.  Fenton and 

Griffiths (2003) found that, when the soil properties become spatially random, the 

failure surface passes through the weaker zone or follows the low energy path in the 

soil beneath the footing, as shown in Figure 2.19, which exhibits bearing failure.  

Monte Carlo simulation was carried out using different values for various parameters 

(mean, standard deviation for c and  , correlation distance, and, the correlation 

between c and  ) to study the reliability of Terzaghi’s bearing capacity equation.  

Fenton and Griffiths (2003) concluded that, when c and   were geometrically 

averaged over some region beneath the footing and were applied to Terzaghi’s 

equation, it gave superior results when estimating the bearing capacity of the strip 

footing on spatially random soil.  The geometric average favours low strength areas, 

although not as drastically as does a harmonic average, lying in between the 

arithmetic and harmonic averages.  Fenton and Griffiths (2003) also suggested that, in 

a1172507
Text Box
 
                                          NOTE:  
   This figure is included on page 30 of the print copy of 
     the thesis held in the University of Adelaide Library.



Chapter 2 31

the absence of site-specific data, a worst-case correlation length, which is 

approximately equal to the footing width, should be used in order to provide 

conservative estimates of the probability of bearing failure. 

Figure 2.19    Typical deformed mesh at failure. (After Fenton and Griffiths, 2003)

2.7      SUMMARY

Since the introduction of Tezaghi’s (1943) bearing capacity equation, extensive 

research has been carried out in extending the formulation, such that it provides a 

reasonable estimation of the ultimate bearing capacity of a footing subject to different

factors (e.g. footing geometry and load combination).  Some research has been carried 

out in the area of the non-homogeneous and layered soils and rigorous solutions are 

now available, and the judicious use of their results in practical design is 

recommended for the following cases:

1. cohesive soil where the undrained shear strength increases linearly with 

depth (Davis and Booker, 1973);

2. a layer of sand overlying relatively soft clay (Okamura et al., 1998);

3. two layers of cohesive soil (Merifield et al., 1999); and

4. spatially random c -   soil (Fenton and Griffiths, 2003).

This shows that little progress has been made to date in predicting the ultimate 

bearing capacity of footings on multiple layers of soil.  Solving such problem remains 

beyond the means of simple hand calculation methods.  The main reasons for this are 
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the large number of different cases that may be encountered in practice. This problem 

requires further investigation, and this is the focus of the work that follows.



CHAPTER 3

NUMERICAL FORMULATION
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3.1      INTRODUCTION

In the present study, three different numerical methods have been adopted to 

determine the ultimate bearing capacity and load-settlement response of foundations.  

These are upper and lower bound theorems of limit analysis, and more conventional 

displacement finite element analysis (DFEA).  In the first part of this chapter, a 

general background is provided by briefly discussing these approaches, along with 

other traditional methods.  It is hoped that this will provide an insight into the 

advantages and disadvantages of current numerical approaches in geomechanics.

The upper and lower bound methods of limit analysis have been used extensively 

throughout this thesis; therefore, a detailed discussion is appropriate.  The use of limit 

analysis for examining problems in geomechanics is relatively new compared to other 

methods, thus few geotechnical engineers have a detailed knowledge of this 

technique.  Therefore, some background will be provided to selected aspects of 

classical plasticity theory, which underpins limit analysis.

In the remaining sections of this chapter, the linear finite element implementations of 

the upper and lower bound theorems provided by Sloan (1988) and Sloan and 

Kleeman (1995) are presented.  Nonlinear implementation of the lower bound 

theorem and upper bound theorems by Lyamin and Sloan (2002a, 2002b) is briefly 

discussed, followed by a discussion on DFEA, each of which will be employed in this 

study.  A brief summary of random field theory is also presented, and in particular, 

more detailed features of its implementation by means of Local Average Subdivision 

are also discussed.  Finally, the theoretical background information of artificial neural

networks (ANNs), which is used in this research, is presented and discussed in detail.

3.2      NUMERICAL METHODS IN GEOMECHANICS

Most geotechnical analysis involves the solution of a boundary value or initial value 

problem.  In order to provide a rigorous solution, four fundamental conditions should 

be satisfied.  These are equilibrium, compatibility, constitutive behaviour, as well as 

boundary and initial conditions.
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At present, there are four widely used methods for analysing the bearing capacity of 

footings.  These are the slip-line, limit equilibrium, limit analysis and displacement

finite element methods (i.e. DFEMs).  Traditionally, stability analysis in geotechnical 

engineering is carried out using the first two of these methods; that is either the slip-

line or the limit equilibrium method.

With reference to Table 3.1, all methods, with the exception of the DFEM, fail to 

satisfy at least one of the four fundamental requirements for the solution of boundary 

value problems in geotechnical analysis.  Only the DFEM provides prediction of the 

load-deformation response of a deformable solid.  Table 3.1 indicates that the DFEM 

satisfies all the theoretical requirements for a rigorous solution.  This method also has 

the advantage of being able to deal with different and complex variables, such as 

complicated loadings, excavation and deposition sequences, geometries of arbitrary 

shape, anisotropy, layered deposits and complex stress-strain relationships.  However, 

great care must be exercised when the DFEM is adopted to predict the true limit load.  

Sloan and Randolph (1982) showed that the results from the DFEM tend to 

overestimate the actual limit load.  One of the causes of this problem is the additional 

kinematical constraints imposed on the system by the specified volumetric strains 

associated with plastic flow (Sloan, 1981; Sloan and Randolph, 1982).  Therefore, the 

DFEM is generally unsuitable for estimating the true limit load.

Alternatively, the limit theorems have the advantage of the ability to bracket the 

actual collapse load by computing both upper and lower bounds of the solution.  

These solutions are obtained using numerical techniques, such as those developed by 

Sloan (1988) and Sloan and Kleeman (1995), which are based on the limit theorems 

of classical plasticity and finite elements.  

Deriving statically-admissible stress fields or kinematically-admissible velocity fields 

by hand is especially difficult for problems involving complicated geometries, 

heterogeneous materials, or complex loading.  Hence, computer-based numerical 

methods are usually required.  The most common numerical implementation of the 

lower and upper bound theorem is based on a finite element discretisation of the 

continuum and results in an optimisation problem with large, sparse constraint 

matrices.  The following section discusses these methods in some detail. 
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Table 3.1    Comparison of existing methods of analysis. (After Merifield, 2002)

3.3      THEORY OF LIMIT ANALYSIS

Various elementary ideas of plastic deformation and failure, and the reduction of 

buckling loads gradually emerged throughout the nineteenth century.  During that 

time, the general concepts of plasticity were established by Shanley (1947), Hill 

(1950), Drucker (1950), Drucker et al. (1951), Prager and Hodge (1951), Symonds 

and Neal (1951), Koiter (1953) and others.  One of the most significant developments 

was made when Drucker et al. (1952) established the upper and lower bound limit 

analyses based on the plastic limit theorems.  This was further refined by Chen 

(1975).  Since then, limit analysis has become increasingly popular for predicting 

continuum collapse loads.

It is extremely difficult, if not impossible, to derive statistically-admissible stress 

fields manually for complicated problems.  Consequently, efforts have been made in 

solving limit analysis problems by using the finite element method, which represents 

an attempt to obtain a lower or upper bound solution by numerical methods on a 

theoretically rigorous foundation of plasticity.  It was first proposed by Lysmer (1970) 

and followed by others, e.g. Anderheggen and Knopfel (1972); Pastor (1978); Bottero 

et al. (1980).  Sloan and his co-workers (Sloan, 1988, 1989; Sloan and Kleeman, 

1995) have made significant progress in developing the methods using finite elements 
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and linear programming (LP) for computing rigorous lower and upper bound solutions 

for 2D stability problems, mainly in relation to bearing capacity.  Lyamin and Sloan 

(2002a, 2002b) further developed lower and upper bound limit analysis using finite 

elements and nonlinear programming (NLP) for 3D stability problems.  Their 

numerical implementations are based on the finite element discretization of the rigid 

plastic continuum and results in a standard linear or nonlinear optimization problem 

with a highly sparse set of constraints.  The numerical implementation is also based 

on the yield criterion, flow rule, boundary conditions, and the energy–work balance 

equation.  

The limit theorems provide a simple and useful way of analysing the stability of 

structures, and they have been applied to the problem of the bearing capacity of a 

footing on layered soil.  For example, as mentioned previously, Merifield et al. (1999) 

conducted a parametric study involving the bearing capacity of the footing on a two-

layered clay using finite element limit analysis and, more recently, Shiau et al. (2003) 

applied limit analysis to determine the upper and lower bound solution of the bearing 

capacity of a footing founded on a dense sand overlying a soft clay layer.

Limit analysis methods assume a perfectly plastic model with an associated flow rule, 

which implies that the plastic strain rates are normal to the yield surface.  The validity 

of these methods, or any other analysis method, depends on the underlying 

assumptions made.  These assumptions are reviewed in detail in the following section.

3.3.1    Perfectly Plastic Material

In the limit theorems, an elastic-perfectly-plastic model is adopted to describe the 

load-deformation behaviour of soil.  The strain-softening features, which are typically 

exhibited in overconsolidated clays and dense sands are simplified under such an 

assumption.  When plastic deformation occurs, an elastic-perfectly-plastic material 

exhibits the property of continuing plastic deformation or flow at constant stress.  In 

limit analysis, the deformation at collapse occurs in the rigid perfectly plastic stage, 

and therefore the elastic properties play no part in the analysis process.
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3.3.2    Yield Criterion

For a perfectly plastic material, the yield function (f) depends on the material strength 

and invariant combination of stress components, ij.  The definition of the yield 

function implies that f(ij) is 0 at the yield surface, when plastic flow occurs, and  

f(ij) < 0 when it is within the yield surface, when elastic behaviour is observed.  

Positive values of f(ij) imply stresses lying outside the yield surface which are illegal 

or inadmissible.  

3.3.3    Stability Postulate

Drucker et al. (1952) introduced the idea of a stable plastic material, as follows:

1. A material can be classified as stable if the stress is a unique function of strain, 

and vice versa.

2. A material can be classified as unstable if the stress is not a unique function of 

strain, and vice versa.

According to the definitions above, Drucker et al. (1952) expressed the concept of the 

stability postulate in vector form:

( p ≥ 0 (3.1)

where  is the initial stress vector,  is the final stress vector and  p is the vector of 

the plastic strain rate.  The parameters  and  p are defined as:
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3.3.4    Flow Rule

When kinematics of plastic flow are considered, the process of plastic flow is 

described in terms of the strain rate, ij . For a yielding perfectly-plastic material, the 

total strain rate, ij , contains both elastic and plastic components: 

p
ij

e
ijij    (3.5)

where e
ij  is the elastic strain rate.  During plastic deformation, the material may flow 

in an associated manner; that is, the plastic strain rates are normal to the failure 

surface.  Therefore, the axes of the principal plastic strain rate correspond to the axes 

of principal stresses.

A stable material that satisfies the Drucker’s postulate must have the following 

properties (Drucker, 1950):

1. The yield surface f(ij) must be convex. 

2. The plastic strain rate must be normal to the yield surface 
ij

fp
ij 





  , where 

 ≥ 0 is known as the plastic multiplier rate.

It is proved that convexity and normality are sufficient to satisfy Drucker’s postulate.

3.3.5    Small Deformations and the Principle of Virtual Work

In the theorem of limit analysis, the body does not undergo large changes in its 

geometry at collapse, so that the equations of virtual work are applicable.  These 

equations consist of two sets of variables, which are those defining an equilibrium 

stress field and those defining a compatible deformation field, and can be expressed 

as:

  V ijijV iiA ii VVuFAuT ddd    (3.6)
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In limit analysis, the equilibrium stress and compatible deformation fields are not 

required to correspond to the actual state, nor are related to one another.  In Equation 

3.6, the integration is over the surface area, A, and volume, V, of the body.  The tensor 

ij is any set of stresses real, or otherwise, that is in equilibrium with the body force, 

Fi, and the external surface tractions, Ti.  With reference to Figure 3.1(a), an 

equilibrium stress field must satisfy the following equations:

At surface points:    jiji nT  ; (3.7)

At interior points:    0



j

j

ij
F

x


; and (3.8)

ijji   (3.9)

where ni is the outward normal to a surface element at any point.

Figure 3.1    Stress and deformation fields in the equation of virtual work: (a) 

Equilibrium stress field; and (b) Compatible deformation field

In Equation 3.6, the strain rate,  , denotes any set of strains, compatible with real or 

imagined (virtual) displacement rate, u , which arises from the application of Fi and 

Ti.  Referring to Figure 3.1, a compatible deformation field must satisfy the 

compatibility relation (Hill, 1950):

i

j

j

i
ij

x

u

x

u












2 (3.10)

iu
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j

j

i
ij

x
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x

u










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2

Au

iu
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Ti = ij nj

0



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j

ij
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x



ijji  

Au
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where xi represents the position vectors referred to Cartesian coordinates fixed in the 

element.

3.3.6    The Limit Theorems

Following the above brief review of the assumptions implicit in the limit analysis 

theorems, a summary can be made as follows:

1. The material is perfectly plastic, so that no work-hardening nor work-softening 

is permitted.  This implies that the stress point cannot move outside the yield 

surface, which remains fixed in stress space, and that the vector ij  must be 

tangential to this surface whenever plastic straining occurs.

2. The plastic strain rates are normal to the yield surface and are given by an 

associated flow rule of the form ij
p
ij f   .  From the assumption of 

perfect plasticity and normality, it follows that 0p
ijij   .

3. The yield surface is convex.

4. The body does not undergo large changes in its geometry at collapse, so that 

the equations of virtual work are applicable.

As mentioned before, all deformations at collapse are purely plastic, and this feature 

implies that the elastic properties play no part in collapse.  The limit load is defined as 

the plastic collapse load of a body having the idealised properties given in (1) to (3), 

above.

The lower bound limit theorem may be summarised as follows (Drucker et al., 1952):

If a stress distribution  s
ij can be found which satisfies equilibrium, balances the 

applied traction, Ti, on the boundary, AT, and does not violate the yield criterion, so 

that f ( s
ij ) ≤ 0, then the tractions and body force, Fi, will be less than or equal to the 

actual tractions and body forces that cause collapse.
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To prove the validity of this theorem, let us suppose that there are two stress fields: 

the first is the actual collapse state of a body, which is expressed in terms of traction, 

c
iT , and body force, c

iF , (Equation 3.11); and the second is another stress field which 

supports the tractions, s
iT , and the body forces, s

iF , (Equation 3.12).  We also assume 

proportional loading with scalar multipliers s
T  and s

F , which slowly increase from 

zero, so that c
i

s
T

s
i TT   and c

i
s
F

s
i FF  .  Since all deformation at collapse is 

plastic, therefore pc
ij

c
ij     and pc

ij
c
ij uu   , and the virtual work equations for this 

system are:

  V pc
ij

c
ijV

pc
i

c
iA

pc
i

c
i VVuFAuT

T
ddd    (3.11)

  V pc
ij

s
ijV

pc
i

c
i

s
F

s
iA

pc
i

c
i

s
T

s
i VVuFFAuTT

T
dd)(d)(    (3.12)

Subtracting Equation 3.12 from Equation 3.11 yields: 

  V pc
ij

s
ij

c
ijV

pc
i

c
i

s
FA

pc
i

c
i

s
T VVuFAuT

T
d)(d)1(d)1(    (3.13)

The conditions of convexity and normality imply that 0)(  pc
ij

s
ij

c
ij    for all 

points in the body.  Thus Equation 3.13 becomes:

  0d)1(d)1(  VuFAuT V
pc
i

c
i

s
FA

pc
i

c
i

s
T

T
  (3.14)

For cases where the body forces are fixed, the second integral in Equation 3.14

vanishes.  Thus, it follows that 1s
T .  Conversely, if all surface tractions are fixed 

and therefore the first integral vanishes, and Equation 3.14 implies that 1c

T .  This 

result proves that the load supported by s
ij  is never greater than or equal to the true 

collapse load and hence establishes the lower bound theorem.  For the principles of 
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limit analysis, any stress field is said to be statically admissible if it is in equilibrium 

with the surface tractions, satisfies the stress boundary condition and nowhere violates 

the yield condition.  

The upper bound limit theorem may be stated as follows (Drucker et al., 1952):

If a compatible plastic deformation field 
pk

ij(  )
pk
iu can be found which satisfies the 

velocity boundary condition, 0pk
iu on the boundary and the normality condition 

ij
pk
ij f   , then the tractions and body force determined by equating the rate of 

work of the external forces (Equation 3.15) to the internal dissipation rate (Equation 

3.16) will be greater than or equal to the actual tractions and body forces that cause 

collapse.

V pk
iA

pk
ii VuFAuT

T
dd  (3.15)

V pk
ij

pk
ijV

pk
ij VVD dd    (3.16)

To prove this theorem, as for the lower bound theorem, let us suppose that the actual 

collapse state of a body is described by the tractions c
iT , body forces c

iF  and stresses 

c
ij .  The virtual work (Equation 3.6) can be written as:

  V pk
ij

c
ijV

pk
i

c
iA

pk
i

c
i VVuFAuT

T
ddd    (3.17) 

We further suppose that k
iT  and k

iF  are estimates of the true collapse tractions and 

body forces, which are obtained by substituting the strains pk
ij , the stresses pk

ij and 

the displacement rates pk
iju  from a compatible plastic deformation field into 
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Equations 3.15 and 3.16.  Again, we assume proportional loading with c
i

k
T

k
i TT 

and c
i

k
F

k
i FF  .  Substituting these quantities into virtual work Equation 3.6 gives:

  V pk
ij

pk
ijV

pk
i

c
i

k
F

k
iA

pk
i

c
i

k
T

k
i VVuFFAuTT

T
dd)(d)(    (3.18) 

Subtracting Equation 3.18 from Equation 3.17 gives:

   VVuFAuT
pk

ijV
c
ij

pk
ijV

pk
i

c
i

k
FA

pk
i

c
i

k
T

T
d)(d)1(d)1(    (3.19) 

The conditions of convexity and normality imply that 0)(  pk
ij

c
ij

pk
ij    for all 

points in the body.  Substituting this inequality into Equation 3.19 yields the upper 

bound relation:

  0d)1(d)1(  VuFAuT V
pk
i

c
i

k
FA

pk
i

c
i

k
T

T
  (3.20) 

For cases where the body forces, c
iF , are fixed, the second integral in Equation 3.20

disappears.  Thus, it follows that 1k
T .  Conversely, if all surface tractions, c

iT , are 

fixed, the first integral vanishes, and Equation 3.20 implies that 1k
F .  This result 

proves that the load supported by pk
ij  is never less than or equal to the true collapse 

load and hence establishes the upper bound theorem.  Any compatible deformation 

field is said to be kinematically admissible, if one satisfies the velocity boundary 

conditions and the flow rule.  In contrast to the lower bound theorem, the upper bound 

theorem is concerned only with the kinematic variables and their associated energy 

dissipation.

The lower and upper bound theorems can also be applied to discontinuous fields of 

stress and velocity, again, because they yield reliable estimates of the true collapse 

load.  Surfaces of stress discontinuity are admissible if the equilibrium equations are 

satisfied at all points on these surfaces.  Also, surfaces of velocity discontinuity can 
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also be admitted, provided that the energy dissipation is properly computed.  Velocity 

discontinuities are essential in mechanisms comprised of rigid blocks, where energy is 

dissipated solely by sliding between adjacent rigid body blocks.  Conceptually, 

velocity discontinuities may be viewed as the limiting case of a continuous velocity 

field, in which one or more velocity components change very rapidly across a narrow 

transition layer, which is replaced by a discontinuity of zero thickness.  The 

discontinuous velocity fields are often observed in actual collapse mechanisms, in 

contrast to stress discontinuities, which are useful, but rarely resemble the actual 

stress state.

The lower bound technique is inherently more attractive than the upper bound 

technique, since it automatically provides a conservative estimate of the true collapse 

load.  However, in practice, it is appropriate to use the upper and lower bound 

methods in parallel to bracket the true limit load from above and below, as the 

difference between the bounds provides an in-built error indicator, which should be as 

small as possible (Hjiaj et al. 2003).

The following sections explain in greater detail the derivation of the lower bound, 

followed by the upper bound limit analysis formulation.

3.4      LOWER BOUND LIMIT ANALYSIS FORMULA-

TION

The sign conventions adopted for the stresses in the lower bound limit formulation are 

shown in Figure 3.2, with tension taken as positive.  Three types of elements are 

employed, as illustrated in Figure 3.3, and each permits the stresses to vary linearly 

according to (Sloan, 1988):

xi

i

i

ix N  





3

1

(3.21)

yi

i

i

iy N  





3

1

(3.22)
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xyi

i

i

ixy N  





3

1

(3.23)

Figure 3.2    Stress sign convention. (After Sloan, 1988)

where Ni is linear shape function and can be expressed in terms of element nodal 

coordinates (xi , yi) as follows:

N1 = [(x2y3 - x3y2) + y23x + x32y] / 2A (3.24)

N2 = [(x3y1 – x1y3) + y31x + x13y] / 2A (3.25)

N3 = [(x1y2 – x2y1) + y12x + x21y] / 2A (3.26)

where:

2332 xxx        2332 yyy 

3113 xxx        3113 yyy 

1221 xxx        1221 yyy 

and: 313223132 yxyxA 

and A is the triangular area.  Note that the rectangular and triangular extension 

elements, which enable a statically admissible stress field to be obtained for a semi-

infinite domain, are based on the same linear expansion as the 3-noded triangle.  

Unlike the displacement finite element methods (DFEM), which is discussed later, 

x x

y

xy

xy

y

n

x

y


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each node is unique to a single element in the lower bound mesh, although several 

nodes may share the same coordinates.  Statically admissible stress discontinuities are 

applied at all edges that are shared by adjacent elements.

A rigorous lower bound of the exact collapse load is ensured by insisting that the 

stresses obey equilibrium, and satisfy both the stress boundary conditions and yield 

criterion.  Each of these requirements imposes a separate set of constraints on the 

nodal stresses.

Figure 3.3     Element types for lower bound analysis. (After Sloan, 1988) (a) 4-noded 

rectangular extension element; (b) 3-noded triangular extension element; and (c) 3-

noded triangular element

3.4.1    Constraints from Equilibrium Conditions

With reference to Figure 3.2, the equilibrium conditions for plane strain are:

12

3 4

direction of 
extension

12

3

directions of 
extension

x3, y3, x y3)

x2, y2, x y2)

x1, y1, x y1)

3
2

1
x

y

(a) (b)

(c)
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0







yx

xyx


(3.27)














xy

xyy
(3.28)

Substituting Equations 3.21 to 3.23 into the equilibrium equations (Equation 3.27 and 

and 3.28), the nodal stresses for each element subject to two equilibrium constraints 

can be depicted as follows:


















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
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












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



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
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
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
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

0

000

000

3

3

3

2

2

2

1

1

1

122131132332

211213313223

xy

y

x

xy

y

x

xy

y

x

yxyxyx

xyxyxy
(3.29)

which can be expressed in the form of:

a1 x = b1 (3.30)

For the rectangular extension element case, three addition equalities are necessary to 

extend the linear stress distribution to the fourth node.  These equalities are:

x4 = x1 + x3  – x2 (3.31)

y4 = y1 + y3  – y2 (3.32)

xy4 = xy1 + xy3 – xy2 (3.33)

and may be written as:
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 

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







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


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



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
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
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
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1

1111

xy

y

x

xy

y

x









 (3.34)

where:


















100

010

001

T1

which can be expressed in the form of:

a2 x = 0

The fourth node of the rectangular extension element is essentially a dummy node but 

is necessary to permit semi-infinite stress discontinuities between adjacent extension

elements.

3.4.2    Constraints from Stress Discontinuity

A stress discontinuity is statically admissible if the shear and normal stresses acting 

on the discontinuity plane are continuous (only the tangential stress may jump across 

elements).  With reference to Figure 3.2, the normal and shear stresses acting on a 

plane at an angle  to the x-axis are given by the stress transformation equations:

 n = xsiny cosxy sin  (3.35)



 
2

1
yx sin xy cos  (3.36)
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A typical stress discontinuity between adjacent triangles is shown in Figure 3.4.  It is 

defined by the nodal pairs (1, 2) and (3, 4), where the nodes in each pair have 

identical coordinates.  Since the stresses in the model are assumed to vary linearly, the 

equilibrium condition is met by equalising shear and normal stresses of all pairs of

nodes on opposite sides of the discontinuity.  With reference to Figure 3.4, these 

constraints may be written as:

 n1 = n2;     n3 = n4;     =     and     =  (3.37)

Figure 3.4     Stress discontinuity. (After Sloan, 1988)



Substituting Equation 3.35 and 3.36 into Equation 3.37 above, the discontinuity 

equilibrium condition becomes:
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 (3.38)

where

1

2

3

4

x

y



n

x2 , y2 , x y2) 

x1 , y1 , x y1) 

x4 , y4 , x y4) 

x3 , y3 , x y3) 


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
























2cos2sin
2

1
2sin

2

1

2sincossin
T

22

2 (3.39)

which can be written in form of:

a3 x = 0 (3.40)

3.4.3    Constraints from Stress Boundary Conditions

To implement the prescribed boundary conditions, it is necessary to impose additional 

equality constraints on the nodal stresses.  If the normal and shear stresses at the ends 

of a boundary segment are specified to be (q1, t1) and (q2, t2), as shown in Figure 3.5, 

then it is sufficient to impose the following conditions:

Figure 3.5     Stress boundary conditions: (a) prescribed normal stresses, (b) 
prescribed shear stresses, and (c) 3-noded triangular element with additional equality 

constraints.

q2

q1

t2

t1

(a) (b)





x1 , y1 , x y1) 

x2 , y2 , x y2) 

x

y



(c)
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 n1 = q 1 ;     n 2 = q 2 ;      = t     and     = t (3.41)

since the stresses are only permitted to vary linearly along an element edge.

Substituting the stress transformation Equations 3.35 and 3.36 into Equation 3.41

above, leads to four equalities of the general form:
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
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
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(3.42)

which can be written as:

a4 x = b4 (3.43)

Note that Equation 3.42 can also be applied to an extension element to ensure that the 

stress boundary conditions are satisfied everywhere along a semi-infinite edge.

In cases involving a uniform (but unknown) applied surface traction, for example in 

the analysis of flexible foundations, it is necessary to place additional constraints on 

the unknown stresses, which are of the form:

 n1 = n2   and    =  3.44)

Substituting the stress transformation Equations 3.35 and 3.36 into Equation 3.44

above leads to two equalities of the form:
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(3.45)

which can be written as:

a5 x = 0 (3.46)

3.4.4    Constraints from Yield Conditions

For plane strain conditions, the Mohr-Coulomb yield criterion is presented as:

F = (x – y)
2 + (2xy)

2 – (2c cos – (x + y) sin )2 = 0 (3.47)

where c is the soil cohesion and  is the soil friction angle.  For an internal 

linearisation with p number of planes, the kth plane of the Mohr-Coulomb criterion is

as follows:

Fk = Akx + Bky + Ckxy – 2c cos  cos ( / p) = 0 (3.48)

where:

Ak = cos (2 / p) + sin  cos ( / p)

Bk = sin  cos ( / p) – cos (2 / p) (3.49)

Ck = 2sin (2 / p)

and k = 1, 2, …, p.  It is suggested that in order to model the Mohr-Coulomb yield 

function with sufficient accuracy, the minimum requirement of p is 12, and higher 

values may be needed for soils with high friction angles (Sloan, 1988).
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Each side of the polygonal yield surface given by Equation 3.48 is expressed as a 

linear function of the unknown stresses.  This equation needs to be enforced at each 

node of each triangular element to ensure that the stresses satisfy the yield condition 

everywhere.  Let Fki denotes the value of Mohr-Coulomb yield function of the kth side 

of the yield function at node i, then linearised yield constraint may be written as Fki ≤

0, where i = 1, 2, 3 and k = 1, 2, …, p.  These constraints give rise to a set of p number 

of inequalities for each node, i, of the form:
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where ci denotes the cohesion at node i and can be expressed in form of:

a6 x ≤ b6 (3.51)

For the four-noded rectangular extension element, the constraints can be expressed as: 
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(3.52)

and:

a7 x ≤ b7 (3.53)
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3.4.5    Formation of Lower Bound Objective Function

For two-dimensional plane strain geotechnical stability problems, a statically 

admissible stress field is sought, which maximises the integral of the normal stress 

over some part of the boundary.  These integrals may be represented as:

 dshQ nu  (3.54)

where Qu represents the collapse load and h is the out-of-plane thickness (Sloan, 

1988).  The integration can be performed analytically and after substitution of the 

stress transformation equations, the collapse loads may be written as:

Qu = c
T
 x (3.55)

where cT is known as the objective function, since it defines the quantity which is to 

be optimised.  Once the elemental constraint matrices and objective function 

coefficients have been found, the various terms may be assembled to furnish the lower 

bound programming problem, which is written as:

Maximize: c1
T
x

Subject to: a1 x = b1

a2 x = 0

a3 x = 0

a4 x = b4 (3.56)

a5 x = 0

a6 x ≤ b6

a7 x ≤ b7

3.5      UPPER BOUND LIMIT ANALYSIS FORMULA-

TION

A three-noded triangular element used in the upper bound formulation is shown in 

Figure 3.6.  There are two velocity components at each node and each element has p
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plastic multiplier rates i , where p is the number of planes in the linearised yield 

criterion.

With reference to Figure 3.6, the velocities within the triangle are assumed to vary 

linearly according to:

i

i

i

iuNu 





3

1

(3.57)

i

i

i

ivNv 





3

1

(3.58)

Figure 3.6     Three-noded triangular element. (After Sloan and Kleeman, 1995)

where u and v are nodal velocity in the x-, y- directions, respectively, Ni are linear 

shape functions defined in Equations 3.24 to 3.26, and may be expressed in terms of 

(xi, yi) nodal coordinates.

3.5.1 Constraints from Plastic Flow in Continuum

To be kinematically admissible, the velocity field must satisfy the set of constraints 

imposed by an associated flow rule.  For plane strain deformation of rigid plastic soil, 

the associatied flow rule is given in the form:

x, u

y, v

u3, v3)

u2, v2)

u1, v1)

3

2

1

 1  2  p 
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x
x

F

x

u










  (3.59)
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  (3.61)

where tensile strains are taken as positive and these equations contain stress terms, 

which must be removed to provide a linear relationship between the unknown 

velocities and plastic multiplier rates.  The removal of the stress terms can be 

achieved by employing a linear approximation to the yield surface.  For an external 

linearisation with p number of planes, the kth plane of the Mohr-Coulomb criterion is 

as follows:

Fk = Akx + Bky + Ckxy – 2c cos  = 0 (3.62)

where:

Ak = cos (2 / p) + sin 

Bk = sin  – cos (2 / p) (3.63)

Ck = 2sin (2 / p)

Substituting Equation 3.62 into Equations 3.59, 3.60 and 3.61, the plastic strain rates 

may be shown as:
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Differentiating Equations 3.57 and 3.58 with respect to the coordinates and then 

substituting into the equations above, the flow rule constraint for each element may be 

written as:
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Substituting Equations 3.24 to 3.26 into 3.67 to 3.69, the matrix form of these flow 

rule constraints is:
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(3.70)

which can be written as:

a 11 x 1 – a 12 x 2 = 0 (3.71)

There are p number of inequality constraints on the plastic multiplier of the form:
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x2 ≥ 0 (3.72)

The flow rule constraints defined by Equation 3.70 must be satisfied by every triangle 

in the mesh.

3.5.2    Constraints from Plastic Shearing in Discontinuities

A typical velocity discontinuity is shown in Figure 3.7.  The discontinuity occurs at 

the common edge between two adjacent triangles, defined by nodal pairs (1, 2) and (3, 

4) and is of zero thickness.  To be kinematically admissible, the normal and tangential 

velocity jump across the discontinuity must satisfy the flow rule, which for a Mohr-

Coulomb yield criterion is of the form:

tanuv   (3.73)

where v  is the normal velocity jump and u  is the tangential velocity jump.  The 

absolute value on the right hand side of the equation is necessary because, for a non-

zero friction angle, dilation occurs regardless of the sign of tangential shearing.  For 

any pair of nodes along the discontinuity (i, j), the tangential and normal velocity 

jumps are defined in terms of the Cartesian nodal velocities by:

     sincos ijijij vvuuu  (3.74)

     cossin ijijij vvuuv  (3.75)

where  is the angle of discontinuity to the x-axis.  The major drawback of this is 

absolute sign prevents the upper bound formulation being cast as a standard linear 

programming problem.  

To solve this problem, Sloan and Kleeman (1995) proposed each nodal pair (i, j) 

along a discontinuity be associated with two non-negative variables 
iju  and 

iju  as 
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shown in Figure 3.8, which gives rise to two additional unknowns.  The tangential 

velocity jump at each nodal pair, iju , is defined as the difference between these 

quantities according to:

Figure 3.7     Velocity discontinuity geometry.

To solve this problem, Sloan and Kleeman (1995) proposed each nodal pair (i, j) 

along a discontinuity be associated with two non-negative variables 
iju  and 

iju  as 

shown in Figure 3.8, which gives rise to two additional unknowns.  The tangential 

velocity jump at each nodal pair, iju , is defined as the difference between these 

quantities according to:

  ijijij uuu (3.76)

Figure 3.8     Velocity discontinuity variables.
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with constraints: 0
iju             0

iju (3.77)

and:  sin)(cos)( ijijijij vvuuuu   (3.78)

In order to be compatible with the velocity expansions in the triangles, the quantities 


u , 

u and u  are assumed to vary linearly along the discontinuity according to:

   123412 uu
l

uu


(3.79)

   123412 uu
l

uu


(3.80)

     121234341212 uuuu
l

uuuuu


 (3.81)

where l is the length of the discontinuity and l 0 .  As a result of Equations 3.77, 

3.79 and 3.80, the quantities u
+ and u

– are always non-negative.  The tangential 

velocity jump  u, however, is unrestricted and may even change sign at some point 

along the discontinuity.  To avoid the need for absolute value signs in the flow rule 

relations, |u+ – u
–| is replaced by (u+ + u–) in Equation 3.73 so that the normal velocity 

is given by:

  tan  uuv (3.82)

this equality is imposed at both nodal pairs (i, j) along the discontinuity according to:

  tan  ijijij uuv (3.83)

Substituting for ijv  using Equation 3.75, the final flow rule constraints that are 

imposed on each nodal pair become:
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       tancossin   ijijjiji uuvvuu (3.84)

Equations 3.77, 3.79, 3.80 and 3.84 are enforced on each pair of discontinuity nodes.  

For the discontinuity of Figure 3.8 these constraints may be written in matrix form as 

follows:

0
T0

0T

T0

0T

34

34

12

12

4

4

4

4

3

3

2

2

1

1

3

3 
















































































u

u

u

u

v

u

v

u

v

u

v

u

(3.85)

where:
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T3 (3.86)








 


 tantan

11
T4 (3.87)

which can be written in form of:

a 21 x 1 – a 23 x 3 = 0 (3.88)

3.5.3    Constraints from Velocity Boundary Conditions

To be kinematically admissible, the computed velocity field must satisfy the 

prescribed boundary conditions.  Consider a node i on a boundary which is inclined at 

an angle  to the x-axis.  For the general case, where the boundary is subject to a 

prescribed tangential velocity ū and a prescribed normal velocity v , the nodal 

velocity components (ui, vi) must satisfy the equalities:
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which may be expressed in matrix form as:

a 31 x 1 = b 3 (3..90)

The above type of velocity boundary condition may be used to define the loading 

caused by a stiff structure, such as a rigid strip footing or retaining wall.  In cases 

where part of the body is loaded by a uniform normal pressure, such as a flexible strip 

footing, it is often convenient to impose constraints on the surface normal velocities 

of the form:

 QSv
S

d (3.91)

where Q is a prescribed flow rate of material across the boundary, S, and is typically 

set to unity.  This type of constraint, when substituted into the power expended by the 

external loads, permits an applied uniform pressure to be minimised directly.  Since 

the velocities vary linearly, This type of constraint may be expressed in terms of the 

nodal velocities according to:

     Qluuvv ijijjiijji 
edges

sincos
2

1  (3.92)

where lij and ij denote the length and inclination of each segment on S, respectively, 

and each segment is defined by the end nodes (i, j).  This boundary condition may be 

written in matrix form as follows:
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which may be expressed in matrix form as:

a 41 x 1 = b 4 (3.94)

Another type of constraint arises when a body is subjected to loading by gravity.  In 

this case, it is sometimes convenient to constrain the velocity field so that:

  
triangles

d
A

WAv (3.95)

where W is a prescribed constant which is typically set to unity.  This constraint 

permits the unit weight, , to be minimised directly when the power expended by the 

external loads is equated to the internal power dissipation and is useful, such as when 

analysing the behaviour of slopes.  Noting that:

 321
3

d vvv
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 (3.96)

for each triangle, the constraint of Equation 3.95 may be written as:

   W

v

u

v

u

v

u

AAA 



































3

3

2

2

1

1

111 000
3

1
(3.97)

which may be expressed in matrix form as:

a 51 x 1 = b 5 (3.98)

3.5.4    Formulation of Upper Bound Objective Function

A key feature of the formulation is that plastic flow may occur in both the continuum 

and the velocity discontinuities.  The total power dissipated in these modes constitutes 
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the objective function and is expressed in terms of the unknowns.  Within each 

triangle, the power dissipated by the plastic stresses is given by:

AP xyxyxx
A

xx d)(c     (3.99)

After substituting Equations 3.64, 3.65 and 3.66 into 3.99 and collecting terms, this 

dissipation may also be expressed as:
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   (3.100)

If we assume that the cohesion varies linearly throughout the triangle, this integral 

may be evaluated analytically to give: 

P c = c T

2
x 2 (3.101)

where:
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where c1, c2, c3 are nodal values of the cohesion.  Since the plastic multiplier rates are 

constrained so that x2   0, it follows that the power dissipated in each triangle is non-

negative.

The power dissipated by plastic shearing along a velocity discontinuity is given by an 

integral of the form

 
l

luc d (3.103)

For the discontinuity shown in Figure 3.8, (u+ + u–) is substituted for | ∆u | in order to 

preserve the linear character of the objective function according to:
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  
l

luucP d)(d (3.104)

After substitution using Equations 3.79 and 3.80 and integrating, the power dissipated 

in each discontinuity may be written as:

P d = c
T

3
x 3 (3.105)

where:
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and the cohesion varies linearly so that c1 and c2 are the cohesions at the nodal pairs 

(1, 2) and (3, 4) respectively.  Note that this form of power dissipation is also non-

negative, since the discontinuity variables are constrained so that x3   0.

All the constraint coefficients and objective function coefficients may be assembled to 

give an upper bound linear programming problem, which is expressed as:

Minimise: c T

2
x2 + c T

3
x3

Subject to: a 11 x 1 – a 12 x 2 = 0

a 21 x 1 – a 23 x 3 = 0

a 31 x 1 = b 3

a 41 x 1 = b 4 (3.108)

a 51 x 1 = b 5

x 2 ≥ 0

x 3 ≥ 0
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where x1 represents vector of nodal velocity, whilst x2 represents vector of element 

plastic multiplier rates, and x3 represents vector of discontinuity parameters.

3.6      NONLINEAR FORMULATION OF LOWER 

BOUND AND UPPER BOUND THEOREM

The preceding section was concerned with the formulation of the linear 

implementation of the lower and upper bound theorems introduced by Sloan (1988) 

and Sloan and Kleeman (1995), respectively.  Although both lower bound and upper 

bound finite element formulations based on linear programming have proved 

successful for the solution of two-dimensional stability problems, they are unsuitable 

for three-dimensional geometries, because the linearisation of the three-dimensional 

yield surface inevitably generates a large number of linear inequalities.  This in turn, 

leads to slow solution times for the linear programming solver that conducts a vertex-

to-vertex search.  Alternatively, one could formulate a lower bound and upper bound 

scheme using the combination of linear finite element and the nonlinear programming 

procedure (Lyamin and Sloan, 2002a, 2002b).

The Mohr-Coulomb yield criterion presents a number of computational difficulties 

due to the gradient discontinuities at the tip and edges of the hexagonal yield surface 

pyramid.  To resolve this difficulty, Lyamin and Sloan (2002a, 2002b) have adopted a 

smooth approximation of the original yield surface to remove all gradient singularities 

from the Mohr-Coulomb yield criterion.  A convenient hyperbolic approximation for 

smoothing the tip and corners of the Mohr-Coulomb model, which requires just two 

parameters, has been given by Abbo and Sloan (1995).  A plot of the hyperbolic 

approximation to the Mohr Coulomb yield function in the meridional plane is shown 

in Figure 3.9.

This new approach uses the yield criterion in its native non-linear form, and both 

three-dimensional stress and velocity fields present no particular difficulty apart from 

the complex geometry.  For the lower bound formulation, the objective function and 

the equality constraints are linear, while the yield inequalities are non-linear.  The 

problem of finding a statically admissible stress field which maximizes the collapse

load may be expressed as:
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Figure 3.9     Hyperbolic approximation to Mohr-Coulomb yield function. (After 

Lyamin and Sloan, 2002).

Maximise: c
T
x

Subject to: Ax = b

fi(x) ≤ 0,  j  J (3.109)

x  Rn

where c is an n-vector of objective function coefficients, A is an m  n matrix of 

equality constraint coefficients, fi (x) are yield functions and other inequality 

constraints, and x is a the n-vector of problem unknowns.

When formulating the upper bound non-linear programming problem, for a dilational 

yield criterion whose shape is non-linear in the meridional plane, the flow rule 

constraints are applied using a local Mohr-Coulomb approximation to the yield 

surface.  The problem of finding a kinematically admissible velocity field, which 

minimises the internal power dissipation, may be written as:

Minimise: Q = σ T
Bu + c

T
u u + c

T
v v       on (u, v)

Subject to: Auu + Avv = b

Bu =  


j

Jj

j f


λj ≥ 0,   j  Jσ (3.110)
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λj fj(σ) = 0,   j  Jσ

fj(σ) ≤ 0,   j  Jσ

v ≥ 0

u unR , v vnR , σ nR , λ nR

where B is a global compatibility matrix, cu is a vector of objective function 

coefficients for the velocities, cv is a vector of objective function coefficients for the 

discontinuity variables, Au is a matrix of equality constraint coefficients for the 

velocities, Av is a matrix of equality constraints coefficients for the discontinuity 

variables, fj(σ) are yield functions, λj are non-negative multipliers, and u, v and σ are 

problem unknowns. 

To solve these resulting systems, one transforms Equations 3.109 and 3.110 into a set 

of Kuhn-Tucker optimality conditions, and the rapid convergent two-stage quasi-

Newton method is needed to obtain the optimum solutions (Lyamin and Sloan, 2002a, 

2002b).  The key advantage of this strategy is that its iteration count is largely 

unaffected by the mesh size, and the resulting formulation is many times faster than 

an equivalent linear programming formulation.  Comparisons presented by Lyamin 

and Sloan (2002a, 2002b) suggested that this new strategy offers up to an impressive 

155-fold reduction in the CPU time for the analysis, which used the mesh with a large 

number of elements and discontinuities. 

3.7      DISPLACEMENT FINITE ELEMENT METHOD

The displacement finite element method (DFEM) is the most commonly used and 

most versatile method for constructing approximate solutions to boundary-value 

problem.  The benefits and limitations of the DFEM were summarised by Carter et al. 

(2000).  The DFEM method involves discretising the region of interest into a finite 

number of sub-regions, and establishing governing differential equations for each 

element in the form of matrix equations.  A variety of concepts can be used to 

construct an approximation of the solution over the collection of finite elements.  

Detailed descriptions of DFEM are given in a large number of textbooks (e.g. Smith 
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and Griffiths, 1998), and, due to the proliferation of this method in geotechnical 

practice, there is no need to duplicate such detail in this thesis.

In order to provide reliable and accurate solutions to different geotechnical problems, 

a complete constitutive model for geomaterials is required to provide the stress-strain 

behaviour prior to failure.  Linear elastic and elastic-plastic are the most commonly 

used constitutive models due to their simplicity.  

In order to solve the problem that arises from the additional kinematic constraints 

imposed on the system by the specified volumetric strains associated with plastic 

flow, Sloan pioneered the use of high order elements (Sloan, 1981; Sloan and 

Randolph, 1982).  He proposed the use of the 15-noded triangular element for 

accurate collapse load predictions under conditions of plane strain and axisymmetry.  

The 15-noded triangular element behaves well for both purely cohesive 

(incompressible) and cohesive-frictional (dilatational) materials and is relatively

simple to implement.  Smith and Griffiths (1998) suggested that the eight-noded 

quadrilateral element, together with reduced integration (four Gauss points per 

element) is able to compute collapse loads accurately (Zienkiewicz, 1991; Griffiths, 

1982b).  In order to reduce “locking” problems, they recommended that the order of 

integration of the volumetric components could also be reduced further.

Although the speed and storage capabilities of computers have dramatically increased 

over the last decades, many practical problems are still only tractable with severe 

simplifications.  Moreover, there is also a need to examine the quality of the solution 

obtained to ensure its reliability.  Hence, one is interested to use as few degrees of 

freedom as possible in the problem, while on the other hand the obtained solution 

should be as accurate as possible.  Much research has focused on the development of 

efficient matrix storage strategies, and summaries of those that are commonly used in 

practice are given in Table 3.2.

Depending on the computing resources available, different matrix storage strategies 

are applied.  Element-by-element storage is the most preferred method used when 

performing large scale, three-dimensional modelling due to its low memory 

requirements.  The implementation of element-by-element storage requires the 
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collection of element matrices to be solved iteratively using numerical technique such 

as conjugate gradient method (Smith and Griffiths, 1998).  Another benefit of 

implementing element-by-element storage is that it allows for parallel computation as 

the element level matrices can be solved in parallel without affecting one another.

The treatment to this point has involved homogeneous soil layers; that is, where each 

adjacent element has identical soil properties.  The following sections examine the 

theory of random fields and the application of heterogenous soil profiles in reliability 

studies.

Table 3.2    Summaries of different matrix storage strategies. 

Skyline storage

 Store all coefficients within a skyline;
 Requires renumbering to minimise skyline;
 Efficient for direct solvers on shared-memory 

machines.

Sparse storage

 Stores non-zero coefficients only;
 Predominantly indirect access patterns;
 Efficient for iterative methods on distributed 

memory architectures.

Element by element 
storage

 Retains element-level matrices, no global assembly;
 Efficient for iterative methods on distributed 

memory;
 The main advantages of element-by-element 

solvers are significant saving in numerical 
operations, computer storage and potential for 
parallel implementation;

 Element matrices can be recalculated as needed, 
minimal storage, but slower.

3.8      HETEROGENEOUS SOILS

The enterprises of structural and mechanical engineers, and geotechnical engineers are 

significantly different.  While structural and mechanical engineers deal with 

manufactured materials, geotechnical engineers deal almost exclusively with natural 

materials.  Soils are formed from parent materials, which are commonly 

heterogenous.  However, soil properties do not really vary randomly, but exhibit some 

degree of continuity between adjacent locations.  This is due to the manner in which 



Chapter 372

geotechnical materials are formed and the continuous complex and varied 

environment processes, which work to alter them (Spry et al., 1988).  

3.8.1    Random Field Theory

A mathematical model can be used to describe such a random process.  Consider any 

random process, Z(x) (physical or mechanical in nature), defined along the points x of 

a given domain.  This random process is classically described in the following form: 

Z(x) = m(x) + x (3.111)

where Z(x) is a random field process; m(x) is a deterministic function describing the 

mean of the soil property at x; and (x) is the random residual or white noise (Fenton, 

1999).

In this model, m(x) represents a linear or quadratic trend of the random field process, 

Z(x), and  (x) represents the random fluctuation of this process about the trend 

(Fenton, 1999).  This model can represent any particular soil property (e.g. undrained 

shear strength) that fluctuates along a vertical or horizontal line within a soil mass.  

However, spatial variability analyses are not conceptually limited to horizontal or 

vertical directions, though these orientations are the most significant and frequently 

investigated in practice.  Jaksa (1995) found that the cone tip resistance, qc, data of 

Keswick Clay exhibits an underlying quadratic trend pattern that was consistent with 

Keswick Clay being overconsolidated as a result of desiccation.  Noted that the trends 

can be as complex as desired by the user and are not necessarily limited to first- or 

second-degree polynomials.  However, Fenton (1999) suggested that the trend 

component might be a part of a fractal process and it should be regarded as a part of 

the overall uncertainty, and therefore should not be removed from the stochastic 

characterisation, in order to obtain global results.

Given sufficient data gathered from the field, one could accurately characterise the 

spatial variability of soil properties using statistical formulations.  The main elements 

for characterising the spatial variability of soil properties include (Vanmarcke, 

1977a):
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 Classical statistical properties of the soil (i.e. mean, coefficient of variation 

(COV) and distribution of data); and

 Spatial correlation structures of soil (which comprise the covariance 

relationship) and scale of fluctuation (which describe the semi-continuity and 

randomness of the soil property in space).

If an infinite amount of data were available, one could gain only a pseudo-complete 

spatial description of soil variability in any direction, at least because measurements 

are always inaccurate and imprecise to some degree (Baecher, 1982).  As data are 

always limited in number, it becomes convenient to model soil variability as a random 

variable.  Structures explanations of the statistical techniques used for the 

investigation of spatial variability are presented by Priestley (1981) and Baecher and 

Christian (2003).

Vanmarcke (1978) suggests that the magnitude of spatial correlation depends from the 

method and scale of investigation.  Vanmarcke (1978) illustrates the multiplicity of 

scales of investigation which are possible in geotechnical engineering: (a) soil 

particles; (b) laboratory specimen; (c) vertical sampling; (d) lateral distance between 

borings; (e) horizontal intervals at regional scale, e.g. measured along the centreline of 

long linear facilities.  Distinct measurement techniques are generally employed for the 

various scales.  The dependence of the correlation structure on the scale of 

investigation had led a number of researchers (e.g. Agterberg, 1970; Campanella et 

al., 1987; Fenton, 1999a, 1999b; Fenton and Vanmarcke, 2003; Jaksa, 1995; 

Kulatilake and Um, 2003) to address autocorrelation in soils using fractal models, 

which assume an infinite correlation structure and allow to directly address the 

dependence of the correlation structure from the sampling domain.

3.8.2    Classical Statistical Properties

Several classical statistical characteristics of soils, such as the mean, COV and 

probability distribution, have been published by a number of researchers (e.g. Lumb, 

1966, 1970; Li and White, 1987; Spry et al., 1988; Jaksa, 1995; Jaksa et al., 1996, 

1999; Phoon and Kulhawy, 1999a, 1999b).  It is suggested that, generally, the strength 

parameters usually exhibit high variability, in terms of high COV (Spry et al., 1988).  
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The statistical distributions that are usually adopted for geotechnical properties by 

different authors are the normal, lognormal and beta distributions (Lee et al., 1983; 

Paice et al., 1996; Kaggwa, 2000; Griffiths and Fenton, 2001; Griffith et al., 2002; 

Fenton and Griffith, 2002, 2003).  It is found that these statistical distributions are site 

and parameter specific and there is no generic probability distribution pattern for all 

soil properties.

Second-moment statistics (i.e. mean and standard deviation) alone are unable to 

describe the spatial variation of soil properties, whether measured in the laboratory or 

in-situ.  El-Ramly et al. (2002) have demonstrated that two sets of measurements may 

have similar second-moment statistics and statistical distributions, but could display 

substantial differences in spatial distribution.  

3.8.3    Spatial Correlation

The auto-correlation function (ACF) is a measure of similarity between two or more 

points in a data series, which can be defined as: 

B(h) = E[ Z(x) Z(x + h)] − 2
Z (3.112)

where B(h) is the corresponding value of the autocorrelation function at a separation 

distance h; Z(x) and Z(x+h) are pairs of data separated by distance h; E […] is the 

expected value operator; and Z  is the mean value of data series Z.  The 

autocorrelation function is used widely throughout time series analysis literature, and 

it enables the characteristic of the time series to be determined.  For example, a slowly 

decaying autocorrelation function suggests long-term dependence, whilst a rapidly 

decaying function suggests short-term dependence (Chatfield, 1975; Hyndman, 1990).

Vanmarcke (1977a, 1983) suggested that the spatial variability of geotechnical 

materials may be characterised stochastically by the use of three parameters; namely, 

the mean, , the standard deviation, , and the scale of fluctuation, .  The scale of 

fluctuation describes the spatial continuity of the random field; that is, values at 
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adjacent locations are more correlated than those separated by larger distances.  In 

other words, the scale of fluctuation quantifies the spatial extension of strong 

autocorrelation.  The spatial continuity of a random field is parameterised by the 

autocorrelation function.  Vanmarcke (1983) proposed that  may be evaluated by 

fitting a model ACF to the sample autocorrelation.  Some typically used model 

autocorrelation functions and their relationship to , are shown in Table 3.3.

Table 3.3    Scale of fluctuation with respect to theoretical autocorrelation functions. 

(After Vanmarcke, 1977a, 1983)

Model No. Autocorrelation Function Scale of Fluctuation, 
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3.8.4    Local Average Subdivision (LAS)

Stochastic finite element modelling and analysis involves finite element modelling 

incorporating random field simulation.  Whilst there are several random field 

simulation techniques available and discussed in the literature, one method, namely 

local average subdivision (LAS), offers a fast and reliable simulation technique that, 

as a results, is employed in the present work.  

The local average subdivision (LAS) approach was introduced by Fenton and 

Vanmarcke (1990).  This method offers a fast and accurate means to generate 

realisations of homogeneous Gaussian random fields in one, two or three dimensions.  

The first of its type appeared as stochastic subdivision algorithms described by 

Carpenter (1980) and Fournier et al. (1982) in computer graphics synthesis.  It was 

limited, however, in that it was only able to model power spectra having a form of w–β

with a single parameter β.  It was later generalised by Lewis (1987) eliminating this 

limitation, and extending its capabilities to modelling fields with non-fractal spectral 

and directional or oscillatory characteristics.
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Fenton and Vanmarcke (1990) described a local averaging process by means of LAS, 

which essentially proceeds in a top-down recursive fashion, as illustrated in Figure 

3.10.  In the first Stage 0, a global average is generated for the process.  In the next 

stage (Stage 1), the domain is subdivided into two sub-domains whose local averages 

must in turn be the average of the global value, i.e. 

1
2

1
1

0
1

2

1

2

1
ZZZ  (3.113)

Figure 3.10     Top down approach to the LAS construction. (After Fenton and 

Vanmarcke, 1990).

Fenton and Vanmarcke (1990) defined the term parent cell as the previous stage cell 

being subdivided and, within cell meaning the region defined by the parent cell.  

Further subdividing each of the parent cells into two equal size sub-domains then 

generates the subsequent stages.  Normally distributed values are generated for the 

resulting two sub-domains while preserving upward averaging.  These values are

generated such that they must exhibit the correct mean and variance according to local 

averaging theory.  In addition, these generated values must be appropriately correlated 

with one another, as well as correlated with their neighbouring values.

In order to determine the mean and variance of Stage 0, Z 0
1 , consider a continuous 

stationary scalar random function Z(t) in one dimension, and a domain of interest 

(0, D].  At this stage, two points are noted: first, the implementation of this method is 

strictly applied to stationary processes only, which are fully described by their second 

order statistics (mean, variance, and autocorrelation function).  Second, the LAS 

a1172507
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                                          NOTE:  
   This figure is included on page 76 of the print copy of 
     the thesis held in the University of Adelaide Library.
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method depends on the size of the domain, over which local averaging is performed, 

being known.

Z 0
1  is a random variable whose statistics can be expressed by using stationary theory 

and the fact that B(τ), the covariance function of Z(t), is an even function of lag τ.  

Without loss of generality, E[Z] will henceforth be taken as zero.  It will give 

sufficient information to generate a realization of Z 0
1  at stage 0 using Equations 3.114

and 3.115, if Z(t) is a Gaussian random process (Fenton, 1990).  
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A complete probability distribution function for Z 0
1  must be determined if Z(t) is not a 

Gaussian random process, and a realization of Z 0
1  is generated according to such a 

distribution (Fenton and Vanmarcke, 1990).  With reference to Figure 3.11, the 

determination of Stage i + 1 values, given Stage i + 1 is obtained by estimating Z 1
2
i
j

with the addition of a zero mean discrete white noise ci + 1
W

1i

j , shown in Equation 

3.116 and M 1
2
i

j  can be determined by Equation 3.117, shown as follows:
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Fenton (1990) showed that, for i = 0, 1, 2, …, L and  = –n, …, n, the set of {a
i

 } and 

c
i+1 can be determined by using Equations 3.118 and 3.119 respectively.  The adjacent 

cell Z
1

12



i

j  is determined using Equation 3.120, to ensure the upwards averaging is 

preserved.
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Figure 3.11     1-D LAS indexing schemes for Stage i (top) and Stage i + 1 (bottom). 
(After Fenton, 1990).

Fenton (1990) employed several theoretical exponentially decaying correlation 

functions in LAS, one of which is used in this study is called Markovian spatial 

correlation function and is given by:

  






 






2

exp (3.121)

where (.) is the correlation coefficient between two points separated by vector 

= {x y} and  is the correlation length, which defined as, loosely speaking, the 

distance over which soil properties are significantly correlated (when the || is greater 

than , the correlation coefficient between two points is less than 14%).  This 

correlation length governs the correlation function decay rate and it will be used 

throughout this study.

The major drawback of LAS, as indicated by Fenton (1994), is that it is incapable of 

directly producing an anisotropic field due to its same cross-cell approximation.  The 
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   This figure is included on page 78 of the print copy of 
     the thesis held in the University of Adelaide Library.
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field covariance always tends towards isotropy with a scale equal to the minimum of 

the anisotropic scales.  However, Fenton (1994) suggested that an ellipsoidal 

anisotropic random field could be produced from an isotropic random field by 

stretching the coordinate axes.  Regardless of its disadvantages, Fenton and 

Vanmarcke (1990) concluded that LAS is a fast and sufficiently accurate method for 

generating realisations of random fields and demonstrates accurate covariance at any 

given resolution.  In addition, LAS is suitable for generating random fields for finite 

element analysis, since the soil medium is represented in element form rather than 

point form (Fenton and Vanmarcke, 1990).  Accordingly, the LAS method will be 

used in subsequent soil profile simulations.  Examples of random fields generated by 

LAS using two different correlation distances are illustrated in Figure 3.12.  Noted 

that the sizes of the generated random fields and the correlation distances used in this 

chapter are dimensionless.

   

(a)

   

(b)

Figure 3.12     Examples of plausible random fields. 

(a)  = 2.0, (b)  = 64.0

3.8.5    Applications of Random Field

There has been a steady stream of publications on the applications of reliability 

methods to geotechnical engineering over the last thirty years or so.  The presence of 
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heterogeneity in properties of natural soil masses and its considerable effect on design 

performance has been extensively addressed by several researchers (e.g. Vanmarcke, 

1977b; Righetti and Harrop-Williams, 1988; Paice et al., 1996; Kaggwa, 2000; 

Griffiths and Fenton, 2001; Griffith et al., 2002; Fenton and Griffith, 2002, 2003).  

With the aid of the high speed and powerful computers, the soil medium in finite 

element analysis can be modelled as a heterogeneous random field by using 

Vanmarcke’s variance function (Harrop-Williams, 1988), the local average 

subdivision technique (LAS) (e.g. Paice et al., 1996, Fenton et al., 2003, Fenton and 

Griffiths, 2003) or Monte Carlo simulation.  The reliability analyses have been 

performed to obtain the reliability index and the probability of failure as a function of 

various coefficients of variation and, either scales of fluctuation or correlation lengths 

(if LAS is used).

The effect of random elastic moduli on strip foundation settlement was studied by 

Paice et al. (1996).  In order to avoid negative values of Young’s modulus, E, in 

random field simulation, a lognormal probability distribution of E was assumed.  

There are some limitations of this study, such as linear-elastic soil behaviour, only an 

isotopic simple-exponential correlation structure was considered, and out-of-plane 

variation of E was not considered.  Despite these limitations, it was shown that the 

variation of elastic modulus has a significant influence on footing settlement. 

Fenton et al. (2003) studied the reliability of Janbu’s settlement formulation in the 

prediction of strip footing settlement on spatially random soil.  The settlement of a 

strip footing was determined by simple linear-elastic, two-dimensional finite element 

analysis with a stochastic input of the elastic modulus of the soil.  The elastic modulus 

field, again was assumed to follow a lognormal probability distribution and 

Markovian correlation function, and the random field was simulated using the LAS 

method.  Simulated site investigations were carried out at a limited number of 

locations on simulated soil profiles, in order to determine the representative value of E

to compute the required footing using Janbu’s equation.  The finite element method 

was then used to calculate the actual settlement of the designed footing on a particular 

realization of the elastic modulus field.  Monte Carlo simulation was used to assess 

the reliability of Janbu’s settlement formulation with respect to the soil’s variance and 

correlation length.  Fenton et al. (2003) concluded that, if the basic statistical data (i.e. 



Chapter 3 81

mean, variance and correlation length) are known, Janbu’s settlement formulation is 

reasonably reliable.  A framework for assessing the reliability of footing design was 

proposed by Fenton et al. (2003).

3.8.6   Soil delineation 

Random fields are simulated based on an assumption of strict stationarity, that is the 

mean and standard deviation of the stochastic process or time series are constant over 

time or position.  However, natural soil profiles usually consist of multi-layers, with 

each layer having different spatial statistics (probability distribution and scale of 

fluctuation) of soil properties.  The significant variation of spatial statistics across a 

site can violate the assumption of stationarity and can lead to biased estimation.  

There are two traditional approaches often taken to address such a limitation (Wingle, 

1997).  One divides the site into a number of different zones and describes the spatial 

statistic for each zone, simulate or estimate each zone, and merge them together.  The 

other assumes a pooled spatial model that reflects the mean behaviour of the entire 

site and the problem can be controlled with the local stationarity of the neighbouring 

data samples (Isaaks and Srivastava, 1989).  The former approach requires effort and 

resources and is not equally suitable for sites with gradual transitions.

An alternative approach presented by Wingle (1997), called zonal kriging, has the 

advantage of describing and defining the inter-zone relationships.  These inter-zonal 

relationships define how the nearest neighbouring data points in one zone influence 

the simulated cell located in another zone.  This approach produces realisations of 

non-stationary random fields that more accurately represent reality (Wingle, 1997).  

However, this approach has a few limitations, such as, this approach is only 

applicable to simple and ordinary kriging, which is known as a linear unbiased 

estimator of a spatial process based on a large body of stochastic data modelling 

methodology known as geostatistics proposed by Matheron (1970), and therefore it is 

only applicable to random field simulation (i.e. sequential indicator simulation) by 

geostatistics.

Due to the limitation of the LAS method, which is incapable of simulating non-

stationary random fields, the first aforementioned approach will be adopted.  The soil 
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profiles will be divided into a number of layers and each layer is then simulated 

independently.  The resulting random fields will be merged based on the location of 

the boundary and thickness of the layers.  Such an approach requires prior and post 

processing and is limited to simulating a multi-layered soil profile with abrupt 

boundaries.

3.9      ARTIFICIAL NEURAL NETWORKS

The concept of artificial neural networks (ANNs) was first introduced by McCulloch 

and Pitts in 1943.  The basic idea of artificial neural networks (ANNs) is to develop 

mathematical algorithms whose purpose is to resemble closely the operation of the 

human brain system or natural neural networks (NNNs) (McCulloch and Pitts, 1943).  

ANNs may be considered as a new age, powerful tools in the field predicting and 

forecasting.  Recently, ANNs have been applied successfully to a wide range of areas 

including classification, estimation, prediction and function synthesis (Moselhi et al., 

1992).  The applications of ANNs in engineering fields, which include geotechnical 

engineering, have been reviewed extensively by Shahin et al. (2001).

ANNs can be trained by learning from examples or past experiences, which are a set 

of input variables and corresponding outputs.  ANNs are used to determine the inter-

variable rules that govern the relationship between variables.  Therefore, ANNs are 

suitable for modelling complex problems where the relationship between the variables 

is unknown (Hubick, 1992) and non-linearity is presented (Maier, 1995).  The utility 

of artificial neural network models lies in the fact that they can be used to infer a 

function from observations. This is particularly useful in applications where the 

complexity of the data or task makes the design of such a function by hand 

impractical. 

The aim of this section is to provide some background information and important 

features associated with ANNs.  A brief description of natural neural networks 

(NNNs) will be presented, followed by the structure and operation of ANNs.  There 

are different ANN structures, however, in this research, back-propagation multilayer 

perceptrons will be employed and therefore, will be discussed in greater detail.
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3.9.1    Natural Neural Networks (NNNs)

The structure and operation of natural neural networks (NNNs), which is illustrated in 

Figure 3.13, have been discussed by several authors (e.g. Hertz at al., 1991; Zurada, 

1992; Masters, 1993; Fausett, 1994).  In brief, NNNs consist of, billions in number, 

densely interconnected nerve cells, which are found in the brain, called neurons.  Each 

neuron receives combined signals from many other neurons through synaptic gaps via 

dendrites.  The dendrites collect the incoming signals and send them to the soma, 

which is the cell body of the neuron.  The soma sums the incoming signals and the 

neuron is activated if the charge of these signals is strong enough.  The signal is then 

transmitted to neighbouring neurons through an output structure called an axon.  The 

axon divides and connects to dendrites of neighbouring neurons through junctions 

called synapses.  The signals that the neural networks receive, process and transmit 

are electrochemical, which means electronic impulses are transmitted by means of a 

chemical process (Fausett, 1994).  Learning occurs by changing the effectiveness of 

the synapses so that the influence of one neuron on another changes.

3.9.2    Artificial Neural Networks (ANNs)

A comprehensive description of the structure and operation of ANNs have been 

discussed and given by many authors (e.g. Hecht-Nielsen, 1990; Maren et al., 1990; 

Zurada, 1992; Fausett, 1994; Ripley, 1996).  Basically, artificial neural networks or 

ANNs are introduced to imitate the behaviour of NNNs.  ANNs are typically 

composed of interconnected processing units or nodes, which serve as model neurons.  

A graphical representation of an ANN is shown in Figure 3.14.  This model is a 

generalization known as multi-layered perceptrons (MLPs).  The processing units are 

usually arranged in layers, namely the input layer, hidden layers and output layer.  

Hidden layers are intermediate layers between the input and output layer and are used 

to model relationship between input and output layers.  Each processing unit in a 

specified layer is connected to other processing units in other layers.

The function of the synapse is modelled by an adjustable weight.  The weight 

represents the strength of the synapse of the neuron in NNNs and it determines the 

strength of the connection between two processing units.  A zero weight implies no 
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connection between two processing units, whilst a positive weight represents an 

excitatory connection, and a negative weight refers to an inhibitory connection.

Figure 3.13     Typical structure of biological neuron (After Fausett, 1994)

Each input (xi) from each processing unit in the previous layer is multiplied by an 

adjustable weight (wji).  In each processing unit, the weighted inputs (wji xi) are 

summed and a bias (j) is then added or subtracted.  Such combined input (I j) is then 

passed through a nonlinear input-output or transfer function [f( )] (e.g. sigmoidal or 

tanh) to produce an output.  The output from one processing unit serves as an input for 

the processing units in the following layer.

Summation:  I j = Σ wji xi + j (3.122)

Transfer: y j = f (I j) (3.123)

The learning or training process of ANNs involves adjusting weights such that the 

error between the measured or historical data and the output from the ANN is 

minimised.  Such a process requires computation of the error derivative of the 

weights; that is, the change in error with respect to the change in the weights.  The 

most commonly used method for determining such an error derivative is the back 

propagation algorithm.  The algorithm first computes the error function, which is the 

rate of error changes as the activity of a processing unit is changed.  For example, the 

error function, for node j, is given by following equation:

a1172507
Text Box
 
                                          NOTE:  
   This figure is included on page 84 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Figure 3.14     Typical structure and operation of ANNs (After Maier and Dandy, 

1998)

 2
2

1  jj dyE (3.124)

where:

E = the global error function;

yj = the predicted output by the network; and

dj = the historical or measured actual output.

The global error function, E, is minimised by modifying the weights using the 

gradient descent rule:

ji

ji
w

E
w




  (3.125)

where:

wji = weight increment from node i to node j; and 

 = learning rate, by which the size of the step taken along the error surface is    

determined.

The equation can be further refined by the delta rule as follows:
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wji =  j xi (3.126)

where

xi = input from node i, i = 0, 1, 2 …, n; and

j = error value between the predicted and desired output for node j.

The back propagation algorithm is applied to adjust the weights in a backward 

manner.  The weights between the hidden and the output layers are adjusted first, 

followed by the weights in between the hidden and the input layers.  If node j is in the 

output layer, then j can be written as follows:

j = (yj – dj) f’ (Ij) (3.127)

where

f’ (Ij) = the derivative of the activation function f with respect to the weighted sum 

of inputs of node j.

If node j is in the hidden layer, with reference to Figure 3.15, by applying the 

generalised delta rule proposed by Rumelhart et al. (1986), j can be determined as 

follows:

 
j

m

mjmj Ifw '
1









   (3.128)

Figure 3.15     Node j in hidden layer.
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The weights are adjusted by adding the delta weight, wji, to the corresponding 

previous weight as follows:

wji (n + 1) = wji (n) + wji (3.129)

where:

wji (n + 1) = the weight from node i to node j at step n (before adjustment); and 

wji (n) = the weight at step (n + 1) (after adjustment).

The back-propagation algorithm has some drawbacks, for instance, it is sensitive to 

the initial values of weights as a result of its gradient descent nature.  For example, 

Hassoun (1995) reported that the convergence may become very slow as training 

starts with a set of initial weights that are positioned in a flat region of the error 

surface, and Maier and Dandy (1998) also reported that training may start from an 

unfavourable position in the weight space from which the network may get stuck in a 

local minimum and cannot escape.  Therefore, the effect of using different initial 

values of weights on the performance of ANN model will be investigated in the 

following chapters.

There are two different training modes for updating the weights, namely, the on-line 

mode and the batch mode.  In the on-line mode, the weights are updated after each 

training case is presented.  In contrast, in the batch mode, the network proceeds by 

making weight and bias changes based on entire set of input vectors.  It has been 

suggested that the on-line mode is better than the batch mode as the sequence of 

training cases presented to the network can be easily randomised to avoid local 

minima (Zhang, 1997).  Consequently, the on-line mode will be adopted for all ANN 

models developed in this research.

The choice of the learning rate is critical for network’s training.  If low value of 

learning rate is selected, the network learns very slowly.  On the other hand, the 

weights and objective function diverge if higher value of learning rate is selected.  

Therefore, there will be no learning at all and convergence will never occur.  To solve 

the problem, Rumelhart et al. (1986) described a process where a momentum term 
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(  ) is added to the weight adjustment that is proportional to the amount of the 

previous weight change.  Once an adjustment is carried out, it is saved and used to 

modify all subsequent weight adjustments.  This implies that the weight change of the 

current step should carry some momentum of the weight change from the previous 

step.  The mathematical expressions of the modified adjustment equations are as 

follows

wji (n + 1) = 
jiw

E




  + wji(n) (3.130)

and 

wji (n + 1) = wji(n) + wji(n + 1) (3.131)

Sarle (1994a) had suggested that a momentum value of 0.9 is customarily set for both 

on-line and batch training modes, whilst Ripley (1993) suggested momentum values 

of 0.99 or 0.999 to be used for on-line training mode and a smaller value of 0.5 for 

batch training mode.  However, Sarle (1994a) pointed out that the best momentum 

could be determined by trial-and-error.  

The learning rate is assumed to be constant from one epoch to the next and from one 

weight to another in most of the algorithms described by Hertz at al. (1991).  

However, some researchers (e.g. Chan and Fallside, 1987; Jacobs, 1988) hold 

different views by proposing learning rules that vary the learning rate and provided 

some guidelines for learning rate update.  It was found that updating learning rate can 

decrease the number of cycles required for training.  However, it has also been found 

that the automatic method of updating learning rate has the risk of being trapped in 

local minima (Mukherjee and Deshpande, 1997).

The training process of the multi-layered perceptrons (MLPs) that are based on the 

back-propagation algorithms, however, requires long training time and slow to 

converge (Wasserman, 1989; Vitela and Reifman, 1997).  This problem is attributed 

to the fact that these networks rely on non-linear transfer functions for learning.  In 

more detail, if node activation is large, nodal output may tend to get stuck in the flat 
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spots at the extreme values of the transfer functions.  The changes used to update the 

weights are a function of the derivative of the transfer functions.  At the extreme 

values of the transfer functions the derivative is near zero.  Consequently, very small 

weight changes can occur, resulting in a slow down in convergence.  In order to 

overcome this shortcoming, Fahlman (1988) proposed adding a small, constant value 

to the derivative of the transfer function to prevent it from becoming zero.  Falman 

(1988) achieved a dramatic improvement in training time by adding 0.1 to the 

derivative of the sigmoid transfer function.  Another approach of solving the problem 

is the adjustment of the transfer function so that it never drops below a predefined 

level (Rojas, 1996).

Another known limitation of MLPs trained with the back-propagation algorithm is 

that the training process might be trapped in a local minimum.  Weiss and Kulikowski 

(1991), however, suggested that local minima are not a significant problem for many 

applications, as they occur relatively infrequently.  There are various ways proposed 

in the literature to avoid local minima, including increasing the learning rate, adding a 

momentum term, adding a small amount of random noise to the input patterns to 

shake the network from the line of steepest descent, adding more hidden nodes and 

relocating the network along the error surface, randomising the initial weights and 

retraining (Sietsma and Dow, 1988; Vitela and Reifman, 1997; Maier and Dandy, 

2000). 

Finally, despite being prolific models, feed-forward neural networks that are trained 

with the back propagation algorithm are often ubiquitously criticised for being black 

boxes.  The knowledge acquired from these networks during training is stored in their 

connection weights and bias values in a complex manner that is often difficult to 

interpret (Touretzky and Pomerleau, 1989; Hegazy et al., 1994; Brown and Harris, 

1995; Lin and Dong, 1998).  Consequently, the rules governing the relationship 

between the input/output variables are difficult to quantify, especially for large 

networks that have a large number of PEs.  However, work is developing in this 

regard to enable improved knowledge extraction form ANNs, and various approaches, 

such as rule extraction, contribution analysis and network inversion have been 

proposed.
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3.9.3    Development of Artificial Neural Networks (ANNs)

There are numbers of factors that have great influences on the performance of 

networks.  In order to improve performance, ANN models need to be developed in a 

systematic manner and there are a number of guidelines to address those influencing 

factors.  Such influencing factors include the determination of model inputs, data 

division and pre-processing, the choice of network architecture, selection of the initial 

parameters that control the optimisation method, the stopping criteria and model 

validation (Maier and Dandy, 2000) and these factors are discussed below.

3.9.4    Model Inputs

The first process of developing an ANNs based model is selecting the model inputs.  

The selection of model input variables is crucial as it has the most significant impact 

on model performance.  Presenting a large number of input variables will increase 

network size, resulting in a reduction in processing speed and thus the efficiency 

(Lachtermacher and Fuller, 1994).  Various approaches have been suggested in the 

literature to assist with the determination of the appropriate set of input variables in 

the neural networks.  One approach, that is usually employed in the field of 

geotechnical engineering, is using a fixed number of input variables in advance and 

assumed to be most effective input variables in relation to the model output variables 

(Shahin, 2003).  Another approach is to train many neural networks with different 

combinations of input variables and compare their performance, and the network with

best performance would be selected (Goh, 1994b; Najjar et al., 1996; Ural and Saka, 

1998).  An approach by Maier and Dandy (2000) suggested that separate networks are 

trained with each using only one of the variables as model input.  The network that 

has best performance is then retrained, adding each of the remaining variables to be 

model input.  This approach is repeated, each time with one additional input variable, 

until no improvement in model performance can be observed.  Other approaches 

suggested in the literature include employing a genetic algorithm to search for the best 

sets of input variables (NeuralWare, 1997) and using the adaptive spline modelling of 

observation data (ASMOD) introduced by Kavli (1993) to develop parsimonious 

neural networks.
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3.9.5    Division of Data

Due to their large number of parameters, ANNs can overfit the training data, 

particularly if they are noisy.  Overfitting means that the training algorithms adjust the 

weights of the ANN to fit every single data value in the data set and at the same time 

decreases the model’s capability to generalise new data sets.  In other words, the 

model might no longer fit the general trend, but might learn the idiosyncrasies of the 

particular data points used for calibration, leading to ‘memorisation’, rather than 

‘generalisation’.  Consequently, two separate subsets are needed: a training set, to 

construct the neural network model, and an independent validation set to estimate 

model performance in a deployed environment (Twomey and Smith, 1997; Maier and 

Dandy, 2000).  A more efficient data division method is proposed by Stone (1974) 

called cross-validation in which the data are divided into three sets: training, testing 

and validation.  The additional testing set is used to check the performance of the 

model at various stages of training and to determine when to stop training to avoid 

over-fitting.  

As ANNs have difficulty extrapolating beyond the range of the data used for 

calibration, in order to develop the best ANN model, given the available data, all of 

the patterns that are contained in the data need to be included in the calibration set.  

For example, if the available data contain extreme data points that were excluded 

from the calibration data set, the model cannot be expected to perform well, as the 

validation data will test the model’s extrapolation ability, and not its interpolation 

ability.  If all of the patterns that are contained in the available data are contained in 

the calibration set, the toughest evaluation of the generalisation ability of the model is 

if all the patterns (and not just a subset) are contained in the validation data.  In 

addition, if cross-validation is used as the stopping criterion, the results obtained using 

the testing set have to be representative of those obtained using the training set, as the 

testing set is used to decide when to stop training or for example which model 

architecture of learning rate is optimal.  Consequently, the statistical properties (e.g. 

mean and standard deviation) of the various data subsets (e.g. training, testing and 

validation) need to be similar to ensure that each subset represents the same statistical 

population (Masters, 1993).  Several studies have used ad-hoc methods to ensure that 

the data used for calibration and validation have the same statistical properties 
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(Braddock et al., 1998; Campolo et al., 1999; Tokar and Johnson, 1999; Ray and 

Klindworth, 2000).  However, it was not until recently that systematic approaches for 

data division have been proposed in the literature.  Bowden et al. (2002) used a 

genetic algorithm to minimise the difference between the means and standard 

deviations of the data in the training, testing, and validation sets.  A recent study by 

Shahin et al. (2004) compared the performances of neural networks that are trained 

using four different data division strategies, and concluded that there is a clear direct 

relationship between the consistency in the statistics (i.e. mean, standard deviation, 

maximum and minimum) between training, testing, and validation sets and 

consistency in the model performance.  Shahin et al. (2004) also showed that there is 

no clear link between the proportion of data used for training, testing and validation 

sets and model performance, although the best results obtained when 20% of the data 

used for validation and the remaining data are divided into 70% for training and 30% 

for testing.  Shahin et al. (2004) also suggested using self-organizing map (SOM) and 

fuzzy clustering, which cluster data into similar groups, to decide which proportion of 

the available data to be used for training, testing and validation.

3.9.6    Data Pre-processing

The main objective of data pre-processing is to ensure all variables receive equal 

attention during the training process.  Moreover, it is found that this processing 

usually speeds up the learning process, greatly simplifying the task of model 

development.  Pre-processing can be in the form of data scaling, normalisation and 

transformation (Masters, 1993).  Scaling the output data is essential, as they need to 

be commensurate with the limits of the transfer functions used in the output layer (e.g. 

between  -1.0 to 1.0 for the tanh transfer function and 0.0 to 1.0 for the sigmoid 

transfer function).  Scaling the input data is not necessary but it is almost always 

recommended (Masters, 1993).  In some cases, the input data need to be normally 

distributed in order to obtain optimal results (Fortin et al., 1997).  However, Burke 

and Ignizio (1992) stated that the probability distribution of the input data does not 

have to be known.  Transforming the input data into some known forms (e.g. linear, 

log, exponential, etc.) may be helpful to improve ANN performance.  Shi (2000) 

showed that distribution transformation of the input data to a uniform distribution 

improved network performance by 50%.  However, empirical trials (Faraway and 
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Chatfield, 1998) showed that the model fits were the same, regardless of whether raw 

or transformed data were used. 

3.9.7    Determination of Model Architecture

As is well known, determining the network architecture is one of the most important 

and difficult tasks in ANN model development (Maier and Dandy, 2000).  It requires 

the selection of the optimum number of layers and the number of nodes in each of 

these.  There is no known practical method or unified theory for determination of an 

optimal ANN architecture.  There are always two layers representing the input and 

output variables, in any neural network.  The intermediate layers between the input 

and output layer are called the hidden layers and these hidden layers are used to model 

relationship between input and output layers.  There are some suggestions that one 

hidden layer is sufficient to approximate any continuous function provided that 

sufficient connection weights are given (Cybenko, 1989: Hornik et al., 1989).  Hecht-

Nielsen (1989) presented a proof that a single hidden layer of neurons, operating a 

sigmoidal activation function, is sufficient to model any solution surface of practical 

interest.  To the contrary, Flood (1991) stated that there are many solution surfaces 

that are extremely difficult to model using a sigmoidal network containing one hidden 

layer.  In addition, some researchers (Flood and Kartam, 1994; Sarle, 1994b; Ripley,

1996) stated that the use of more than one hidden layer provides the flexibility needed 

to model complex functions in many situations.  Lapedes and Farber (1998) provided 

more practical proof that two hidden layers are sufficient, and according to Chester 

(1990), the first hidden layer is used to extract the local features of the input patterns 

while the second hidden layer is useful to extract the global features of the training 

patterns.  However, using more than one hidden layer often slows the training process 

dramatically and increases the chance of getting trapped in local minima (Masters, 

1993).

The number of nodes in the input and output layers are restricted by the number of the 

model inputs and outputs, respectively.  However, there is no direct and precise way 

of determining the best number of nodes in each hidden layer.  It is suggested that a 

trail-and-error procedure, which is generally used in geotechnical engineering to 

determine the number and connectivity of the hidden layer nodes, can be used.  It has 
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been shown in the literature (e.g. Maren et al., 1990; Masters, 1993; Rojas, 1996) that 

neural networks with a large number of free parameters (connection weights) are 

more subject to overfitting and poor generalisation.  Consequently, keeping the 

number of hidden nodes to a minimum, provided that satisfactory performance is 

achieved, is always better, as it: (a) reduces the computational time needed for 

training; (b) helps the network to achieve better generalisation performance; (c) 

avoids the problem of overfitting and (d) allows the trained network to be analysed 

more easily.  For single hidden layer networks, there are number of approaches that 

can be used to obtain the best number of hidden layer nodes.  One approach is to 

assume the number of hidden nodes to be 75% of the number of input units. 

(Salchenberger et al., 1992).  Another approach suggests that the number of hidden 

nodes should be between the average and the sum of the nodes in the input and output 

layers (Berke and Hajela, 1991).  A third approach is to fix the upper bound of the 

number of hidden nodes, and then work back from this bound.  Hecht-Nielsen (1987) 

and Caudill (1988) suggested that the upper limit of the number of hidden nodes in a 

single layer network may be taken as (2I + 1), where I is the number of inputs.  The 

best approach found by Nawari et al. (1999) is to start with a small number of nodes 

and to slightly increase the number until no significant improvement in model 

performance is achieved.  Yu (1992) showed that the error surface of a network with 

one hidden layer and (I − 1) hidden nodes has no local minima.  For networks with 

two hidden layers, the geometric pyramid rule described by Nawari et al. (1999) can 

be used.  The notion behind this method is that the number of nodes in each layer 

follows a geometric progression of a pyramid shape, in which the number of nodes 

decreases from the input layer towards the output layer.  Kudrycki (1998) found 

empirically that the optimum ratio of the first to second hidden layer nodes is 3:1, 

even for high dimensional inputs.

Another way of determining the optimal number of hidden nodes is to relate the 

number of hidden nodes to the number of available training samples.  There are a 

number of rules-of-thumb that have been suggested in the literature to relate the 

training samples to the number of connection weights.  For instance, Rogers and 

Dowla (1994) suggested that the number of weights should not exceed the number of 

training samples.  Masters (1993) stated that the required minimum ratio of the 

number of training samples to the number of connection weights should be 2 and the 



Chapter 3 95

minimum ratio of the optimum training sample size to the number of connection 

weights should be 4.  Hush and Horne (1993) suggested that this ratio should be 10,

while Amari et al. (1997) suggested a value of at least 30.

More recently, a number of systematic approaches have been proposed to 

automatically obtain the optimal network architecture.  The adaptive method of 

architecture determination, suggested by Ghaboussi and Sidarta (1998), is an example 

of an automatic method for obtaining the optimal network architecture, which 

suggests starting with an arbitrary, but small, number of nodes in the hidden layers.  

During training, and as the network approaches its capacity, new nodes are added to 

the hidden layers, and new connection weights are generated.  Training is continued 

immediately after the new hidden nodes are added to allow the new connection 

weights to acquire the portion of the knowledge base that was not stored in the old 

connection weights.  For this process to be achieved, some training is carried out with 

the new modified connection weights only, while the old connection weights are 

frozen.  Additional cycles of training are then carried out where all the connection 

weights are allowed to change.  The above steps are repeated and new hidden nodes 

are added as needed to the end of the training process, in which the appropriate 

network architecture is automatically determined.  Pruning is another automatic 

approach to determine the optimal number of hidden nodes.  One such technique 

proposed by Karnin (1990) starts training a network that is relatively large and later 

reduces the size of the network by removing the unnecessary hidden nodes.  Genetic 

algorithms provide evolutionary alternatives to obtain optimal neural network 

architecture that have been used successfully in many situations (Miller et al., 1989).  

3.9.8    Model Optimisation (Training)

The process of optimising the connection weights is known as ‘training’ or ‘learning’.  

The aim of this process is to find a global solution to what is typically a highly non-

linear optimisation problem (White, 1989).  The method most commonly used for 

finding the optimum weight combination of feed-forward neural networks is the back-

propagation algorithm (Rumelhart et al., 1986), which, as mentioned previously, is 

based on first-order gradient descent.  The main criticism of this approach is its slow 

asymptotic convergence rate.  However, if training speed is not a major concern, there 
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is no reason why the back-propagation algorithm cannot be used successfully 

(Breiman, 1994).  Consequently, the back-propagation algorithm will be employed for 

optimising the connection weights of the MLP models developed in chapters 6 and 7.  

3.9.9    Stopping Criteria

Stopping criteria are important in the model development process as they assist in 

determining whether the model has been optimally trained.  A number of stopping 

criteria can be used, including presentation of a fixed number of training epochs; a 

sufficiently small value of the training error; or when no or slight progress in the 

learning.  However, the aforementioned stopping criteria may lead to the model 

stopping prematurely or, in some instance, over-training.  As mentioned previously, 

Stone (1974) proposed a cross-validation technique could be used to overcome 

aforementioned problems.  Technically, the cross-validation technique requires the 

data be divided into three sets: training, testing and validation.  The purpose of testing 

set is to provide a measurement of the ability of the model to generalise, and the 

performance of the model using this set is checked at many stages of the training 

process and training is stopped when the error of the testing set starts to increase.  It is 

considered to be the most useful tool to ensure over-fitting does not occur (Smith, 

1993).  The testing set is also used to determine the optimum number of hidden layer 

nodes and the optimum values of the internal parameters (learning rate, momentum 

term and initial weights).  Amari et al. (1997) suggested that there are clear benefits in 

using cross-validation when limited data are available, as is the case for many real-life 

case studies.  The benefits of cross-validation are discussed further by Hassoun 

(1995).  As a result of these benefits, cross-validation will be used for the 

development of all MLP-based models in this research. 

3.9.10   Model Validation

When the training phase of a MLP model is accomplished, the model validation phase 

will be carried out to ensure the model will able to generalise within the limit given by 

the training data in robust fashion.  In validation phase, an independent validation set, 

which has not been used as part of the training phase, is used.  If validation 

performance is adequate, the model is believed to be able to generalise and is 
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considered to be robust.  Sensitivity analysis suggested by Shahin (2003) will be 

adopted to test the robustness and the predictive ability of MLP model.  The predicted 

outcomes are examined against the variation of input variables and known underlying 

physical behaviour.  

The coefficient of correlation, r, the root mean squared error, RMSE, and the mean 

absolute error, MAE, are the main criteria that are often used to evaluate the 

performance of MLP models.  The coefficient of correlation is used to determine the 

relative correlation and the goodness-of-fit between the predicted and observed data 

and can be calculated as follows:
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where:

jj dyC = the covariance between the model output and measured actual output;

yj = the predicted output by the network;

dj = the historical or measured actual output;

jy = the standard deviation of model output;

jd = the standard deviation of measured actual output;

y = the mean of model output;

d = the mean of measured actual output; and

n = number of data.

The RMSE is the most popular measure of error and has the advantage that large 

errors receive much greater attention than small errors (Hecht-Nielsen, 1990).  RMSE 

is calculated as follows:
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In contrast to RMSE, MAE eliminates the emphasis given to large errors and is 

calculated as follows:  
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3.9.11   Example of ANN-based Geotechnical Model

As mentioned earlier, ANNs have been applied to solve many geotechnical 

engineering problems such as, for example, settlement prediction of shallow 

foundations on granular soils (Shahin et al., 2002).  Shahin et al. (2002) have 
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developed MLP-based models, which outperform three of the most commonly-used 

traditional methods (i.e. Meyerhof, 1965; Schultze and Sherif, 1973; and 

Schmertmann et al., 1978) for settlement prediction of shallow foundations on 

granular soils.  Five input parameters, including footing width, B, net applied footing 

load, q, average SPT blow count, N, footing length to width ratio, L/B, and footing 

embedment ratio, Df /B, were used in the study, whilst the single model output was 

foundation settlement, Sm.  In total, there were 189 individual cases in the database 

used for model development.  These data were divided, in such a way that they are 

statistically consistent, into training, testing and validation sets and pre-processed 

(scaled between 0.0 and 1.0).  Finally, an optimal model, which comprised an input 

layer with 5 input layer nodes, one hidden layer with two hidden layer nodes, and an 

output layer with a single output layer node, was found utilising trial-and-error.  The 

structure of the authors’ optimal ANN model is shown in Figure 3.16.

The connection weights and threshold levels of the neural network enable the ANN 

model to be translated into a relatively simple formula in which the predicted 

settlement can be expressed as:
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where:

  )/(19/8.11.47.08.3101.0 3
1 BDBLNqBx f  (3.141)

  )/(740/52756.1417.010 3
2 BDBLNqBx f  (3.142)

Sm = predicted settlement (mm);

B = footing width (m);

q = net applied footing load (kPa);

N = average SPT blow count;

L/B = footing geometry; and

Df /B = footing embedment ratio.
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Figure 3.16     The structure of the optimal ANN model in Shahin et al. (2002).

A comparison carried out by Shahin et al. (2002) indicated that the MLP-based model 

provided more accurate settlement prediction than the traditional methods.  It is also 

revealed that the MLP-based model has a high coefficient of correlation, r, and low 

root mean squared error, RMSE, and mean absolute error, MAE.  And, more 

importantly, the results of the sensitivity analysis showed that the predicted 

settlements are in good agreement with the underlying physical behaviour of 

settlement based on known geotechnical knowledge, and hence, the MLP-based 

model is robust.

3.10      SUMMARY

Limit analysis is useful in many practical engineering areas, such as the design of 

mechanical structures or the analysis of soil mechanics.  This method provides an 

estimation of the minimum load distribution that will cause a rigid, perfectly plastic 

solid body, which is subjected to this static load distribution, to collapse.  It has 

demonstrated its ability to bracket the actual collapse load with sufficient accuracy 

from above and below.  Therefore, this method will be employed in this research to 

estimate the bearing capacity of footings on multi-layer, variable soil profiles.  The 

results from the limit analysis will be compared with those obtained from DFEM, not 

only to validate the finding from each of the numerical methods, but also to obtain a 
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deeper understanding of the behaviour of foundations on spatially variable soil.  Two 

finite element limit analysis codes, UPPER and LOWER, that are provided and 

developed by the Geotechnical Research Group of the University of Newcastle, will 

be employed in all numerical analyses in this study.

It has been demonstrated that random field theory provides an appropriate framework 

for quantifying and estimating the spatial variability of geotechnical engineering

properties of soils and rock.  As mentioned previously, one of the aims of this 

research is to evaluate the effect of spatial variability of soils on the bearing capacity 

of shallow foundations.  This research attempts to incorporate the local area 

subdivision (LAS) method with finite element implementations of lower and upper 

bound theorems, in addition to the DFEM. 

Furthermore, it has been demonstrated that the ANNs are systems that can learn to 

solve complex problems from a set of known data, and generalise the acquired

knowledge for predicting and forecasting applications.  It is particularly useful in real-

world, data-intensive applications, which deal with complex, often incomplete data.  

As shown previously, development of reliable and robust ANN models rely on a 

number of factors, which include data selection and pre-processing, the determination 

of suitable network architecture, selection of parameters such as stopping criteria, and 

finally, the validation of the model.  This research will employ ANNs, in an attempt to 

develop a meta-model for predicting the bearing capacity of shallow foundations on 

multi-layered soils.
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