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Effect of Solvent Diffusion on
Crack-Tip Fields and Driving
Force for Fracture of Hydrogels
Hydrogels are used in a variety of applications ranging from tissue engineering to soft
robotics. They often undergo large deformation coupled with solvent diffusion, and struc-
tural integrity is important when they are used as structural components. This paper
presents a thermodynamically consistent method for calculating the transient energy
release rate for crack growth in hydrogels based on a modified path-independent
J-integral. The transient energy release rate takes into account the effect of solvent diffu-
sion, separating the energy lost in diffusion from the energy available to drive crack
growth. Numerical simulations are performed using a nonlinear transient finite element
method for center-cracked hydrogel specimens, subject to remote tension under general-
ized plane strain conditions. The hydrogel specimen is assumed to be either immersed in
a solvent or not immersed by imposing different chemical boundary conditions. Sharp
crack and rounded notch models are used for small and large far-field strains, respec-
tively. Comparisons to linear elastic fracture mechanics (LEFM) are presented for the
crack-tip fields and crack opening profiles in the instantaneous and equilibrium limits. It
is found that the stress singularity at the crack tip depends on both the far-field strain and
the local solvent diffusion, and the latter evolves with time and depends on the chemical
boundary conditions. The transient energy release rate is predicted as a function of time
for the two types of boundary conditions with distinct behaviors due to solvent diffusion.
Possible scenarios of delayed fracture are discussed based on evolution of the transient
energy release rate. [DOI: 10.1115/1.4030587]
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1 Introduction

Hydrogel-like soft materials are abundant in nature including
soft tissues such as cartilage, tendons, and ligaments. With similar
mechanical properties and biocompatibility, synthetic hydrogels
have been used extensively as biomaterials for a wide range of
biomedical applications such as artificial soft tissues [1–3], extra-
cellular matrix [4,5], and drug delivery [6]. More recently,
hydrogel-like materials have been explored as a class of soft
active materials with sensing and actuating properties in the
development of soft machines and soft robotics [7–9]. Mechanical
properties of the hydrogel-like soft materials are important for
many of these applications. In particular, fracture of hydrogels has
been studied by many, both for understanding the fracture mecha-
nisms [10–14] and for characterizing the fracture properties such
as toughness [15–19]. The distinct fracture mechanisms associated
with different molecular structures have been exploited in recent
developments of tough hydrogels [20–22]. The reported fracture
toughness values for hydrogel-like soft materials range widely
from �1 J/m2 for gelatin gels [18] to �1000 J/m2 for cartilage
[16] and �9000 J/m2 for a hybrid alginate–polyacrylamide gel
[21]. Several studies have noted the rate dependence of the
fracture toughness [12–14,17–19], suggesting kinetic processes
associated with fracture of hydrogels. Two primary suspects for
the kinetic processes in hydrogel-like soft materials are polymer
viscoelasticity and solvent diffusion [23]. The distinct time-
dependent behaviors of hydrogels due to viscoelasticity and sol-
vent diffusion (or poroelasticity) have been observed in recent

compression and indentation experiments [24–26]. While fracture
mechanics of viscoelastic materials has been studied extensively
[27–31], the effects of solvent diffusion on fracture of hydrogels
have received little attention until recently [32–34]. In this paper,
we focus on the effects of solvent diffusion on fracture of hydro-
gels and ignore the effects of viscoelasticity.

The effects of solvent diffusion on fracture can be studied
within the general framework of poroelasticity [35]. Similar prob-
lems have been studied in the field of geomechanics with applica-
tions in hydraulic fracture [36–38]. Unlike LEFM, where an
elastic energy release rate is defined as the driving force for crack
growth, the crack growth in a poroelastic material is accompanied
by solvent diffusion that dissipates energy. Several previous
works have considered the effect of solvent diffusion on the
energy release rate based on conservation laws for thermo
and poroelasticity [39–41]. More recently, Gao and Zhou [42]
formulated a J-integral as the driving force for fracture in
electrode materials of Li-ion batteries, with coupled mechanical
deformation and mass diffusion processes under a steady-state
condition. Haftbaradaran and Qu [43] constructed an electro-
chemo-mechanical J-integral under equilibrium conditions
without considering the kinetics of solute diffusion.

The main objective of this work is to develop a transient energy
release rate as the driving force for crack growth in hydrogels
based on a thermodynamic conservation law coupling the kinetics
of solvent diffusion with large deformation. The effects of solvent
diffusion on the transient energy release rate and the crack-tip
fields are demonstrated by numerical simulations using a nonlin-
ear transient finite element method. The remainder of this paper is
organized as follows. Section 2 presents the derivation of a modi-
fied J-integral for the transient energy release rate, along with a
domain integral method to calculate the J-integral. A specific
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material model for hydrogels is outlined in Sec. 3, and a nonlinear
transient finite element method is implemented with details of the
formulation given in the Appendix B, a similar finite element
method has been presented elsewhere [44]. The numerical results
are discussed in Sec. 4, considering center-cracked hydrogel
specimens subject to remote tension under generalized plane
strain conditions. A sharp crack model is used first for small to
moderately large far-field strains, and a rounded notch model is
used for large far-field strains. Section 5 concludes the present
study with a summary and discussion on delayed fracture of
hydrogels.

2 General Formulation

2.1 A Nonequilibrium Thermodynamic Approach. Hydrogels
in their simplest form consist of two components: long crosslinked
polymer chains that form a three-dimensional network structure
and small solvent molecules that can migrate within the network.
The aggregate is then capable of large and reversible deformation
subject to mechanical forces and/or environmental stimuli (e.g.,
humidity, temperature, etc). The nonlinear transient behavior of
hydrogels with coupled deformation and solvent diffusion has
been studied by many [45–49]. The general formulation by Hong
et al. [46] is adopted in the present study.

The deformation of the aggregate can be traced by considering
markers on the network with coordinates X in a reference
configuration, which is chosen to coincide with the dry state of the
hydrogel. In the current configuration, the markers are located
with coordinates x, and the deformation is characterized by the
deformation gradient tensor F with Cartesian components, FiJ

¼ @xi=@XJ . The nominal concentration of solvent C is defined as
the number of solvent molecules per unit volume of the polymer
network. The free energy density is taken to be a function of the
deformation gradient and the solvent concentration, UðF;CÞ. The
nominal stress and the chemical potential are then obtained as
thermodynamic work conjugates by

siJðF;CÞ ¼
@U

@FiJ

(2.1)

lðF;CÞ ¼ @U

@C
(2.2)

Mechanical equilibrium is maintained during the transient proc-
esses so that

@siJ
@XJ

þ bi ¼ 0 in V0 (2.3)

siJNJ ¼ Ti on S0 (2.4)

where bi is the nominal body force (per unit volume), V0 and S0 are
the body and its boundary in the reference configuration, respec-
tively, NJ is the outward unit normal on the boundary of the refer-
ence configuration, and Ti is the nominal traction on the boundary.

Conservation of solvent molecules leads to a rate equation for
the solvent concentration

@C

@t
þ @JK
@XK

¼ r in V0 (2.5)

JKNK ¼ �i on S0 (2.6)

where JK is the nominal flux of solvent, defined as the number of
solvent molecules crossing unit reference area per unit time, r is a
source term for the number of solvent molecules injected into unit
reference volume per unit time, and i is the inward flux rate across
the boundary. The chemical boundary condition for the gel often
can be prescribed with specified solvent flux or chemical
potential.

There are two ways to do work on the hydrogel aggregate. One
is by the application of mechanical forces, including body forces
and surface tractions. The second is the exchange of solvent mole-
cules through the source or the surface flux. Following the
approach of nonequilibrium thermodynamics [50,51], the total
potential energy of the aggregate system P can be written as a
sum of the internal stored energy and the work of the external
mechanisms, and then the rate of the total potential energy is

dP

dt
¼
ð

V0

dU

dt
dV �

ð

V0

bi
dxi

dt
dV �

ð

S0

Ti
dxi

dt
dS

�
ð

V0

lrdV �
ð

S0

lidS (2.7)

With Eqs. (2.1)–(2.6), the rate of the potential energy reduces to

dP

dt
¼
ð

V0

JK
@l

@XK

dV (2.8)

For an isothermal process, the second law of thermodynamics
dictates that

dP

dt
� 0 (2.9)

For Eq. (2.9) to hold in any arbitrary part of the body, it is
required that

JK
@l

@XK

� 0 in V0 (2.10)

This imposes a constraint on the kinetics relating the nominal flux
to the gradient of chemical potential. A specific form of the
kinetics is adopted for numerical simulations as described in
Sec. 3.

By Eq. (2.8), the change of the total potential energy is solely
related to the energy dissipation associated with solvent diffusion.
The rate of energy dissipation is then

dR

dt
¼ �

ð

V0

JK
@l

@XK

dV (2.11)

In terms of the accumulative flux, IK ¼
Ð t

0
JKdt, the rate of energy

dissipation can be written as

dR

dt
¼ �

ð

V0

@l

@XK

dIK

dt
dV (2.12)

The total energy of the system can be defined as the sum of the
potential energy and the energy dissipation due to solvent
diffusion, namely,

W ¼ Pþ R (2.13)

By definition, we have conservation of the total energy
dW=dt ¼ 0 throughout the transient stage (without crack growth
for the moment). Equivalently, the variation of the total energy
must vanish at any time, i.e.,

dW ¼
ð

V0

dU � @l

@XK

dIK � bidxi � lrdt

� �

dV

�
ð

S0

Tidxi � lNKdIKð ÞdS ¼ 0 (2.14)

2.2 Transient Energy Release Rate. Next, we derive the
energy release rate for quasistatic crack growth in a hydrogel,
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where the inertial effect is negligible and the crack growth is
slow in terms of the time scale of solvent diffusion (including
the case of a stationary crack). Consider a hydrogel body that
contains a crack of length a in the current configuration. In the
corresponding reference configuration (Fig. 1(a)), the crack
length is denoted as ~a, X refers to a fixed coordinate system,
and ~X refers to a moving coordinate system with its origin at the
crack tip. For convenience, the two coordinate systems are set
such that ~X1 ¼ X1 � ~a and ~X2 ¼ X2 (assuming crack growth in
the X1 direction). Growth of the crack in the hydrogel is accom-
panied by deformation of the polymer network and migration of
the solvent molecules. As a result, the change of total potential
energy includes a conservative part and a dissipative part. The
driving force for crack growth is the release of the total energy
W. Following Eq. (2.14), the rate of total energy change with
respect to the crack length is

dW

d~a
¼
ð

V0

dU

d~a
� @l

@XK

dIK

d~a

� �

dV �
ð

S0

Ti
dxi

d~a
� lNK

dIK

d~a

� �

dS

(2.15)

where S0 ¼ S1 þ S2 þ S3 in Fig. 1(a); the body force and solvent
injection source have been ignored hereafter. The derivation of
Eq. (2.15) is given in Appendix A.

With respect to the fixed coordinate X in the reference configu-
ration, we have

d

d~a
¼ @

@~a
þ @ ~X1

@~a

@

@ ~X1

¼ @

@~a
� @

@ ~X1

¼ @

@~a
� @

@X1

(2.16)

where the spatial derivatives are taken at constant ~a. Hence, the
rate of the total energy change becomes

dW

d~a
¼
ð

V0

@U

@~a
� @U

@X1

� �

dV �
ð

S0

siJNJ

@xi
@~a

� @xi
@X1

� �

dS

þ
ð

S0

lNK

@IK
@~a

� @IK
@X1

� �

dS�
ð

V0

@l

@XK

@IK
@~a

� @IK
@X1

� �

dV

(2.17)

Considering the first term on the right-hand side of Eq. (2.17),
with Eqs. (2.1) and (2.2), we obtain that

ð

V0

@U

@~a
dV ¼

ð

V0

siJ
@FiJ

@~a
þ l

@C

@~a

� �

dV (2.18)

By integrating Eq. (2.5) over time with r¼ 0 (no solvent injec-
tion), the solvent concentration is obtained as

C� C0 þ
@IK
@XK

¼ 0 (2.19)

where C0 is the nominal concentration at the initial state (t¼ 0) of
the hydrogel. The initial state does not have to coincide with the
dry state (reference). It is often taken as a free swollen state with a
homogeneous solvent concentration and an isotropic deformation
gradient, F11 ¼ F22 ¼ F33 ¼ k0. With Eqs. (2.19), (2.3), and
(2.4), applying the divergence theorem, Eq. (2.18) becomes

ð

V0

@U

@~a
dV ¼

ð

S0

siJNJ

@xi
@~a

� lNK

@IK
@~a

� �

dSþ
ð

V0

@l

@XK

@IK
@~a

dV

(2.20)

Inserting Eq. (2.20) back into Eq. (2.17), we obtain the transient
energy release rate in form of a modified J-integral as

J� ¼ � dW

d~a

¼
ð

S0

UN1 � siJNJ

@xi
@X1

þ lNK

@IK
@X1

� �

dS�
ð

V0

@l

@XK

@IK
@X1

dV

(2.21)

A more convenient form of the modified J-integral is obtained by
combining the flux terms with the relation in Eq. (2.19) so that

J� ¼
ð

S1

UN1 � siJNJ

@xi
@X1

� �

dS�
ð

V0

l
@C

@X1

dV (2.22)

where the initial solvent concentration has been assumed to be
homogeneous (or @C0=@X1 ¼ 0) and the traction-free condition
on the crack surfaces (S2 and S3 in Fig. 1(a)) has been used to sim-
plify the first integral on the right-hand side. It can be shown that,
for a simply connected domain without singularities, the modified
J-integral is necessarily zero by the mechanical equilibrium and
mass conservation conditions in Eqs. (2.1)–(2.6). For a domain
containing a crack tip (Fig. 1(a)), the modified J-integral is path-
independent, giving the transient energy release rate for straight-
ahead crack growth in the X1 direction.

Alternatively, by using Legendre transform of the free energy
density function

Û F;lð Þ ¼ U F;Cð Þ � lC (2.23)

the modified J-integral can be rewritten as

J� ¼
ð

S1

ÛN1 � siJNJ

@xi
@X1

� �

dSþ
ð

V0

@l

@X1

CdV (2.24)

which is used for the rest of this study. The form of the modified
J-integral in Eq. (2.24) is preferable for numerical calculations

Fig. 1 Schematics of (a) a sharp crack and (b) a rounded notch
model, both in the reference configuration
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in the finite element framework, because it does not require calcu-
lating the derivatives of the solvent concentration, which would
usually require higher order interpolations [44,49].

We note that the modified J-integral in Eq. (2.24) has two parts:
a surface integral, similar to the classic definition of J-integral
[52], and in addition, a volume integral containing the gradient of
chemical potential. This form of J-integral is similar to those for
fracture of battery electrodes with solute diffusion as obtained by
Gao and Zhou [42] under a steady-state condition. Similar integrals
were also obtained for hygro-thermo-elastic fracture [39,41]. We
note that, by using the Legendre transform of the free energy func-
tion, the volume integral in Eq. (2.24) vanishes in the equilibrium
state (with constant l). However, using the original free energy
function, the volume integral in Eq. (2.22) remains unless l¼ 0.

The modified J-integral can be used to calculate the transient
energy release rate for a sharp crack model (Fig. 1(a)) using a con-
tour around the crack tip, similar to the classic J-integral [52,53].
In a blunt crack model with a rounded notch at the crack tip
(Fig. 1(b)), the integral has to be modified slightly to account for
the initial free energy at the notch, as further discussed in Sec. 4.2.

2.3 Domain Integral Method. For an accurate calculation of
the standard J-integral by the finite element method, it is advanta-
geous to convert the surface integral to a volume integral. This
procedure is known as the domain integral method. The approach
of Li et al. [54] is adopted in the present study for the two-
dimensional case to convert the contour integral into a domain
integral to calculate the transient energy release rate for quasi-
static crack growth in hydrogels. Considering an annular region
around the crack tip in the reference configuration, as shown in
Fig. 2, the transient energy release rate for a sharp crack can be
obtained from the modified J-integral with the contour C1 and the
enclosed domain A1 as

J� ¼
ð

C1

ÛN1 � siJNJ

@xi
@X1

� �

dCþ
ð

A1

@l

@X1

CdA (2.25)

Now consider a closed contour C ¼ C4 � C1 þ C2 þ C3 bound-
ing the annular area A2. Denote ~N as the outward normal on C
with respect to A2, which coincides with N on C3, but is opposite
to N on C1. The J-integral in Eq. (2.25) can then be rewritten with
a closed contour integral as

J� ¼ �
þ

C

Û ~N1 � siJ ~NJ

@xi
@X1

� �

qdCþ
ð

A1

@l

@X1

CqdA (2.26)

where q is a sufficiently smooth function in A2, varying from unity
on C1 to zero on C3. In addition, we set q¼ 1 in A1. Note that the
contour integrals along the crack faces (C2 and C4) vanish because
they are assumed to be traction free and N1 ¼ 0 (for a straight
crack). Since the area A2 is simply connected without any singu-
larities, we apply the divergence theorem on the closed contour
integral in Eq. (2.26) and obtain that

J� ¼ �
ð

A2

Û
@q

@X1

� siJFi1

@q

@XJ

� �

dAþ
ð

A1þA2

@l

@X1

CqdA (2.27)

which is similar to the domain integral obtained by Li et al. [54]
but includes an additional term associated with solvent diffusion.
We note that the additional term vanishes when the hydrogel
reaches chemical equilibrium with a constant chemical potential
or when C¼ 0 for the dry state. As demonstrated in Sec. 4, the
domain integral in Eq. (2.27) is convenient for numerical calcula-
tions using the finite element method.

3 A Specific Material Model and Finite
Element Method

In this section, a specific material model is presented for
hydrogels, and a nonlinear finite element method to solve initial
boundary value problems is outlined. The finite element method is
similar to that in a previous study [44], but with some variations
due to a slightly different material model. For completeness, the
detailed finite element formulation is presented in Appendix B.

Following Hong et al. [46], a free energy density function based
on the Flory–Rehner theory is adopted, which takes the form

UðF;CÞ ¼ UeðFÞ þ UmðCÞ (3.1)

where

Ue Fð Þ ¼ 1

2
NkBT FiKFiK � 3� 2 ln detðFÞð Þ½ � (3.2)

UmðCÞ ¼
kBT

X
XC ln

XC

1þ XC
þ vXC

1þ XC

� �

(3.3)

The free energy density is proportional to the thermal energy kBT,
with Boltzmann constant kB and absolute temperature T. In addi-
tion, it depends on the effective number density of polymer chains
in the dry state (N), the molecular volume of the solvent (X), and
the Flory parameter (v) for the polymer–solvent interaction.

The constituents of the hydrogel are assumed to be incompres-
sible so that the volume of the hydrogel is a simple sum of the vol-
ume of polymer and the volume of solvent. As such, the
determinant of the deformation gradient is related to the nominal
solvent concentration as

detðFÞ ¼ 1þ XC (3.4)

This is different from the previous study in Ref. [44] where a finite
compressibility was assumed. With Eq. (3.4), the solvent concen-
tration is calculated explicitly as a function of the deformation
gradient. This calculation is simpler than that in Bouklas et al.
[44] where the solvent concentration had to be calculated by
solving a nonlinear algebraic equation at each integration point.

With Eqs. (3.1)–(3.4), the Legendre transform of the free
energy density function in Eq. (2.23) becomes

Û F;lð Þ ¼ 1

2
NkBT FiKFiK � 3� 2 ln detðFÞð Þ½ �þ

þ kBT

X
detðFÞ � 1ð Þ ln detðFÞ � 1ð Þ

detðFÞ þ v detðFÞ � 1ð Þ
detðFÞ

� �

� l detðFÞ � 1ð Þ
X

(3.5)Fig. 2 A simply connected region A2 enclosed by a closed
contour C ¼ C4 � C1 þ C2 þ C3 around a crack tip
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The nominal stress is then obtained as

siJ ¼
@Û

@FiJ

¼ NkBT FiJ þ aHiJð Þ (3.6)

where

a ¼ � 1

det F
þ 1

NX
ln
det F� 1

det F
þ 1

det F
þ v

ðdet FÞ2
� l

kBT

 !

(3.7)

HiJ ¼
1

2
eijkeJKLFjKFkL (3.8)

To study the transient behavior of a hydrogel, a kinetic law
has to be assumed for solvent migration. Based on a diffusion
model adopted by Hong et al. [46], the nominal flux takes the
form

JK ¼ �MKL

@l

@XL

(3.9)

with a nominal mobility tensor

MKL ¼ DC

kBT

@XK

@xk

@XL

@xk

� �

(3.10)

where D is a constant for solvent diffusivity.
The constitutive relations in Eqs. (3.4)–(3.6) and the kinetic

law in Eq. (3.9), along with Eqs. (2.3) and (2.4) for mechanical
equilibrium and Eqs. (2.5) and (2.6) for mass conservation as well
as the corresponding initial and boundary conditions, complete
the strong form of the initial boundary value problem. The initial
conditions are typically described by a displacement field
(u ¼ x� X) and chemical potential

ujt¼0¼ u0 (3.11)

ljt¼0¼ l0 (3.12)

Relative to the dry state (l ! �1), the initial displacement
field can be prescribed for a homogeneous deformation corre-
sponding to a constant chemical potential (e.g., l0 ¼ 0). At
t ¼ 0þ, the boundary conditions are applied and the hydrogel
undergoes a transient process with coupled deformation and
solvent diffusion.

The weak form, time integration, and spatial discretization for
the finite element method are presented in Appendix B. As
discussed previously in Bouklas et al. [44], the incompressible or
nearly incompressible behavior of the hydrogel at the instantane-
ous limit (t ! 0) poses a numerical issue for convergence and sta-
bility, similar to those for the mixed finite element methods in
linear poroelasticity [55–57]. To obtain numerically stable results,
Taylor–Hood elements [58] are used, where interpolation for
chemical potential is one order lower than for displacement. In
particular, the lowest order Taylor–Hood element that produces
stable results is implemented using quadratic shape functions
(eight nodes) for the displacement and linear shape functions
(four nodes) for the chemical potential (i.e., 8u4p). The corre-
sponding singular element (6u3p) at a sharp crack tip is imple-
mented with six nodes for the displacement (including two
quarter-point nodes) and three nodes for the chemical potential.

4 Numerical Results and Discussion

In this section, we consider a hydrogel specimen with a center
crack (Fig. 3), subject to remote tension by Mode I displacement
controlled loading under generalized plane strain conditions.
Different boundary conditions are used to simulate hydrogels
either immersed in a solvent or not immersed. By symmetry, only
a quarter of the rectangular domain is modeled with a

Fig. 3 A hydrogel specimen with a center crack, subject to
remote tension. A two-dimensional finite element mesh for one
quarter of the specimen is shown.

Fig. 4 (a) Finite element mesh near the crack tip in the sharp crack model, with 50
quarter-point singular Taylor–Hood elements (6u3p). (b) Mesh near a rounded notch,
where the radius of the notch is three orders of magnitude smaller than the crack length
(rn=a5 10�3).
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two-dimensional finite element mesh. A sharp crack model is used
for the cases with infinitesimal to moderately large far-field defor-
mation, whereas a rounded notch model is used for the cases
with generally large far-field deformation. The sharp crack model
(Fig. 4(a)) uses collapsed quarter-point Taylor–Hood elements
(6u3p) around the crack tip along with the quadrilateral
Taylor–Hood elements (8u4p) for the rest of the model. The
rounded notch model (Fig. 4(b)) uses the quadrilateral
Taylor–Hood elements throughout.

In the initial state (t¼ 0), the hydrogel is fully swollen and
stress free, characterized by a homogeneous swelling ratio k0 cor-
responding to an initial chemical potential, l0 ¼ 0. The initial
swelling ratio depends on the material properties of the hydrogel,
which can be determined by solving a nonlinear algebraic
equation [59]

ln
k30 � 1

k30
þ 1

k30
þ v

k60
þ NX

1

k0
� 1

k30

 !

¼ l0
kBT

(4.1)

Relative to the dry state, the initial displacement is u0 ¼ k0X� X.
The crack length in the initial state is 2a, and the height and
width of the rectangular specimen are both 2h (h¼ 10a). In the
corresponding reference state, the crack length is 2~a (~a ¼ a=k0).
The dimensionless material parameters, NX ¼ 10�3 and v ¼ 0:2,
are used throughout this section (unless noted otherwise), giving
rise to an initial swelling ratio k0 ¼ 3:215.

Referring to the coordinates in Fig. 3, the symmetry boundary
conditions are imposed as

Du1jx1¼0¼ 0; s21jx1¼0¼ 0; J1jx1¼0¼ 0 (4.2)

Fig. 5 Cauchy stress distributions around a crack tip at the instantaneous ((a)–(c)) and equi-
librium ((d)–(f)) limits for an immersed hydrogel specimen under Mode I loading (e‘510�3),
with increasing distance (r) from the crack tip. Dashed lines are obtained from the LEFM solu-
tion in Eq. (4.7) with Poisson’s ratio m5 0:5 and 0.2415, respectively, for the two limits.
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and

Du2jx2¼0
x1>a

¼ 0; s12jx2¼0
x1>a

¼ 0; J2jx2¼0
x1>a

¼ 0 (4.3)

where Du ¼ u� u0.
The remote tension is applied through a mixed boundary condi-

tion at x2 ¼ h

Du2jx2¼h¼ e1h and s12jx2¼h¼ 0 (4.4)

The far-field deformation is thus characterized by uniaxial tension
with a nominal strain e1. The crack face and the other boundary
at x1 ¼ h are traction free. In the case of a hydrogel immersed in
solvent, the chemical potential at the crack face and the outer
boundaries is set by the local equilibrium condition as

ljx2¼0
x1<a

¼ ljx2¼h¼ ljx1¼h¼ 0 (4.5)

On the other hand, if the hydrogel is not immersed in solvent, we
assume no-flux boundary condition on the crack face and the outer
boundaries

J2jx2¼0
x1<a

¼ J2jx2¼h¼ J1jx1¼h¼ 0 (4.6)

For convenience, dimensionless quantities are defined as fol-
lows: all lengths are normalized by the crack length (a), time is
normalized by the characteristic diffusion time scale, s ¼ a2=D,
stresses are normalized by NkBT, chemical potential by kBT, and
solvent concentration by X

�1.

4.1 Sharp Crack Model

4.1.1 Small Far-Field Deformations. Subject to a small far-
field strain (i.e., e1 ¼ 10�3), the stress field around the crack tip
can be compared to the well-known result from LEFM [60]

rij r; hð Þ ¼ KI
ffiffiffiffiffiffiffiffi

2pr
p f Iij hð Þ þ Td1id1j (4.7)

where KI is the stress intensity factor and

f I11 ¼ cos
h

2
1� sin

h

2
sin

3h

2

� �

f I12 ¼ cos
h

2
sin

h

2
cos

3h

2

f I22 ¼ cos
h

2
1þ sin

h

2
sin

3h

2

� �

(4.8)

Here, (r, h) is the local polar coordinate in the current configura-
tion with r¼ 0 at the crack tip and h¼ 0 at x2 ¼ 0 for x1 > a (see
Fig. 2). For the center-crack specimen, KI ¼ r1

ffiffiffiffiffiffi

pa
p

and
T ¼ �r1, where r1 is the far-field stress.

For an immersed hydrogel specimen, the far-field stress is
r1 ¼ 2Ge1=ð1� �Þ, which is a function of time [61]. Based
on the linearized constitutive relations [59], the effective shear
modulus of the swollen hydrogel is

G ¼ NkBT

k0
(4.9)

while the effective Poisson’s ratio is 0.5 (incompressible) for the
instantaneous response (t ! 0) and is less than 0.5 in the equilib-
rium state (t ! 1). Therefore, the instantaneous stress intensity
factor is expected to be greater than the equilibrium value for

Fig. 6 (a) Chemical potential field (normalized as l=kBT ) near
the crack tip as the instantaneous response (t=s510�4) of the
hydrogel subject to a small remote strain (e‘5 10�3). (b)
Change of solvent concentration (normalized as C �C0ð ÞX)
near the crack tip in the equilibrium state (t=s5 105).

Fig. 7 Change of solvent concentration ahead of the crack
tip for (a) an immersed and (b) a not-immersed hydrogel speci-
mens subject to a small remote strain (e‘510�3). The dashed
line has a slope of20.5 in the log–log scale.
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the immersed hydrogel specimen subject to a constant far-field
strain e1. The equilibrium Poisson’s ratio is related to the intrinsic
properties of the hydrogel by [59]

�1 ¼ 1

2
� NX

2

1

k20 k30 � 1
� �þ NX

k20
� 2v

k50

" #�1

(4.10)

which gives �1 ¼ 0:2415 for the specific material parameters
(NX ¼ 10�3 and v ¼ 0:2).

Figure 5 shows the instantaneous and equilibrium stress distri-
butions around the crack tip for an immersed hydrogel specimen
with e1 ¼ 10�3. To examine the nature of stress singularity at the
crack tip, the Cauchy stress components, rij ¼ siKFjK= detðFÞ, are
rescaled as rij

ffiffiffiffiffiffiffi

r=a
p

= NkBTð Þ and plotted as functions of the angle
h at locations with increasing distance (r) from the crack tip, with
the T-stress (T ¼ �r1) subtracted from r11. The instantaneous
limit (t ! 0) is taken approximately at t=s ¼ 10�4, and the equi-
librium limit (t ! 1) is taken at t=s ¼ 105. In both limits, the
rescaled stress components are in close agreement with the LEFM
solution (Eq. (4.7)), but with different stress intensity factors due
to the change of Poisson’s ratio as a result of solvent diffusion
(poroelastic relaxation). Except for the first ring very close to the
crack tip (r/a¼ 10�3), the rescaled stress components are inde-
pendent of the distance r, confirming a square-root stress singular-
ity near the crack tip. The results from the first ring of elements

slightly deviate from the rest for the instantaneous response. This
may be attributed to numerical oscillations caused by the disconti-
nuity of the chemical potential on the boundary at the instantane-
ous limit, as discussed in a previous study [44]. Briefly, as the
system is loaded at t¼ 0þ, the chemical potential changes instan-
taneously to a value different from the boundary condition along
the crack face, which creates a discontinuity of the chemical
potential at the boundary and cannot be resolved exactly by the fi-
nite element method. The numerical oscillations dissipate over
time and have no effect on the equilibrium state.

If the hydrogel specimen is not immersed in solvent, the total
volume is conserved although internal solvent diffusion may
result in local volume change, mostly around the crack tip [33]. In
this case, it is found that the stress field around the crack tip sub-
ject to a small far-field strain (e1 ¼ 10�3) is close to the LEFM
solution with � ¼ 0:5 at both the instantaneous and equilibrium
limits [62]. Therefore, the stress intensity factors at the two limits
are nearly identical. However, as discussed later in this section,
the instantaneous and equilibrium energy release rates calculated
by the modified J-integral are different. Apparently, due to the
effect of solvent diffusion around the crack tip, the LEFM rela-
tionship between the stress intensity factor and the energy release
rate (i.e., J ¼ K2=E) is no longer applicable for the hydrogel
specimen.

At t ! 0, the instantaneous deformation of the hydrogel results
in an inhomogeneous field of chemical potential around the crack

Fig. 8 Crack opening profiles for (a) immersed and (b) not-immersed hydrogel specimens
subject to a small remote strain (e‘510�3). (c) Maximum crack opening displacement as a
function of time for the two cases. Dashed lines are the LEFM solution as given in Eq. (4.11).
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(Fig. 6(a)) while the solvent concentration remains homogeneous.
The gradient of the chemical potential drives solvent diffusion,
resulting in an inhomogeneous field of solvent concentration in
the transient stage and the equilibrium state (Fig. 6(b)). In the
immersed case, the boundary condition dictates that the chemical
potential is zero at the crack face including the crack tip, while
the chemical potential ahead of the crack tip first decreases and
then increases with the distance. Thus, the solvent migrates to-
ward the location with the minimum chemical potential, slightly
ahead of the crack tip. Moreover, along the crack face, the gradi-
ent of chemical potential drives diffusion of solvent into the crack
(out of the hydrogel body). At equilibrium, the chemical potential
becomes zero everywhere, but the solvent concentration is higher
at the crack tip but lower along the crack face (Fig. 6(b)). In the
not-immersed case, the instantaneous chemical potential field is
similar, with the minimum at the crack tip [62]. With the no-flux
boundary condition at the crack face, the solvent diffusion can
only redistribute the solvent concentration within the hydrogel
around the crack tip. At equilibrium, the chemical potential is a
constant everywhere, but with a value slightly lower than zero.

As a result of solvent diffusion, the concentration field evolves
with time. At the instantaneous limit (t ! 0), the volumetric
strain with respect to the initial state is expected to be zero
(incompressible) and hence C t ! 0ð Þ � C0. Driven by the
gradient of chemical potential, solvent diffusion leads to a singu-
lar volumetric strain associated with the solvent concentration. As
shown in Fig. 7, the normalized change of solvent concentration,
C� C0ð ÞX, approaches the square-root singularity for both the
immersed and not-immersed cases. In the LEFM solution, the vol-
umetric strain follows the square-root singularity as long as the
material is compressible (� < 0:5). Hence, the same singularity is
expected for the solvent concentration at the equilibrium state
(t ! 1 and �1 ¼ 0:2415) for the immersed case. However, for
the not-immersed case, such a singularity cannot be explained by
LEFM. With solvent diffusion around the crack tip, the hydrogel
can no longer be treated as a homogenous elastic material. We
note that, while the solvent concentration is theoretically
unbounded with the square-root singularity, the number of solvent
molecules remains finite within a finite domain around the
crack tip.

Next, the crack opening displacements are shown in Fig. 8, for
the immersed and not-immersed cases with e1 ¼ 10�3. The
instantaneous opening profiles taken at t=s ¼ 10�4 are similar for
both cases, and they agree closely with the LEFM prediction.
Note that, subject to a prescribed far-field strain, the LEFM solu-
tion for the crack opening is independent of the elastic properties
of the material [60]

û2 x1ð Þ ¼ 2e1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x21

q

ð x1j j � aÞ (4.11)

For the hydrogel specimens, the crack opening evolves with time
due to solvent diffusion, and the two cases are different. For the
immersed case (Fig. 8(a)), the crack first opens up and then gradu-
ally closes in. At the equilibrium state (t=s ¼ 105), the opening
profile is nearly identical to the instantaneous profile, also in
agreement with the LEFM prediction. For the not-immersed case
(Fig. 8(b)), however, the crack opens up continuously and attains
an equilibrium profile different from the LEFM prediction. This
behavior again suggests that the not-immersed hydrogel specimen
cannot be treated as a homogenous elastic material, even for an
infinitesimal far-field strain, because of solvent diffusion around
the crack tip. Figure 8(c) shows the evolution of the maximum
opening at the center of the crack, d tð Þ ¼ û2 x1 ¼ 0; tð Þ, for the
immersed and the not-immersed hydrogel specimens. The equilib-
rium opening for the not-immersed case is about 50% larger than
the LEFM prediction. On the other hand, the opening–closing
behavior of the immersed hydrogel specimen reaches a maximum
opening in the transient stage. It is found that the maximum crack
opening depends on the size of the hydrogel specimen. With

increasing specimen size, h=a ¼ 10, 20, and 100, the maximum
opening increases, and it takes longer time to reach the equilib-
rium opening. This suggests two competing effects due to solvent
diffusion. In the early stage of evolution, the crack opens up due
to solvent diffusion around the crack tip, including the outgoing
diffusion across the crack faces. This stage is independent of the
specimen size. In the later stage, the crack closes in as the solvent
diffusion from the outer boundaries reaches the crack; the time
for the incoming diffusion to reach the crack depends on the
specimen size. The maximum crack opening is reached when the
effect of incoming diffusion takes over. In contrast, for the not-
immersed case, the diffusion occurs primarily around the crack,
with a single time scale associated with the crack length.

The modified J-integral (J�) in Eq. (2.24) is calculated for the
stationary crack model by the domain integral in Eq. (2.27) as the
driving force for straight-ahead crack growth. The path independ-
ence of the modified J-integral is shown in Fig. 9(a), where the
domain integral is calculated for the immersed hydrogel specimen
with increasing radius of the contour (C1 in Fig. 2) at three time
instants representing the instantaneous (t=s ¼ 10�4), transient
(t=s ¼ 103), and equilibrium (t=s ¼ 105) states. The results for the
not-immersed specimen are similar (not shown). In contrast,

Fig. 9 (a) Path-independent J�-integral and (b) the classical
J-integral for the immersed hydrogel specimen (e‘5 10�3) at
the instantaneous, transient, and equilibrium states. Here, r is
the radius of the contour (C1 in Fig. 2); the annular domain (A2)
is taken to be one ring of elements outside the contour for the
domain integral calculations.
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Fig. 9(b) shows the classic J-integral, calculated by the same do-
main integral but without the last term in Eq. (2.27). Evidently,
the classic J-integral is path-dependent for the hydrogel specimen,
except for the equilibrium state (t=s ¼ 105). It is noted that the
classic J-integral calculated with an infinitesimal contour radius
(A1 ! 0 in Fig. 2) approaches the modified J-integral closely,

which can be expected from Eq. (2.24) with a vanishing volume
integral on the right-hand side.

Figure 10 shows the evolution of J� for the immersed and not-
immersed hydrogel specimens subject to a small far-field strain
(e1 ¼ 10�3). The instantaneous responses for both cases are com-
pared to LEFM with a Poisson’s ratio, �¼ 0.5. With
KI ¼ r1

ffiffiffiffiffiffi

pa
p

, the instantaneous J-integral by LEFM is

J� t ! 0ð Þ ¼ k20
ð1� �2ÞK2

I

E
¼ 4pNkBTe

2
1k0a (4.12)

Note that the J�-integral by definition is the energy release rate
per unit area of crack in the reference configuration while the ini-
tial configuration of the hydrogel specimen has an isotropic swel-
ling ratio k0. As shown in Fig. 10, while the calculated J� agrees
closely with Eq. (4.12) at the instantaneous limit for the not-
immersed specimen, the agreement is poor for the immersed case.
This is believed to be an effect of the boundary condition l ¼ 0
for the immersed specimen, which imposes an instantaneous gra-
dient of chemical potential in the crack tip elements. As a result,
solvent diffusion occurs almost instantaneously (over the first
time step) from the solvent inside the crack to the crack-tip ele-
ments, leading to a lower J�.

While the J�-integral increases monotonically with time for the
not-immersed specimen, it increases slightly and then decreases
for the immersed case. This behavior is similar to the evolution of
crack opening shown in Fig. 8 for both cases. In addition, the
effect of the specimen size is shown for the immersed case, where
the peak J� increases with increasing specimen size, a result of
the two competing effects due to solvent diffusion as discussed
earlier for crack opening. For the not-immersed case, the results
are indistinguishable for different specimen sizes. After a

Fig. 10 J� as a function of time for the immersed and not-
immersed hydrogel specimens subject to a small far-field strain
(e‘5 10�3). The effect of the specimen size is shown for the
immersed case with h=a510;20; and 100.

Fig. 11 Dependence of the J�-integral on the material parameters for not-immersed hydrogel
specimens under a small far-field strain (e‘510�3). (a) and (b) show the dependence on NX
and v, respectively. (c) and (d) The renormalized results using the instantaneous J� in
Eq. (4.12) and the poroelastic timescale, s� 5a2=D�, with the effective diffusivity in Eq. (4.14).
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sufficiently long time, the J�-integral saturates at an equilibrium
value. For the immersed specimen, the equilibrium J� agrees
closely with the LEFM solution

J� t ! 1ð Þ ¼ k20
ð1� �2ÞK2

I

E
¼ 2p

1� �1
NkBTe

2
1k0a (4.13)

where the Poisson’s ratio �1 is given in Eq. (4.10). With
�1 < 0:5, the equilibrium J� is lower than the instantaneous limit
in Eq. (4.12). For the not-immersed specimen, however, the equi-
librium J� is higher. This is consistent with the calculations by
Wang and Hong [33] who assumed similar boundary conditions to
the not-immersed case, and the monotonic increase of J� could
lead to delayed fracture of gels [63]. Notably, while the
J�-integral can be related to the stress intensity factor by the
LEFM relation at the instantaneous limit, the same relation does
not hold at the equilibrium limit for the not-immersed case. The
stress intensity factor obtained by the stress distributions (similar
to Fig. 5) at the equilibrium limit is found to be nearly identical to
the instantaneous limit [62], but the J�-integrals are different at
the two limits. This may be understood as a result of solvent diffu-
sion around the crack tip where the solvent concentration (C) is
inhomogeneous at the equilibrium limit. Moreover, while the
chemical potential is homogeneous at equilibrium, it is not zero
for the not-immersed case. As a result, the volume integral in
Eq. (2.22) has a nonvanishing contribution to J�, while the same
integral vanishes in the instantaneous limit (homogeneous C) as
well as in the equilibrium limit for the immersed case (zero l).

The dependence of the J�-integral on the material parameters of
hydrogel is shown in Fig. 11 for the not-immersed specimens with
e1 ¼ 10�3; the dependence is similar for the immersed specimens
(not shown). Both the instantaneous and equilibrium values of J�

depend on the two dimensionless parameters, NX and v; the time
scale of the evolution depends on them too. In Figs. 11(c) and
11(d), we rescale J� with the instantaneous limit given by
Eq. (4.12) and rescale the time using the poroelastic timescale,
s� ¼ a2=D�, where the effective diffusivity is defined as [59]

D� ¼ 2 1� �1ð Þ k30 � 1
� �

NX

1� 2�1ð Þk40
D (4.14)

After rescaling, we note that: (1) the instantaneous J� is well pre-
dicted by Eq. (4.12) in all cases; (2) the ratio between the equilib-
rium J� and the instantaneous J� is nearly independent of NX, but
decreases with increasing v; and (3) the time scale for the transient
evolution is captured effectively by the poroelastic timescale.
Since the time-dependent J� is a result of solvent diffusion within
the hydrogel, the effect is expected to depend on the amount of
solvent in the hydrogel. With increasing v, the swelling ratio k0
decreases and the solvent concentration decreases so that the
effect of solvent diffusion reduces, leading to smaller ratio
between the equilibrium J� and the instantaneous J�. Moreover,
with a small far-field strain (e1 ¼ 10�3), the LEFM can be used
to predict the instantaneous limit, and the linearized poroelastic
properties can be used to predict a time scale for the transient
behavior. However, these predictions are expected to become less
satisfactory for larger far-field strains as discussed in Secs. 4.1.2
and 4.2.

4.1.2 Moderately Large Far-Field Deformations. Figure 12
shows the modified J-integrals for the immersed and not-
immersed specimens under small to moderately large far-field
strains. Here, the calculated J� is normalized by the instantaneous
limit based on LEFM as given by Eq. (4.12). While the overall
trend is similar, the LEFM-based prediction becomes less accurate
for a moderately large far-field strain (e1 ¼ 0:1); both the instan-
taneous J� in the case of the not-immersed specimens and the
equilibrium J� in the case of the immersed specimens are lower
than the LEFM predictions. This may be understood as a result of

neo-Hookean nonlinear elasticity assumed as part of the constitu-
tive model for the hydrogel (Eq. 3.2).

Figure 13(a) shows the crack opening profiles for the immersed
hydrogel specimen with e1 ¼ 0:1. Again, the opening–closing
trend is similar to the small-strain case shown in Fig. 8. The effect
of finite deformation is noticeable as the location of the crack tip
shifts toward the center due to relatively large crack opening. As a
result, the crack-tip elements are severely distorted in the sharp-
crack model, which may cause numerical divergence for the finite
element method. This issue can be resolved by using the rounded
notch model as shown in Fig. 1(b), discussed further in Sec. 4.2.

4.2 Rounded Notch Crack Model. Figure 4(b) shows the
mesh near the rounded-notch crack tip, with a small radius rn
(rn=a ¼ 10�3). Similar crack models have been used previously to
study fracture of elastic–plastic materials [52,53,64]. With a
rounded notch, the calculation of the energy release rate using the
J-integral must be modified to account for the contribution of the
contour integral along the notch. Following Rice [53], the energy
release rate is calculated by Eq. (2.24) with a surface integral
around the notch (S1 in Fig. 1(b)) and an integral over the enclosed
volume (V1). However, since the free energy density is nonzero in
the initial state (before loading) and there is a finite gap across the
notch, the same J�-integral does not vanish in the initial state and
should be subtracted from the calculation of the energy release
rate, namely,

Fig. 12 Normalized J� for immersed (a) and not-immersed (b)
hydrogel specimens with increasing far-field strain. The results
from the rounded notch model are compared to the sharp crack
model for e‘50:1.
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J�notch ¼
ð

S1

ÛN1 � siJNJ

@xi
@X1

� �

dSþ
ð

V1

@l

@X1

CdV

�
ð

S1

ÛN1dS

� �

t¼0

(4.15)

where the initial state is assumed be stress free with a homogene-
ous chemical potential field. Equivalently, the energy release rate
can be calculated by an integral over the surface of the rounded
notch (S2 in Fig. 1(b)), which is traction-free, and hence,

J�notch ¼
ð

�S2

ÛN1dS�
ð

�S2

ÛN1dS

� �

t¼0

(4.16)

In both Eqs. (4.15) and (4.16), the integrals in the initial state
(t¼ 0, before loading) can be calculated analytically since the free
energy density in the homogeneously swollen state can be
obtained from Eq. (3.5) with FiK ¼ k0diK and l ¼ 0.

The results from the rounded notch model are compared to the
sharp crack model for a moderately large far-field strain of
e1 ¼ 0:1. The crack opening profiles for the immersed hydrogel
specimen are compared in Fig. 13(a), showing good agreement in
the instantaneous, transient, and equilibrium states. The evolution
of energy release rate (J� or J�notch) is compared in Fig. 12 for both

the immersed and not-immersed specimens, again with close
agreement between the two crack models. In Fig. 13(b), the
Cauchy stress r22 ahead of the crack tip is plotted as a function of
the distance from the crack tip at the instantaneous and equilib-
rium limits for an immersed hydrogel specimen. Although the
crack opening profiles are nearly identical in the two
limits (Fig. 13(a)), the stress distributions are quite different. The
stress distribution in the equilibrium limit closely follows the

square-root singularity (r � r�1=2) as predicted by LEFM, which
however is not the case in the instantaneous limit. Theoretically,
the instantaneous response of a hydrogel should be similar to an
incompressible, hyperelastic material, for which a stronger singu-

larity (r � r�1) has been predicted previously [65–67]. The nu-

merical result at a very short time (t=s ¼ 10�4) shows a transition
from the square-root singularity to the stronger singularity at

roughly r=a � 10�2 (Fig. 13(b)). This transition is consistent with
the previous study on fracture of hyperelastic materials [66]; the
same transition is not observable in the case of small far-field
strain (Fig. 5), because the transition would occur at a much

shorter distance (r=a � e21). Furthermore, Fig. 13(b) shows another

transition at r=a � 10�3, where the stress singularity becomes
much weaker (almost nonsingular). This is not expected for the
hyperelastic behavior at the instantaneous limit (t ! 0), but may be
explained as a result of solvent diffusion. As shown in Figs. 13(c)

and 13(d), even at t=s ¼ 10�4, both the chemical potential and sol-
vent concentration have become inhomogeneous near the crack tip;
hence, it is not exactly instantaneous per se. As the solvent concen-
tration has increased significantly near the crack tip, the stress

intensity very close to the crack tip (r=a < 10�3) is reduced,
because the material becomes softer with higher solvent concentra-
tion. Therefore, the stress distribution near the crack tip under a
moderately large far-field strain is influenced by both hyperelastic-
ity and solvent diffusion in the hydrogel specimen. On the other
hand, the square-root singularity in the equilibrium limit may be a
result of zero chemical potential although the solvent concentration
is highly inhomogeneous around the crack tip (Fig. 13(d)); the cor-
responding energy release rate (J�or J�notch) is lower than the LEFM
prediction in Eq. (4.13) (see Fig. 12(a)).

As a final example, we consider a significantly large far-field
strain e1 ¼ 0:5 for both the immersed and not-immersed hydrogel

Fig. 13 (a) Crack opening profiles for an immersed hydrogel specimen under a moderately
large far-field strain (e‘ ¼ 0:1), from the sharp crack model (thin lines) and the rounded notch
model (symbols); the dashed line shows the LEFM prediction. (b) Distribution of the Cauchy
stress r22 ahead of the crack tip in the instantaneous and equilibrium limits. (c) Evolution of
the chemical potential and (d) the solvent concentration ahead of the crack tip.
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specimens using the rounded notch model. In Fig. 14, the crack
opening profiles are shown along with the stress distributions
ahead of the crack tip. Of particular interest is the evolution of the
stress distribution. For the immersed hydrogel specimen,
the strong singularity (r � r�1) due to hyperelasticity is promi-
nent in the early stage, with a transition to weaker singularity due
to solvent diffusion near the crack tip (Fig. 14(b)). Eventually, the
stress distribution approaches the square-root singularity
(r � r�1=2) in the equilibrium limit. For the not-immersed

hydrogel specimen, the stress distribution does not change signifi-
cantly from the instantaneous to equilibrium, exhibiting the strong
singularity (r � r�1) that becomes slightly weaker at the crack tip
(Fig. 14(d)). The evolution of the modified J-integral is shown in
Fig. 15. The overall behavior is similar to the small-strain behav-
ior shown in Fig. 10, but the instantaneous J� is considerably
lower than the LEFM prediction for both the immersed and not-
immersed specimens. The J-integral increases monotonically for
the not-immersed case but remains lower than the LEFM predic-
tion all the time. The transient energy release rate for the
immersed hydrogel specimen is consistently lower than that for
the not-immersed specimen under the same far-field strain.

5 Summary

The main results from the present study are summarized as
follows.

(1) A thermodynamically consistent approach is presented for
calculating the transient energy release rate for quasi-static
crack growth in hydrogels based on a modified path-
independent J-integral. The transient energy release rate
takes into account the effect of solvent diffusion around the
crack, separating the energy lost in diffusion from the
energy available to drive crack growth.

(2) Assuming a specific material model for hydrogels with
incompressible constituents, a nonlinear, transient finite
element method is implemented for solving initial boundary
value problems with coupled deformation and solvent
diffusion in hydrogels. Numerical results are presented for
center-cracked hydrogel specimens subject to remote ten-
sion by mode I displacement controlled loading.

(3) A sharp crack model is used for small far-field strains. The
effects of solvent diffusion are studied for the hydrogel

Fig. 14 Crack opening profiles and distributions of the Cauchy stress r22 ahead of the crack
tip under a large far-field strain (e‘ ¼ 0:5). ((a) and (b)) For an immersed hydrogel specimen
and ((c) and (d)) for a not-immersed hydrogel specimen.

Fig. 15 Evolution of the modified J-integral for an immersed
and a not-immersed hydrogel specimens under a large far-field
strain (e‘ ¼ 0:5)
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specimens with different chemical boundary conditions,
either immersed in a solvent or not-immersed. In both
cases, the stress fields near the crack tip in the instantaneous
and equilibrium limits compare closely with the LEFM pre-
diction with appropriate Poisson’s ratios. The transient
energy release rate is a function of time, increasing monot-
onically for the not-immersed specimen. For the immersed
specimen, the transient energy release rate reaches a peak
and then decreases with time; the equilibrium energy
release rate is lower than the instantaneous value.

(4) A rounded notch model is used for large far-field strains. In
this case, the stress distributions around the crack tip ex-
hibit a stronger singularity (r � r�1) due to hyperelasticity
but transition to a weaker singularity near the crack tip due
to solvent diffusion. The square-root stress singularity
(r � r�1=2) is recovered at the equilibrium limit for the
immersed specimen, but not for the nonimmersed
specimen. The transient energy release rate as a function of
time is similar to the small-strain behavior, but the value is
considerably lower than the LEFM prediction in both the
instantaneous and equilibrium limits.

As the thermodynamic driving force for crack growth, the tran-
sient energy release rate may be used to predict the critical condi-
tion for fracture. Assuming a critical energy release rate J�c in
terms of the modified J-integral, crack growth may be predicted
when J�ðtÞ ¼ J�c . With J�ðtÞ monotonically increasing for a not-
immersed hydrogel specimen, delayed fracture [33,63] may be
predicted if J�ðt ! 0Þ < J�c < J�ðt ! 1Þ. For the immersed
specimen, however, delayed fracture is unlikely since the peak
energy release rate is close to the instantaneous value. However,
the fracture criterion for hydrogels may be further complicated if
the critical energy release rate depends on solvent concentration,
for example, as a result of physical interactions between solvent
molecules and the polymer network. Different fracture mecha-
nisms may also lead to different fracture criteria for hydrogels
[12–14,22], a subject to be further studied by combining the nu-
merical model with experiments.
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Appendix A: Derivation of the Energy Release Rate

First, rewrite Eq. (2.14) as

dW ¼ dWV þ dWT þ dWl (A1)

where

dWV ¼
ð

V0

dU � @l

@XK

dIK

� �

dV (A2)

dWT ¼ �
ð

ST

Tidxið ÞdS (A3)

dWl ¼
ð

Sl

lNKdIKð ÞdS (A4)

Here, we have ignored the body force and solvent injection
source. The boundary ST is a part of S0 with specified tractions
that do work by variation in displacements, and the boundary Sl is
a part of S0 with specified chemical potential that do work by
in/out flux of the solvent molecules.

Next, to derive the energy release rate with respect to a
straight-ahead crack growth, consider a hydrogel body with a
crack of length ~a in the reference configuration and the same
hydrogel body with a crack length ~aþ d~a. With the crack exten-
sion, the boundary of the body has changed to S0 þ dS, where dS
is the new crack surface. Since the new crack surface is traction
free, the work done by all tractions remains the same as Eq. (A3),
which can be extended to an integral over S0 (noting that dxi ¼ 0
on S0 � ST), namely,

dWT ¼ �
ð

S0

Tidxið ÞdS (A5)

Correspondingly, the work done by solvent flux is

dWl ¼
ð

Sl

lNKdIKð ÞdSþ
ð

dS

lNKIKð ÞdS (A6)

The second term on the right-hand side of Eq. (A6) vanishes for
the two types of boundary conditions: (1) l ¼ 0 on the crack faces
for immersed specimens and (2) NKIK ¼ 0 on the crack faces for
not-immersed specimens. In either case, Eq. (A6) can be rewritten
with an integral over S0 (noting that NKdIK ¼ 0 on S0 � Sl),
namely,

dWl ¼
ð

S0

lNKdIKð ÞdS (A7)

Therefore, the change of the total energy with respect to the crack
length consists of three parts, given by Eqs. (A2), (A5), and (A7),
which leads to Eq. (2.15).

Appendix B: Formulation of a Finite Element Method

Weak Form. The primary unknowns in the present problem
are a vector field of displacement and a scalar field of chemical
potential, u X; tð Þ and l X; tð Þ, which are coupled in general. Simi-
lar to the previous work [44], we obtain a weak form by using a
pair of test functions, du Xð Þ and dl Xð Þ. Multiplying Eq. (2.3) by
dui, integrating over V0, and applying the divergence theorem, we
obtain that

ð

V0

siJdui;JdV ¼
ð

V0

biduidV þ
ð

S0

TiduidS (B1)

Similarly, multiplying Eq. (2.5) by dl and applying the diver-
gence theorem, we obtain that

ð

V0

@C

@t
dldV �

ð

V0

JKdl;KdV ¼
ð

V0

rdldV þ
ð

S0

idldS (B2)

Hence, the weak form of the problem statement is to find u X; tð Þ
and l X; tð Þ such that the integral equations ((B1) and (B2)) are
satisfied for any permissible test functions, du; dlf g.

Time Integration. A backward Euler scheme is used to inte-
grate Eq. (B2) over time

ð

V0

CtþDt � Ct

Dt
dldV �

ð

V0

JtþDt
K dl;KdV

¼
ð

V0

rtþDtdldV þ
ð

S0

itþDtdldS (B3)

where the superscripts indicate quantities at the current time step
tþ Dtð Þ or the previous step tð Þ. Combining Eq. (B3) with
Eq. (B1), we obtain that
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ð

V0

siJdui;J � Cdlþ DtJKdl;K
� �

dV

¼
ð

V0

bidui � rDtdl� Ctdlð ÞdV þ
ð

S0

TiduidS�
ð

S0

iDtdldS

(B4)

where the superscript tþ Dtð Þ is omitted for all the terms at the
current time step and Ct is the solvent concentration at the previ-
ous time step.

Spatial Discretization. Next, the displacement and chemical
potential are discretized through interpolation in the domain of
interest

u ¼ Nuun and l ¼ Nlln (B5)

where Nu and Nl are the shape functions, un and ln are the nodal
values of the displacement and chemical potential, respectively.
The test functions are discretized in the same way

du ¼ Nudun and dl ¼ Nldln (B6)

The stress, solvent concentration, and flux are evaluated at inte-
gration points, depending on the gradients of the displacement and
chemical potential via the constitutive relations. Taking the gradi-
ent of Eq. (B5), we obtain that

ru ¼ F� I ¼ rNuun ¼ Buun (B7)

rl ¼ rNlln ¼ Blln (B8)

where Bu and Bl are the gradients of the shape functions. In this
formulation, we have allowed the use of different shape functions
to interpolate the displacement and chemical potential fields,
which is necessary for the implementation of Taylor–Hood
elements as discussed in the previous study [44].

After the spatial discretization, invoking the arbitrariness of the
test functions, the weak form in Eq. (B4) can be expressed as a
system of nonlinear equations,

n dð Þ ¼ f (B9)

where d ¼ un

ln

� �

. More specifically, the individual contributions

to Eq. (B9) are

n
u;M
i ¼

ð

V0

siJB
u;M
J dV

nl;M ¼
ð

V0

�CNl;M þ DtJKB
l;M
K

	 


dV

(B10)

f
u;M
i ¼

ð

V0

biN
u;MdV þ

ð

S0

TiN
u;MdS

f l;M ¼
ð

V0

rDt� Ctð ÞNl;MdV �
ð

S0

iDtNl;MdS

(B11)

where the superscript M refers to the node and the subscript in Bu
J

refers to the direction in which the derivative is taken.

Newton–Raphson Method. The system of nonlinear equations
in Eq. (B9) is solved iteratively using the Newton–Raphson
method at each time step. In particular, the procedure requires cal-
culation of the tangent Jacobian matrix at each iteration, namely,

@n

@d

�

�

�

�

di

¼ Kuu Kul

Klu Kll

� �

(B12)

where for each pair of nodes (N;M) and degrees of freedom (i,k),
the individual contributions in the matrix can be calculated using
the explicit expression of the Legendre transformation of the free
energy density in Eq. (3.5). As discussed in Ref. [44], although
the tangent Jacobian matrix is asymmetric in general, a symmetric
tangent Jacobian matrix can be used as an approximation for
computational efficiency.
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