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Abstract: How solvent motions affects the dynamics of chemical reactions in which the solute 

undergoes a substantial shape change is a fundamental but elusive issue. This work utilizes reactive 

simulation and Grote-Hynes theory to explore the effect of solvent motions on the dynamics of the 

Diels-Alder reaction (in the reverse direction, this reaction involves very substantial solute 

expansion) in aprotic solvents. Results reveal that the solvent environment is not sufficiently 

constraining to influence transition state passage dynamics, with the calculated transmission 

coefficients being close to unity. Even when solvent motions are suppressed or artificially slowed 

down, the solvent only affects the reaction dynamics in the transition state region to a very small 

extent. The only notable effect of solvent occurs far from the transition state region and 

corresponds to caging of the reactants within the reactant well. 
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1. Introduction 

Understanding how solvent regulates the kinetics and thermodynamics of chemical reactions is 

a fundamental and fascinating challenge, since most chemical and almost all biochemical reactions 

take place in solution.[1–7] Many solvent properties have been found to be important in affecting 

reactivity.[6] Computational chemistry combined with kinetic theories, such as transition state theory 

(TST), serves as one main technique to elucidate reaction mechanisms, and to quantify the reaction 

rate and product selectivity in solution phase. [8–10] In calculations, the solvent is treated either 

implicitly by structureless dielectric continuum models that respond to changes in solute polarity 

along the reaction pathway, or explicitly by atomistic models that account for specific solute-solvent 

interactions.  

Nevertheless, most computational studies have been completed under the assumption of 

equilibrium solvation, in which solvent reorganization occurs instantaneously upon changes in the 

solute structure, so that the solvent adapts immediately as the reacting systems undergoes changes 

in its geometrical shape or its electron density distribution. In fact, as revealed by experimental and 

theoretical work,[11–15] solvent reorganization around a changing solute occurs on a finite timescale, 

typically of the order of several picoseconds, which is slower than the timescale on which chemical 

motion through the transition state region takes place (typically hundreds of femtoseconds), but is 

instead similar to the lifetime of some reactive intermediates, whose formation and disappearance 

can hence be influenced by the solvent dynamics.[16] The mismatch between solvent reorganization 

and reaction timescales could make the equilibrium solvation assumption inaccurate and hence 

invalidate its use when predicting reaction reactivity and selectivity. [17–21] Also, in this sort of 

instantaneous response picture, the dynamic flow of rovibrational energy that is known to occur 

during chemical reactions cannot be accounted for in terms of its truly dynamical effect on 

reactivity.[16,22–25] Instead, these dynamical effects regarding the motions of solute and solvent could 

be captured in trajectory-based dynamics simulations, .[26–30]  



Due to the complexity of solvent-solute interactions, and the demanding computational resources 

associated with using quantum mechanics (QM)-based potentials, there are relatively few studies 

with well-converged sampling and realistic potential energy surfaces (PES) for reactions in 

solution. Ab initio molecular dynamics, and hybrid quantum mechanics and classical mechanics 

(QM/MM) simulations are widely used in such studies, but they are typically limited to picosecond 

timescale simulations, and are computationally prohibitive for extensive sampling of the phase 

space. The traditional MM force-field method, though computationally feasible, is unable to 

describe reactive events due to the fixed bonding topology associated with the force-field. Reactive 

MM methods that are able to treat bond breaking and formation, such as the empirical valence bond 

(EVB) method,[31–34] could serve as an alternative and economical choice for such computational tasks 

if carefully parameterized. Using the EVB surface means we have a fairly accurate and very 

computationally economical protocol for a ‘real’ reaction system, thus allowing for very extensive 

sampling and modelling of various solvent effects.  

The picture emerging from existing computational studies of reaction dynamics in solution is 

influenced by the choice of the type of reaction studied. Many papers address reactions with peculiar  

potential energy surfaces with ‘flat’ regions and complex topologies [17,18,43–45,35–42] which usually 

involve multi-step reaction mechanism, and multiple distinct types of interactions between solute 

and solvent. These studies often show heavily “non-statistical” behaviour, in which the dynamical 

interactions between solute and solvent play a vital role in modulating the solute behaviour 

(including motions and energy partitioning) in the TS and post-TS regions, and altering the product 

selectivity.[40],[42] Some models, such as Kramers theory and Grote-Hynes theory developed to 

account for these deviations, suggest that non-standard behaviour might be very common in 

solution-phase reactions.[10,45–49] One practical way to account for the non-equilibrium solvation 

effect during the calculation of reaction rate is to compute the transmission coefficient as a 

correction of the TST rate constant.  



There have been fewer studies of more standard chemical reactions involving significant 

transition state barriers, even though many of these reactions have prima facie potential for 

involving significant coupling to solvent due e.g. to major changes in solute volume along the 

reaction coordinate. The more general topic of solute volume changes has been studied, but mostly 

using simple model systems.[50–53] Schwartz and coworkers compared the solvent relaxation 

dynamics triggered by changes in solute size for a Lennard-Jones sphere in water.[50,51] As a 

response to solute volume expansion, solvent has to take some time to reorganize itself, especially 

the first solvation shell solvent molecules would be driven to move outwards into the second shell. 

Slow solvent motion, as compared to the timescale of the solute shape changes, could thus induce 

transient strong solvent-solute interactions, with the reaction progress (involving volume change of 

the solute) needing to “wait” for solvent movement, thereby creating an extra “inertial” barrier to 

reaction. This dynamical blocking phenomenon, associated with the solvent motions triggered by 

the solute expansion, is thus different with, and could not be accounted for by the solvent frictional 

(viscosity) effect affecting solute motions as addressed in the widely-adopted Kramers theory and 

the generalized Grote-Hynes theory.[46] Carpenter recently introduced a related simple physical 

model to stress the effect of solute shape changes on reactivity in nonpolar systems,[52],[53] with the 

bath or solvent being represented by a single one-dimensional harmonic oscillator term, which 

interacts with the solute through a Lennard-Jones type repulsive term (𝑟2 − 𝑟1)−12 . The solute 

reactivity is described by a double-well potential. Using this model, it was predicted that simply by 

changing solvent mass, the position of the dynamical dividing surface to reaction (the surface 

through which no recrossing events occur) can be altered to lie far away from the saddle point of 

the solute potential energy surface. In other words, the transmission behaviour of trajectories across 

the TS saddle point could be significantly altered. Thus, the authors suggested conventional 

transition state theory might be inadequate to predict the reaction rate constants for reactions with 

substantial solute shape expansion. 



 
Scheme 1. Diels-Alder reaction of ethene and butadiene. Values of volume of activation and 

reaction were extracted from reference 54.     

Here we study a paradigmatic solution-phase organic reaction, the Diels-Alder (DA) reaction 

(Scheme 1) in aprotic solvent (propane), and attempt to clarify the solvent effect associated with 

substantial change in solute shape from reactant to product. Solvent-reactant interactions are non-

polar in this system, so that polar solvation effects are negligible in influencing the structures of the 

transition state. Nevertheless, the change in system volume as it passes through the TS region is 

important, as indicated by the very negative (−34.0 cm3/mol) volume of activation (∆𝑉‡) that was 

calculated for the reaction.[54–56] Correspondingly, the solute volume expands significantly along 

the reaction coordinate when considering the reverse reaction, i.e. the so-called retro-Diels Alder 

reaction. While the experimental ∆𝑉‡ is not available for the parent reaction, it has been measured 

for similar Diels-Alder reactions, and experimental and computational results for those cases 

generally agree quite well.[55] Therefore, this reaction provides a good test of various “caging” and 

“dynamical blocking” effects, and those proposed theoretical models. In addition, in our 

computational study, the magnitude of solvent inertial effects can be alchemically probed by 

varying the solvent mass. On the other hand, the potential energy surface for this reaction has a 

fairly sharp maximum along the reaction coordinate corresponding to the transition state, so major 

dynamical effects other than those associated with solvent coupling are not expected.  

2. Computational Details  

DFT Calculations. The reactive potential energy surface of the DA reaction was mapped with a 

two-dimensional scan varying the two reacting C—C distances Rac and Rbd (Scheme 2) from 1.5 Å 



to 3.6 Å in steps of 0.1 Å, with all other coordinates optimized. For regions of the potential energy 

surface with one short reactive C—C bond and one long one, a diradical electronic structure is 

possible, hence careful tests were carried out in order to identify whether unrestricted Kohn-Sham 

solutions existed. Structural optimizations were conducted at the M06-2X/6-31G(d) level with the 

Gaussian 16 program package,[57] and the energies were further re-fined at the M06-2X/6-

311+G(d,p) level.  

 

Scheme 2. The four diabatic states in the EVB matrix. 

EVB Simulations. A four-state EVB Hamiltonian was developed to model the reactive events in 

the DA reaction (eqs. 1-4). 

𝐻 = [

 𝐻11 + 𝜀1 𝐻12
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1

2
(

(𝑅𝑏𝑑 − 𝑅𝑎𝑐) − 𝑟24
0

𝜎24
)

2

) (4) 

In the equation, 𝐻11  and 𝐻22  are single-state MM energies computed for the system using the bond 

connectivity of the reactants and the product respectively, while 𝐻33  and 𝐻44  denote MM single-

state energies of each of the two diradical states (Scheme 2). The off-diagonal 𝐻𝑖𝑗  (𝑖 ≠ 𝑗) terms of 

equations (2 - 4) are one-dimensional Gaussian functions that determine the coupling strength 

between the different EVB states, with parameters (𝐴, 𝑟0 , 𝜎 ) chosen to fit the M06-2X energies 

(ESI). The 𝜀𝑖 values are shift terms that ensure the correct reaction energies. The MM3[58–60] force 



field was used to compute the inter-/intra-molecular interactions in each EVB state. EVB type 

calculations and simulations were conducted with our in-house MPI-parallelized EVB code[61] 

adapted within Tinker 8 software. [62]  

 The simulation system was built with 53 propane molecules and the reactive species in a box of 

20.0 Å, to reproduce the density of liquid propane (0.493 g/cm3) at room temperature. The free 

energy change near the transition state along the reaction coordinate was derived from the potential 

of mean force (PMF) simulations by using umbrella sampling [63] together with the weighted 

histogram analysis method (WHAM),[64] with reaction coordinate 𝑞𝑅𝐶 = 𝑅𝑎𝑐 + 𝑅𝑏𝑑 .[30,65,66] 

Seventeen separate harmonic umbrella sampling potentials were used, centred at values of 𝑞𝑅𝐶  

between 4.40 Å and 4.56 Å in steps of 0.01 Å, with a force constant of 1300 kcal/mol/Å2. For each 

window, a 2 ns equilibration step was followed by a 6 ns production phase, in each case using a 1 

fs timestep, the NVT ensemble (using  the Bussi algorithm[67]) at 300 K, and the velocity Verlet 

algorithm.[68] vdW interactions were switched from 8 Å and fully truncated at 9 Å.  

We found that the π-electron SCF component of the MM3 force field displayed poor convergence 

for some distorted structures during the solution-phase dynamics, leading to poor energy 

conservation and trajectory failure. Problematic behaviour of this type can be detected by 

monitoring the C—C—C—C dihedral angle of the butadiene fragment (values above 90° 

exacerbate the problem) as well as the number of SCF iterations required for convergence during 

the simulations (Table S3). A similar problem has been noted previously. [69] The problem can be 

essentially removed, certainly in the TS region that is important for this study, by increasing the 

mass of all hydrogen atoms within the reactive system to three times their normal mass, leading to 

slightly slower motions for the (in any case stiff and roughly adiabatic) hydrogen atoms and better 

convergence of the π-electron SCF procedure. 



 For the rare event trajectory simulations, a 2.6 ns equilibration simulation was conducted in the 

NVT ensemble, with 𝑞𝑅𝐶  constrained by the Rattle algorithm[70] at the maximum of the PMF, with 

600 snapshots randomly selected from the final 0.6 ns. For each snapshot, the velocity along the 

reaction coordinate was altered so that overall the kinetic energy in this mode followed a Boltzmann 

distribution with  T = 300 K.[71],[72]  Downhill trajectories were obtained by propagating each 

sampled snapshot both forward and backward (reversing the velocity of the reaction coordinate) for 

400 fs with a time step of 0.1 fs in the NVE ensemble.  

The time-dependent transmission coefficient could be determined from the trajectories by using 

the reactive flux method[72] (eqn. 5—7).  

𝑘(𝑡) =
⟨�̇�𝑅𝐶(𝑡 = 0)𝜃(𝑞𝑅𝐶(𝑡) − 𝑞𝑅𝐶

‡ )⟩
𝑞𝑅𝐶

‡

1
2

〈|�̇�𝑅𝐶(𝑡 = 0)|〉
𝑞𝑅𝐶

‡

(5) 

𝑞𝑅𝐶
≠ = 𝑅𝑎𝑏

‡ + 𝑅𝑐𝑑
‡ (6) 

𝜃(𝑞𝑅𝐶(𝑡) − 𝑞𝑟𝑐
‡ ) = {

0;      𝑞𝑟𝑐(𝑡) ≤ 𝑞𝑟𝑐
‡ ;   the DA product region

1;      𝑞𝑟𝑐(𝑡) > 𝑞𝑟𝑐
‡ ;   the DA reactant region

(7) 

In the equation, 𝜃(𝑞𝑅𝐶 (𝑡) − 𝑞𝑅𝐶
‡ ) is the Heaviside step function, 𝑞𝑟𝑐

‡
 is the reaction coordinate 

value at the maximum of PMF, and 𝑞𝑅𝐶 (𝑡) is the time-dependent reaction coordinate value. The 

trajectories are initiated at 𝑞𝑅𝐶
‡

 such that 𝑞𝑅𝐶 (𝑡 = 0) = 𝑞𝑅𝐶
‡

. �̇�𝑟𝑐(𝑡 = 0) is the internal coordinate 

velocity of the reaction coordinate at the PMF top (𝑡 = 0). The initial velocities for all other 

coordinates were taken from long constrained dynamics simulations, while the initial velocity 

�̇�𝑅𝐶 (𝑡 = 0) is randomly sampled from a Boltzmann distribution, with average value kbT. For the 

simulations performed using non-standard masses for the solvent atoms, velocities were sampled 

from constrained dynamics carried out using  the appropriate solvent masses, while the same set of 

random values of �̇�𝑅𝐶 (𝑡 = 0)  as for the parent standard mass simulations were used. 〈… 〉
𝑞𝑅𝐶

‡  
 

represents an ensemble average over the 600 trajectories sampled with the reaction coordinate 

constrained at the PMF saddle point. A typical  𝑘(𝑡) curve is featured with a short-time decay 



process associated with any recrossing events, and once all the trajectories reach the reactant or 

product state, 𝑘(𝑡) then presents a plateau corresponding to the transmission coefficient.  

Grote-Hynes theory. Grote-Hynes (GH) theory[47] is one of the rate theories to derive rate 

constants, and has been successfully used to estimate the transmission coefficient of reactions in 

solutions and enzymes.[73],[74] GH utilizes the linear generalized Langevin equation (GLE) to 

describe the dynamics of the reaction coordinate in the TS region, with the effect of the remaining 

degrees of freedom (solvent and nonreactive solute motions) introduced through the equilibrium 

forces and dynamical friction forces that they exert on the reaction coordinate. In the vicinity of the 

barrier top, the transmission coefficient (refer to GH value) is simply obtained as the ratio of the so-

called reactive frequency 𝜔𝑟  and the so-called equilibrium frequency 𝜔𝑏.𝑒𝑞 .  

𝜅𝐺𝐻 =
𝜔𝑟

 𝜔𝑏.𝑒𝑞

(8) 

The equilibrium frequency  𝜔𝑏.𝑒𝑞  is defined based on the magnitude of the curvature (𝑘𝑃𝑀𝐹) of 

the potential of mean force (PMF) curve UPMF
 . This PMF curve can be computed using a variety 

of methods, but always assuming equilibrium solvation.  

∆𝑈𝑃𝑀𝐹 = −
1

2
𝑘𝑃𝑀𝐹(𝑞𝑅𝐶 − 𝑞𝑅𝐶

‡ )
2

(10) 

𝜔𝑏.𝑒𝑞 =
1

2𝜋𝑐
√

𝑘𝑃𝑀𝐹

𝜇
(11) 

in which ∆𝑈𝑃𝑀𝐹  is the difference between the PMF value at a given value of the reaction coordinate 

𝑞𝑅𝐶  and the PMF value at the maximum 𝑞𝑅𝐶
‡

, while 𝜇 is the reduced mass associated with the 

reaction coordinate. 

The reactive frequency 𝜔𝑟 , which is related with the time scale for reaction coordinate motions 

at the barrier top, can be computed by solving the eqn (12).  

𝜔𝑟
2 − 𝜔𝑏,𝑒𝑞

2 + 𝜔𝑟𝜁(𝜔𝑟) = 0 (12) 



𝜁(𝜔𝑟) = ∫ 𝜁(𝑡)𝑒−𝜔𝑟𝑡
∞

0

d𝑡 (13) 

𝜁(𝑡)  =  
〈𝐹(0)𝐹(𝑡)〉

𝜇𝑘𝐵𝑇
(14) 

where 𝜁(𝜔𝑟) is the Laplace transform of the time-dependent friction kernel 𝜁(𝑡) at the reactive 

frequency 𝜔𝑟 . 𝜁(𝑡) is proportional to the autocorrelation function of the forces (F(t)) that act on the 

reaction coordinate, T is the temperature (300 K), and 𝑘𝐵 is the Boltzmann constant. In the absence 

of friction, so in the case where 𝜁(𝑡) is zero and one always has equilibrium solvation with solvent 

fully equilibrated to changes in the reaction coordinate at all times, the rate of change of the reaction 

coordinate within the barrier region is determined by the negative derivative of the PMF, and the 

reactive frequency 𝜔𝑟  is then equal to the equilibrium frequency 𝜔𝑏.𝑒𝑞 . In the presence of non-zero 

friction (non-equilibrium solvation), motion along the reaction coordinate can be impeded by 

‘collisions’ with the solvent molecules (or more generally the atoms in the environment) which 

usually leads to slower motion than would be caused purely by the PMF. This also leads to solvent-

induced barrier recrossing. That means, the reaction time scale (𝜔𝑟
−1) in the presence of non-

equilibrium solvation depends on both the equilibrium frequency 𝜔𝑏.𝑒𝑞  and the solvent dynamics, 

with the latter being introduced into the above equation and into GH theory through the friction 

kernel 𝜁(𝑡). As a result of the barrier recrossing and the reduced net rate of passage across the 

barrier region, 𝜔𝑟  is smaller than 𝜔𝑏.𝑒𝑞  and hence the transmission coefficient 𝜅𝐺𝐻is smaller than 

1.  

Solving the GH equation requires the determination of the PMF curve (already known from the 

free energy calculations), and calculations of the friction kernel 𝜁(𝑡)  from a constrained MD 

simulation with the reaction coordinate constrained at the maximum of the PMF. To get the friction 

kernel, 40 ps NVE simulations were performed using a time step of 0.05 fs. In the simulation, the 

reaction coordinate was constrained by the Rattle algorithm, and the forces on the reaction 

coordinate were collected every time step. The Wilson matrix was used to convert internal velocity 

and Cartesian velocity.  



It is important to mention one limiting case of GH theory, the nonadiabatic regime, where 

reaction is much faster than environment responses. The reaction time scale is so short that solvent 

has no time to respond. Therefore, the solvent can be treated as frozen (no solvent dynamics) during 

the TS passage, and it is the initial configuration (i.e., the zero-time value of the friction kernel 

𝜁(𝑡) = 𝜁(𝑡 = 0)) that plays a role in affecting the reactive frequency (𝜔𝑏,𝑛𝑎). In this case, 𝜁(𝜔𝑟) 

reduces to 𝜔𝑟
−1𝜁(𝑡 = 0), and eqn (12) becomes,  

𝜔𝑏,𝑛𝑎
2 = 𝜔𝑏,𝑒𝑞

2 − 𝜁(𝑡 = 0) (15) 

 

3. Discussions 

 

Figure 1. (a) Contour plot of the reactive four-state EVB PES for the symmetric DA reactions. The 

colored dots signal the difference between the energies predicted at each point by EVB and M06-

2X, with blue dots indicating points where the EVB relative energy is lower than the DFT one, and 

red dots indicating the reverse. (b) Relaxed minimum energy reaction pathway along the reaction 

coordinate as predicted by the multistate EVB potential (in blue) and M06-2X method (in black). 

(c) and (d) correlation of the single point energy predicted by EVB and M06-2X for structures 

extracted (c) from EVB relaxed scan, and (d) from the EVB reactive dynamics. The least-squares 

regression lines are shown in blue.  



 

A reactive four-state empirical valence bond (EVB) potential energy surface (PES), that is 

capable to model the Diels-Alder (DA) reaction in solution, was firstly parameterized. Fitting 

results in an EVB potential (Figure 1a) with a root mean square deviation (RMSD) of 4.6 kcal/mol 

(R2 =0.95) from the DFT energies for the 317 structures, corresponding to a two-dimensional 

relaxed scan at the M06-2X level of theory (Figure S1). For the subset of 160 relaxed scan 

structures that are within 0.5 Å of the diagonal line Rac = Rbd, the agreement between EVB and DFT 

is somewhat better, with an RMSD of 2.2 kcal/mol. Additional M06-2X single point energy 

calculations on 107 structures along the EVB-relaxed minimum energy pathway yield an RMSD of 

5.5 kcal/mol and R2 of 0.98 (Figure 1c). A further 300 structures were randomly sampled from the 

reactive trajectories in solution phase. Over these structures, the correlation between EVB energies 

and ab initio energies is very good (R2 = 0.96 in Figure 1d), but the deviation between the EVB 

energies and the M06-2X energies is relatively large (RMSD = 8.0 kcal/mol). The large RMSD is 

traced to the difference between the MM3 force field and the M06-2X functional in describing the 

degree of freedoms orthogonal to the reaction coordinate. Overall, the current EVB PES preserved 

the performance of DFT (M06-2X) in describing the reaction profile and geometry along the 

reaction coordinate of the DA reaction (Figure 1b and S2).  

 
Figure 2. Potential of mean force in the vicinity of the barrier top in the gas phase and in solutions 

with varying solvent mass.  

 



Then, we moved to study the DA reaction dynamics in solution by using the reactive EVB 

potential. The aprotic and non-polar propane is chosen as the solvent, so that we only consider the 

effect of non-electrostatic interactions between solvent and solute. In this paper, to avoid confusion, 

the term “solvent” is used to refer to all the propane molecules in the system, whereas the term 

“environment” refers to all non-reactive degrees of freedom, including the coordinates of the 

solvent atoms, as well as the solute intramolecular modes. To assess the effect of solvent mass on 

the position of the transition state of the DA reaction in solution, we mapped the free energy profile 

of the reaction near the barrier top in the gas phase and solvents of varying masses (Figure 2). Our 

results show that the PMF of the Diels-Alder reaction is not very much influenced by the solvent in 

the TS region. The position of the maximum of the PMF, obtained by fitting the curve to parabolic 

functions, is nearly invariant (~4.815 Å) on increasing the solvent mass from the standard value 

(1mPropane) to 50 times the standard one (50mPropane). The changes in shape of the PMF upon 

moving from the gas phase to solution and changing the solvent atom masses are similar in 

magnitude to the statistical error (~0.001 kcal/mol) in the PMF estimated from the WHAM analysis. 

The current observation with a more realistic description of solvent-solvent interaction, points out 

that weakly-interacting solvent has a minor effect on modifying the free energy surface for a typical 

organic reaction, even with substantial shape changes along the reaction coordinate.       

 



 
Figure 3. Time evolution of the reaction coordinate in reactive trajectories of the DA reaction in 

the gas phase and in solution with different solvent masses, as predicted by the four-state EVB 

potential. The system lies within the dividing surface (reaction coordinate equal to its value at the 

peak of the PMF) at time zero; positive time corresponds to the trajectory moving to the reactant 

side while negative time corresponds to the product side.  

 Initialized from a set of sampled snapshots in the transition state region, the reaction dynamics 

were studied by using the downhill dynamics simulation strategy.[73] For each system in the gas 

phase or in solution, 600 trajectories were run, and each trajectory was propagated forward and 

backward, in each case for a time sufficient for either the product (𝑞𝑅𝐶 < 3.4 Å) or the reactants (𝑞𝑅𝐶  

> 5.8 Å) to be formed, with the two half-trajectories then combined to form an overall trajectory. 

These can then be divided into two classes, reactive trajectories (which go from reactants to 

product), and non-reactive trajectories (which go from reactants to reactants, or from product to 

product). The proportion of non-reactive trajectories slightly increases from the gas phase reaction 

(38 out of 600) to the various solvent media, and using a heavier solvent also leads to a slightly 



increased fraction of non-reactive trajectories (Table S2).  Nevertheless, these differences are small 

and overall, the dynamics of passage through the TS saddle point is barely modified by the solvent, 

compared to the gas phase (Figure 3). Transition from the saddle point structure towards the 

product or reactants well occurs rapidly, typically within ~50 fs. At longer times in the dynamics, 

a feature that can be observed for solution trajectories entering the reactant region, but that is absent 

in those performed in the gas phase, is the solvent caging effect, whereby the separation between 

the reactants (butadiene and ethene) ceases to increase at some point. However, this caging effect 

occurs only upon fully entering the reactants well for values of the reaction coordinate larger than 

~6.5 Å. The degree of caging is as expected somewhat stronger in the heavier solvent, which 

witnesses more trajectories reversing the velocity of the reaction coordinate due to the slower 

motions of solvent and more frequent solute collisions with the solvent. 

 

Figure 4. (a) Average momentum of the reaction coordinate in the direction leading to reactant 

complex in different simulation systems over all reactive trajectories; (b) The shortest solvent atom 

– solute atom distance along the reaction coordinate in different simulation systems averaged over 

all reactive trajectories. 

Another way to illustrate the modest effect of solvent on dynamics in the region surrounding the 

TS is to plot the average momentum along the reaction coordinate and the average of the shortest 

distances between a solute atom and a solvent atom (average over all trajectories) as a function of 



the reaction coordinate (Figure 4) for all trajectories. In the gas phase, after exiting the transition 

state region, the reaction coordinate continuously accelerates until reaching a value near 5.5 Å 

owing to the decrease in potential energy (Figure 1b). Beyond that distance, the system has entered 

the flat reactants well, and there will be some extent of interchange between kinetic energy and 

potential energy, accounting for the oscillation of the momentum. In solvents of varying mass, the 

evolution of the average momentum is almost identical for values of the reaction coordinate up to 

~5.5 Å, with caging effects then becoming more important. As can be seen, the trajectories in the 

reactant region also involve closer average solvent-solute distances (Figure 4b) because the solvent 

cage has not yet responded to the volume expansion of the solute, at least during the simulated 

timescale (400 fs) of the trajectories.  

 
Figure 5. Average of the shortest solvent atom - solute atom distance during 400 reactive 

trajectories headed towards reactants.   

Activated chemical reactions require accumulation of energy within the reactant sub-system prior 

to barrier-crossing, and its dissipation after crossing the barrier. Experimental and computational 

studies show that this energy exchange occurs more slowly than bond making and breaking, on a 

timescale of the order of a few ps to a few tens of ps.37,59–61 The present reaction is an example of a 

process with a significant activation volume, and the present simulations provide an indication of 



the relative timing of the volume change and of the bond-making and breaking events. Over the 400 

fs timescale of the main reactive simulations, starting from the more compact TS, the trajectories 

entering the reactants region do not fully allow expansion of the solvent cage. Extending these 

simulations to longer time (Figure 5) shows solvent expansion (as measured by minimum solute-

solvent distance) with a time constant of roughly 0.14 ps in 1mPropane, 0.55 ps in 10mPropane and 

1.32 ps in 50mPropane, tending towards a minimum distance equal to that found in equilibrium 

simulation of the reactants, which is of 2.16 Å, very similar to that found for the TS. Based on  this, 

and considering now the reaction in the forward direction from reactants to product, it appears that 

volume fluctuations behave similarly to energy fluctuations, with the actual reactive event occurring 

only for those structures with high solvent density around the reactants. 

 
Figure 6. Time-dependent transmission coefficient reaction in gas phase and solution of varying 

solvent mass. The case with all standard mass solvent molecules frozen in the dynamics is shown 

by the blue dashed line.   

Then, the time-dependent transmission coefficients were calculated from the trajectories (Figure 

6). All reaction systems show a rapid decay in the transmission coefficient within the first 25 fs, 

which is caused by a small number of trajectories exhibiting recrossing behaviour (Figure S6) while 

still within the TS region. A plateau is then reached indicating that very few recrossing events occur 

once the system has moved out of the immediate TS, and the overall transmission coefficient can 

hence be obtained. Nearly identical decay behaviour was found for the reaction in the gas phase 



and 1mProprane. The transmission coefficients are both close to 0.98 and thereby near to the TST 

limit. Thus, propane of normal mass shows only a very small effect on trajectory recrossing, such 

that solvent motion is only weakly coupled to the reaction coordinate and the solvent friction effect 

is very small. The fact that the transmission coefficient is close to unity also indicates that the sum 

of the two bond lengths is a good approximation of the reaction coordinate for the symmetric DA 

reaction.[53,78] By changing the solvent mass to a heavier one (10mPropane and 50mPropane), the 

transmission coefficient only decreases slightly, to ~0.96 , suggesting that solvent mass change only 

has a modest effect on transition state passage dynamics.  

An even more drastic way to model the possible extent of solvent constraints on the reaction 

dynamics is to treat solvent as being completely frozen, at the sampled saddle-point structures used 

to initiate dynamics. Under this limit, essentially no change occurs in the transmission behaviour 

(Figure 6) with respect to the trajectories with mobile solvent, indicating that the solvent cage does 

not effectively impact upon the TS dynamics. The small changes in the time-dependent transmission 

coefficient reflect instead small changes in the initial value of the reaction coordinate, taken in each 

case as the value at the maximum of the PMF for the corresponding solvent mass. Indeed, this 

effect, rather than a greater solvent friction, likely accounts for the small changes in transmission 

coefficient noted above for the heavy solvent cases.  

The dynamic effect of solvent mass changes on reaction rate is further evaluated by Grote-Hynes 

(GH) theory, which derives the transmission coefficient as the ratio of the reactive frequency (𝜔𝑟 , 

the reaction time scale) and equilibrium frequency (𝜔𝑏,𝑒𝑞 , the magnitude of the curvature at the 

PMF top). The 𝜔𝑟  determined from GH theory is 598.0, 603.9 and 593.43 cm -1 (Table 1) for 

reaction in the standard solvent, 10 times and 50 times mass solvents, which indicates that reaction 

has a comparable reaction time scale (1 (2𝜋𝜔𝑟)⁄ , ~9 fs) in these three systems. As a comparison, 

the environment relaxation time scale, as determined as the ratio of the friction constant and zero-



time friction kernel, is a bit larger (~20 fs for the standard solvent system) than the reaction time 

scale, but of the same magnitude, indicating again only modest solvent effects.  

Table 1. Equilibrium frequency, reactive frequency 𝜔𝑟  and transmission coefficient obtained from 

Grote-Hynes theory 𝜅𝐺𝐻  and its non-adiabatic limit 𝜅𝑁𝐴 . 

 𝜔𝑟 (cm-1) 𝜔𝑏,𝑒𝑞(cm-1) 𝜅𝐺𝐻 𝜅𝑁𝐴 

Ga 646.5 693.3 0.93 0.80 
1mPropane 598.0 664.0 0.90 0.66 
10mPropane 603.9 642.5 0.94 0.80 
50mPropane 593.4 665.3 0.89 0.62 

The transmission coefficient computed by GH theory is comparable for reactions in lighter and 

heavier solvents, in agreement with what we obtained from the trajectory simulations. The 

transmission coefficient from GH theory (0.89-0.94) is slightly smaller than those obtained from 

the rate event trajectories, but still very close to unity, and again suggests that friction effects from 

solvent and the remaining degree of freedoms of solute are small in the immediate TS region. In 

addition, the current results also show that GH theory is a reliable method to estimate the 

transmission coefficient for the DA reaction in solution. The transmission coefficient obtained 

within GH theory assuming the limiting frozen environment regime (i.e. with no motion of the 

solvent or of the ‘spectator’ degrees of freedom within the solute), is 0.66-0.80, somewhat more 

distant from unity, suggesting that motion within the remaining ‘spectator’ degrees of freedom 

within the reacting molecules is dynamically coupled to the reaction coordinate, influencing the 

recrossing event, since direct simulations (Figure 6 and S4) with frozen solvents show little change 

in the transmission coefficient.  

4. Conclusion 

In this work, we present a detailed study on the reaction dynamics and solvent relaxation 

dynamics associated with solute volume expansion in non-polar solvent for a typical activated 

chemical reaction, the Diels-Alder reaction. Extensive sampling of the solvent motion during 

reaction could be performed at low computational cost thanks to the efficiency of the adopted 



empirical valence bond potential, parameterized based on quantum chemical computations. Both 

the trajectory simulations and Grote-Hynes theory calculations revealed the transmission coefficient 

to be close to unity in solution, even in the artificial case where solvent relaxation is slow (imposed 

by increasing the solvent mass) or even completely frozen. These findings here, by using a realistic 

atomic system, contrast with the predictions of a previously proposed theoretical model,[52,53] which 

predicted that solvent motions could significantly alter the transition state behaviour for reactions 

with substantial solute volume expansion. This low-dimensional model simply treats solvent as a 

“wall” that directly couples to reaction, and thus, apparently overstates coupling. 

 Solvent motions do indeed have an effect during the volume expansion of the solute, but this 

effect only materializes at very large values of the reaction coordinate, at the point at which 

diffusion of the two reactants away from each other starts to occur. This effect is therefore best 

described as solvent-induced impedance of the separation of reactant species, i.e., the caging effect, 

instead of hindrance for TS crossing, which in this system at least is found to be a very modest 

effect. As mentioned earlier, this observation contrasts with other dynamics-based studies in which 

a significant impact of solvent on reaction outcomes has been observed. [16–18,23,25,40,42–45] In some of 

those cases,[16,25] the effect is due to non-thermalized and short-lived intermediates, which are not 

present here. For the almost entirely non-bonded and non-polar effects that can occur here, solvent 

motions have a minor effect on transition state passage. 
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