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Abstract 

Peptide-based electrochemical biosensors typically consist of a short peptide sequence, 

labelled with a redox reporter and modified with a thiol-containing moiety to allow 

immobilisation onto a gold electrode surface. A spacer is often introduced between the thiol 

group and the peptide with the aim of promoting enzyme accessibility as well as conferring 

flexibility onto the probe. Herein we report a systematic study of the effect of polyethylene 

glycol (PEG)-based spacer length on the performance of such biosensors in order to gain a 

deeper understanding of their role and optimise a peptide-based electrochemical sensor. 

Thus a specific peptide endowed with varying PEG spacers (PEG-4, PEG-6, PEG-8 and 

PEG-12) were synthesised and interrogated by the addition of both a target enzyme (trypsin) 

and BSA in order to evaluate their analytical performance. An alkyl-based spacer was also 

assessed in order to compare the effect of the nature of the spacer. All of the proposed 

probes supported efficient protease detection; however, PEG-6 provided enhanced anti-

fouling properties, which highlights the vital role of the spacer in the design of peptide-based 

probes. 
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1. Introduction 

Proteases play a pivotal role in many physiological processes and their deregulation has 

been associated or implicated in a huge number of maladies. For example, it has been well 

established that the proteolytic activity of both intracellular and extracellular proteases, such 

as matrix metallo-proteinases (MMPs), contributes to cancer progression in all its stages 

(e.g. tumour angiogenesis, invasion and metastasis) [1, 2]. Furthermore, there is much 

evidence which shows that caspases are critical for the activation of the apoptotic pathway 

[3]. In the light of these findings, a broad variety of proteases have been recognised as 

potential diagnostic targets, increasing the demand for selective and sensitive tools for their 

detection in a biomedical setting.  

In this context, electrochemical biosensors, with their high sensitivity, low limits of 

detection and ease of miniaturisation, are valuable tools for the direct assessment of cancer 

biomarkers [4-6]. Interestingly, a common strategy to produce selectivity in electrochemical 

biosensors is the use of peptides as recognition moieties, designed to interact with specific 

analytes including antibodies and enzymes [7, 8]. Building on this approach, electrochemical 

peptide-based biosensors have been successfully generated for the detection of protease 

activity [9-14]. Most of these consist of a simple peptide, which acts as substrate for the 

target enzyme, which is labelled with a redox reporter and immobilised onto an electrode 

surface. Upon enzymatic cleavage the redox-labelled probe fragment is released from the 

electrode surface leading to a measurable signal decrease. It has been shown that the 

insertion of a flexible spacer within this probe can facilitate the approach of the redox 



reporter to the electrode, thereby facilitating electron transfer and enhancing the redox signal 

[9, 10]. With this in mind, we recently developed an electrochemical peptide-based biosensor 

with a polyethylene glycol (PEG) spacer and methylene blue as redox reporter [11].  

However, the conformation and orientation of peptides immobilised onto a solid surface are 

both critical for analyte detection and these can be significantly influenced by the spacer 

[15].  There is also a growing body of data showing that different spacer lengths vary the 

signal response of the biosensor by altering the properties of the recognition moiety [16-18]. 

For example, Martić reported an electrochemical study of a series ferrocene-ATP 

bioconjugates, which showed that structural variation of the length of an alkyl linker 

modulated the detection and quantification of kinase activity [19], with a longer alkyl spacer 

facilitating the interaction with the binding site of the enzyme through reducing the steric 

hindrance.  Despite this fact, no systematic exploration of the effect of different spacer 

lengths on their analytical performance has been carried out.   

In the light of these findings, and in an effort to further enhance the analytical properties 

of our system, here we explore the effect of different lengths of the PEG-spacer connecting 

the anchor moiety to the peptide sequence. This systematic study describes the effects of 

varying the length of PEG-spacers (PEG-4, PEG-6, PEG-8, PEG-12) on the probe 

performance, with special emphasis on their ability to tune the anti-fouling capabilities of the 

resulting sensing films. Indeed, improvements in a sensing platform to prevent non-specific 

binding to the probe film surface are of a paramount importance for the development of self-

assembled monolayer (SAM)-based electrochemical biosensors. To address this aim, 

different strategies have been proposed including ternary SAMs, T-SAMs, which consist of 

the immobilisation of three components: the probe plus two backfilling molecules (co-

adsorbents), that have successfully increased prevention of non-specific binding [11, 20-25]. 

The present study offers a deeper understanding of how the length of the PEG-based spacer 

affects the specificity and sensitivity of the probe, providing fundamental insights for the 

design of advanced new protease biosensors. 

 



2. Materials and Methods. 

2.1. Instrumentation 

Electrochemical measurements were performed using a conventional three-electrode 

electrochemical cell driven by a computer-controlled AutoLab PGstat-30 potentiostat running 

the GPES 4.9 software (EcoChemie, The Netherlands). A platinum wire and a 2 mm 

diameter polycrystalline gold electrode (IJ Cambria, UK) were used as auxiliary and working 

electrode, respectively. All the potentials were measured using, and are referred to, the 

Ag│AgCl│KCl (3 M) reference electrode (Bioanalytical Systems, Inc., USA). 

2.2. Reagents 

Trypsin (MW 23.4 KDa), bovine serum albumin (BSA), 6-mercaptohexanol (MCH), 2,2′-

(ethylenedioxy)diethanethiol (PDT) and 10x PBS were purchased from Sigma Aldrich (UK) 

and used as received. All reagents were of analytical grade. All solutions were prepared 

using protease-free deionised water.  

2.3. Experimental methods  

2.3.1. Synthesis 

The detailed synthetic experimental procedures are described in Appendix A: 

Supplementary Material.  

2.3.2. Electrode cleaning and pre-treatment 

After immersing in the minimum volume of piranha solution (3:1-H2SO4 (95%): H2O2 (33%)) 

(CAUTION: piranha solution is strongly oxidising and should be handled with care!) for 10 

min in order to eliminate any organic matter from the gold surface, the working electrode was 

successively polished on a polishing cloth using alumina slurries of 1, 0.3 and 0.05 μm 

particle size (Buehler, Germany).  This working electrode was then further cleaned by 

immersion in H2SO4 (95%) and then HNO3 (65%) at room temperature for 10 min. Finally, 

the working electrode was subjected to cyclic voltammetry, carrying out potential cycles 



between 0 and +1.6 V in 0.1 M H2SO4 at a scan rate of 100 mV·s-1 until the characteristic 

voltammogram of clean polycrystalline gold was obtained [26]. 

For surface roughness calculation, the real or effective electrode area was calculated from 

the charge related to the gold oxide reduction peak from the former voltammogram, and 

using 400 µC/cm2 (charge corresponding to desorption of a monolayer of gold oxide on 

polycrystalline gold) to convert the charge value into real area. 

2.3.3. Sensing phase - preparation protocol 

The sensing phase was formed as a mixed SAM on the gold electrode surface by immersing 

the freshly cleaned and pre-treated gold working electrode overnight at 4 ºC in a 40 µM 

solution of the redox-labelled peptide (substrate, L-amino acids or control, D-amino acids) 

and freshly prepared PDT (600 µM) in ethanol. After washing with ethanol, the resulting 

SAM-modified electrode was immersed in 1 mM MCH in ethanol for 1 hour at room 

temperature. Finally, two washing steps were carried out, first in ethanol and then in 

phosphate-buffered saline (PBS). The modified electrodes were then stored in PBS solution 

at 4 ºC until use. 

2.3.4. Sensor measurements 

The modified electrodes were immersed in 1x PBS buffer solution and electrochemically 

interrogated using square wave voltammetry (SWV, at a frequency of 60 Hz, amplitude of 25 

mV and step potential of 5 mV) until a stable background signal was obtained. After addition 

of the target enzyme, the SWV signal was continuously monitored with time, with the 

resulting signal gain being expressed as the relative change in the SWV peak current with 

respect to the initial peak current (henceforth called the % signal change). 

 

3. Results and discussion 



To study the influence of the length of the spacer on the peptide-based electrochemical 

biosensor, a series of specific peptide-based probes were synthesised with methylene blue 

as redox tag and a terminal cysteine to anchor the probe to the electrode surface (via an S-

Au bond).  Each contained a PEG spacer of a specific number of ethylene glycol units (2, 4, 

6, 8 and 12) (Figure 1A) and a cleavable short peptide sequence (for trypsin) (Phe-Arg-Arg 

(FRR)). Their respective performances as an electrochemical protease detection platform 

were evaluated in parallel and compared to previously reported results. In all cases the 

equivalent uncleavable D-amino acid-based probe was also synthesised, which constituted a 

negative control.  

The sensing phase was formed through immobilisation of the appropriate peptide-based 

probe on the gold electrode, in a ternary-SAM (T-SAM) configuration [11, 20, 21], using 

PEG-based dithiol and mercaptohexanol as co-adsorbents. Previous work from our group 

[11] showed the suitability and stability of the T-SAM platform with respect to quantitative 

electrochemical peptide-based protease biosensing. These SAM-modified surfaces were 

electrochemically interrogated before and during their incubation with the target protease, 

which leads to enzyme-catalysed cleavage and release of the redox-containing fragment into 

solution (Figure 1B). This causes a decrease of peak current measured by SWV, which here 

is reported as % signal change (the relative decrease in SWV peak current with respect to 

the initial SWV peak current recorded, expressed as a percentage, prior to enzyme addition.)  

The choice of PEG-based moieties as spacers for the proposed sensing platform were 

based on previous work from our group, where we compared, side by side, the performance 

of two similar peptide-based probes for the analysis of trypsin, one containing a PEG-based 

spacer and the other an alkyl-based spacer, both with ferrocene as redox tag [11]. This 

showed that a PEG-based spacer enhanced the performance of the sensor, with two 

possible explanations, namely increased hydrophicilicity of the PEG-chains that promoted 

mobility and biomolecular interactions or the formation of a less packed SAM, giving greater 

spacing between immobilised probes. In order to confirm that the PEG-based spacers 



showed enhanced performance the present study included an alkyl-based spacer analogue 

to the PEG-2 probe (Figure 1A), where the PEG spacer was replaced with an alkyl chain (8-

aminooctanoid acid, Aoc). 

 

Figure 1. (A) Chemical structures of the different probes, each containing one of five PEG 

spacer lengths, with the number of EG units, denoted by PEG-x, or an alkyl-based spacer 

containing 8-aminooctanoid acid, Aoc. (B) Principle of detection for the peptide-based 

electrochemical platform. The protease enzyme (trypsin) catalyses the cleavage of the 

immobilised redox-labelled peptide (1), releasing the redox-containing fragment into solution 

(2), leading to a decrease of the electrochemical signal, observed by decrease in the SWV 

peak current. 

 



3.1. Effect of varying PEG-based spacer length on the initial current and the maximum % 

signal change recorded 

The proposed platform generates a real-time signal-off response, meaning that the presence 

of the protease causes a decrease in the measured SWV peak current, as this is related to 

the electrochemical reduction of the remaining methylene blue moieties attached to the 

electrode surface through the peptide-based probe. Interestingly, this decreasing signal 

never reaches zero (when expressed as % signal change it never gets to 100%), suggesting 

that a subset of the redox-tagged peptides are not accessible for enzyme cleavage.  We 

therefore tested the effect of increasing the PEG-based spacer length on both the initial 

current and the maximum % signal change recorded upon the addition of a high 

concentration of trypsin to explore any variation in probe orientation and accessibility. 

Both substrate and control-modified T-SAMs were prepared for all probes synthesised and 

their initial signal evaluated in PBS by means of SWV. Figure 2 shows representative 

voltammograms recorded in PBS prior to the addition of enzyme (Figure 2A) and the 

average initial currents (Figure 2B) for all the various PEG-based spacers under evaluation. 

Initial peak currents were seen to be significantly decreased for the two longest PEG-spacer 

lengths compared to the three shortest spacer lengths, with at least a 2-fold decrease when 

changing from the group (PEG-2, PEG-4 and, PEG-6) to (PEG-8 and PEG-12), the initial 

current values recorded for each different group are considered to be equal within the 

experimental error.  This is consistent with the hypothesis that the longest spacer lengths 

lead to less efficient redox transfer between the methylene blue and the electrode surface. 

Furthermore, a T-SAM prepared with the alkyl-based probe was also evaluated. The initial 

current registered was comparable to the one corresponding to the PEG-2 analogue spacer 

(Figure 2B), confirming the ability of both spacers to allow efficient redox transfer between 

the redox reporter and the electrode surface.  



 

Figure 2. (A) Typical SWV data registered for a T-SAM prepared using the denoted PEG-

based or Aoc spacer probes without target enzyme in PBS. (B) Average initial SWV peak 

current registered for each different probes under evaluation (average values and error bars 

calculated from at least 10 individual sensing SAM layers). 

 

The substrate and control-modified T-SAMs were then incubated with trypsin and the signal 

changes monitored over time by SWV. As shown in Figure 3, the maximum % signal change 

registered for the substrate-modified T-SAMs (Figure 3, grey columns) was the same within 

experimental error for all the PEGs used, indicating that probe accessibility does not depend 

significantly on PEG spacer length, and that approximately half of the surface-bound probes 

are cleavable.  A possible explanation for this effect could be due to the surface roughness 

of the gold electrodes used (defined as the ratio between the real and the geometrical area). 

The fraction of probes located in the “corrugations” of the electrode surface that lead to such 

roughness may well not be accessible to the enzyme, and thus will not be cleaved, resulting 

in a residual current. This explanation was previously envisioned and confirmed by a 

ferrocene-tagged peptide-based protease sensor for thrombin [10]. In this case, the use of 

ultra flat gold electrodes led to % signal change larger than 90%, that clearly differ from the 

typically 60% signal change recorded for the polished gold surfaces.  In this context, the 



electrochemically assessed roughness factor for the polished gold electrodes used 

throughout this study was found to be 3.2±0.8 (see section 2.3.2 for calculation protocol), 

which is in agreement to the values reported for the study mentioned above [9], confirming 

lack of accessibility as a plausible explanation for this effect. In contrast, the variation in the 

response observed for the control-modified T-SAMs (Figure 3, hatched columns) was 

significant, with PEG-6 producing the smallest % signal change within the negative controls, 

while PEG-8 produced the largest.  This is an interesting finding that we attribute to 

differences in the internal SAM structure for the different PEG spacers. 

 

 

Figure 3. % Signal change registered for different T-SAMs prepared with the various peptide 

probes containing the different PEG-based spacer lengths or Aoc probe and incubated with 

trypsin (100 nM) for substrate-modified T-SAMs (grey columns) and control-modified T-

SAMs (hatched columns). Data and error bars are typically from 3 individual SAM sensing 

layers. 

 

Additionally, a direct comparison with the alkyl-based spacer showed that this probe allowed 

the lowest % signal change registered upon addition of trypsin when compared with the 



PEG-based probes, confirming that PEG-based probes are able to form a sensing film that 

promotes enzyme cleavage, as reported previously for ferrocene-tagged peptides [11]. 

 

3.2. Analytical performance comparison for T-SAMs prepared with varying PEG-based 

spacer length probes as electrochemical platforms for trypsin detection 

All four surfaces (comprising the different probes (PEG-4 to PEG-12)) were assessed and 

compared to the previously reported PEG-2 spacer. For this purpose the sensing platforms 

were immersed in solutions containing varying trypsin concentrations (0.1-100 nM) and the 

electrochemical signal monitored in real-time, expressed as % signal change. Plotting the % 

signal at the end point of the incubation (at 90 min, taken as a practical maximum timescale 

of detection) against the logarithm of the concentration of trypsin showed a linear 

relationship, allowing each of the sensing platforms to be evaluated and compared.  Their 

analytical characteristics are compiled in Table 1. Limits of detection (LoD), calculated as the 

enzyme concentration corresponding to 90% of the initial signal value, and dynamic range 

proved the ability of all probes to support protease detection in a clinically-relevant range (5-

15 nM for healthy individuals and 34-85 nM in the case of pancreatic conditions) [27]. The 

lowest LoD (for PEG-4) was around one order of magnitude lower than that for the highest 

(the PEG-8 probe) and was four times lower than that for PEG-2. This is an interesting 

finding, as the % signal change values for a high trypsin concentration registered for these 

two probes (PEG-4 and PEG-8) were similar (Figure 3).  PEG-4 demonstrated the highest % 

signal change recorded when using a high (100 nM) trypsin concentration, which translated 

into higher % signal change differences for the same trypsin concentration compared to the 

other probes, and thus a lower LoD.  However, the optimum sensing platform was selected 

taking into consideration additional parameters such as the minimisation of non-specific 

adsorption, as discussed in section 3.3.  Quantitative kinetic analysis of the signal decrease 

was also carried out for each of the probes. The data were fitted to a Michaelis-Menten 

cleavage model previously used [11] and allowed the extraction of an effective reaction rate 



constant, keff, for each of the concentrations tested. Comparison of the calculated keff for the 

catalytic activity of trypsin 100 nM towards each probe showed comparable cleavage rates 

for PEG-2, PEG-4 and PEG-6 and a slightly but significantly lower rate for PEG-8 and PEG-

12 (Table 1). 

 

Table 1. Analytical performance and kinetic analysis comparison for trypsin protease 

sensors endowed with varying PEG-based spacer lengths. 

Probe 
(spacer) LoD (pM) Dynamic range 

(nM) 
CV% for 
[trypsin]=100 nM 

keff (min-1) for 
[trypsin]=100 nM 

T-PEG-2(1) 250 0.1-100 4 0.080±0.007 

T-PEG-4 88 0.1-100 7 0.068±0.005 

T-PEG-6 197 0.1-100 7 0.060±0.004 

T-PEG-8 789 1-25 6 0.043±0.001 

T-PEG-12 252 1-100 7 0.045±0.004 
(1) Data from reference [11]. CV%: coefficient of variation. 

 

3.3. Effect of increasing PEG-based spacer length on anti-fouling properties 

Non-specific binding can compromise the successful exploitation of reagent-less 

electrochemical platforms, which rely on a signal-off output [28]. This arises from the intrinsic 

nature of the signal source; a decrease when the target analyte (in this case enzyme) 

concentration increases renders it difficult to distinguish between a specific (in this case 

enzyme cleavage) event and a non-specific binding event onto the sensing platform, (such 

as the reduction of methylene blue accessibility to the electrode due to restriction of tethered 

probe flexibility).  

We therefore investigated the ability of our probes (PEG-4, PEG-6, PEG-8 and PEG-12) to 

vary the anti-fouling capability of the employed T-SAM sensing platform for protease 

detection. The non-specific binding for each of the T-SAMs prepared with such probes was 



assessed by monitoring the electrochemical signal change upon addition of bovine serum 

albumin (BSA). Furthermore, we also evaluated the alkyl-based probe (Aoc) and compared 

its anti-fouling properties to the PEG-based spacers. Figure 4 depicts the % signal change 

registered for substrate-modified surfaces for the specific interaction with 100 nM trypsin 

(grey columns) compared to the % signal change registered upon the addition of 100 nM 

BSA (dotted columns). As mentioned before, the decrease of the former SWV signal change 

is due to the specific interaction arising from the release of the methylene blue-containing 

peptide fragment into solution as a consequence of the catalytic cleavage of the substrate 

probe by trypsin. For the latter signal change, the registered signal decrease was attributed 

to the reduced probe flexibility caused by BSA non-specific adsorption on the probe-modified 

surface, which hindered the redox tag in its approach to the electrode surface. Reassuringly, 

for all the different PEG-based lengths tested, the % signal change registered was larger for 

the specific interaction with trypsin than for the non-specific one with BSA. However, it is 

important to note that the magnitude of the non-specific binding varies with the PEG-based 

spacer length, with the minimum for the PEG-6 probe corresponding to less than half the 

value recorded for both PEG-12 and PEG-2 analogues. Figure 4 also depicts the fraction of 

the specific versus the non-specific signal, as a means of quantifying the degree of anti-

fouling ability for each probe. From the data, it emerges that changing the length of the PEG-

based spacer allows tuning of the anti-fouling capability of the T-SAMs, with PEG-6 offering 

the best spacer length, conferring the sensing platform minimum non-specific binding 

interaction, thereby assuring that the maximum signal registered is due to the specific 

catalytic cleavage from trypsin.  It is also significant that the alkyl-based probe showed the 

poorest anti-fouling properties, indicated by the lowest specific/non-specific signal ratio, 

supporting the hypothesis that having a PEG-based spacer contributes to the minimisation of 

non-specific interactions on the sensing surface.  



 

Figure 4. (A) Percentage signal change for the specific interaction registered upon addition 

of trypsin 100 nM (grey columns) or for the non-specific interaction with BSA 100 nM (dotted 

columns) after 70 min incubation.  Black line = specific versus non-specific ratio registered 

for each probe. Data and error bars are typically from 3 individual SAM sensing layers. (B) 

Ratio for the measured effective reaction rate constant, keff, for the specific (trypsin 100 nM) 

and non-specific (BSA 100 nM) binding.  

 

Additionally, as with the enzyme studies above, the kinetics of the signal change caused by 

non-specific adsorption were also evaluated. Data corresponding to the incubation of each 

individual sensing platform, prepared with the different probes, with 100 nM BSA were fitted 

to the same Michaellis-Menten kinetics model as for the enzyme cleavage studies, allowing 

the extraction of an effective reaction rate constant, keff, for each case. PEG-2, PEG-4, PEG-

6 and alkyl-based (Aoc) probes showed a good fitting to the mentioned model, whereas 

PEG-8 and PEG-12 appeared to have different time dependences for non-specific binding 

signal changes. A direct comparison of the measured keff for both trypsin and BSA 100 nM 

for each probe showed PEG-6 to exhibit not only the smallest but also the slowest non-

specific binding of BSA compared to trypsin, data that confirms the optimal anti-fouling ability 

of this probe. Once more, the alkyl-based probe showed the poorest performance, 

presenting the fastest non-specific binding of BSA compared to enzymatic trypsin cleavage.  



Finally, with the aim of gaining a further understanding on how the different spacers affect 

the hydrophilic/hydrophobic balance of the SAM-modified electrode surfaces the contact 

angle for each of the T-SAMs prepared with the different probes under study was analysed. 

Interestingly, the measured contact angles (see supporting material) showed no significant 

differences among the various probes tested, suggesting that the peptide moiety dominates 

the external region of the sensing film. This finding reinforces the hypothesis that when a 

protein (here trypsin or BSA) reaches the sensing surface there are no significant differences 

on this outer layer dependant on the spacer. We suggest that the differences in performance 

in the present study for the various spacers are based on how these spacers promote/hinder 

the accessibility to the inner part of the SAM, facilitating access to the cleaving site for 

trypsin while preventing the non-specific binding of other proteins, such BSA to the interior. 

Thus a molecule of BSA that reaches the outer part of the sensing film has hindered access 

to the inner part of the film, preventing it from forming non-specific interactions depending on 

the nature of the spacer (an alkyl-based spacer shows the poorest specific/non-specific 

signal ratio in comparison to PEG-based spacers) and the length of the PEG moiety, 

reaching its optimum length at PEG-6. In line with this, PEG-2 and PEG-4 seem not long 

enough to prevent non-specific adsorptions, while PEG-6 appears to give the surface 

optimum anti-fouling capabilities. Increasing the PEG length (PEG-8 and PEG-12) did not 

translate in enhanced performance, maybe due to enhanced flexibility that can also facilitate 

access to the inner part of the sensing film.  

4. Conclusions 

We have presented a systematic study of protease detection using a peptide-based 

electrochemical biosensor platform, whose signal arises from the loss of the redox tag 

caused by specific catalytic cleavage of the peptide substrate, concentrating on the effect of 

the spacer length.  Various probes were synthesised, endowed with PEG-based spacers of 

different lengths and immobilised in a T-SAM configuration onto a gold surface. An alkyl-

based spacer analogue probe was also synthesised in order to compare the effect of the 



nature of the spacer. The ability of all the proposed probes to support efficient trypsin 

detection was assessed and compared to previously reported results. It rapidly became clear 

that increasing the length of the spacer led to a decrease of the initial current registered by 

means of SWV for PEG-8 and PEG-12 when compared to PEG-2, PEG-4 and PEG-6. 

Nevertheless, a comparable maximum % signal decrease was registered for all probes upon 

incubation with a high trypsin concentration, suggesting that PEG length does not have a 

strong influence on probe accessibility. All probes exhibited suitable analytical performance 

in terms of LoD, ranging from 90-800 pM. Interestingly PEG-6 showed the highest maximum 

% signal change for the substrate probes. It also displayed the minimum response for the 

negative control experiments and upon incubation of a non-specific protein (BSA), showing 

that differences in PEG-based spacer length can “tune” the anti-fouling properties of the 

sensing platform. On the contrary, the alkyl-based probe rendered the poorest anti-fouling 

abilities, confirming the nature of the spacer also plays an important role additionally to its 

length. In summary, PEG-6 has been shown to produce minimal non-specific binding on the 

T-SAM, conferring most robustness towards analysis in biologically relevant matrices, and 

an optimum spacer length of the probes studied for the proposed sensing strategy, resulting 

in a clinically relevant LoD of 200 pM for the protease enzyme trypsin. 
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