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SUMMARY

The results of an investigation to determine the effect of steady-
state temperature distortion and combined steadyv-state pressure-tempera-
ture distortion on flow at the inlet to a turbofan engine are reported
herein. Flow angle, static pressure, total temperature and total
pressure instrumentation was placed between a rotatable hydrogen-fueled
burner, rotatable~screen assembly and the engine inlet guide vanes. For
all of the configurations, measurcments were recorded at each of twelve,
30° steps of distortion rotation. Experiments were conducted with low-
rotor speeds of 6000 and 8600 rpm and a Reynolds Number Index of 0.5.
These parameters were based on the undistorted sectors at the engine
inlet.

At the entrance to the engine, yaw angle (circumferential) was
larger than pitch angle (radial). Both pitch and yaw angles were
largest in the hub region of the engine inlet. As the flow approached
the engine the yaw angle increased while the pitch angle decreased.
Low-~rotor speed only slightly effected pitch and yaw angle magnitude.
A change in distortion extent produced a circumferential shift in the
pitch and yaw angle variation but the flow angle amplitudes remained
constant.

Along the inlet-duct and extended bullet nose walls the magnitude
of the static pressure distortion increased exponentially as the flow
approached the engine inlet. For the steady-state temperature dis-
tortion tests, static pressure variation along the inlet duct wall was
a function of low-rotor speed and distortion extent.

INTRODUCTION

Recently, analytical effort has been directed towards evolving
compressor models t 1t can predict the effects of inlet distortion on
the operating characteristics and performance of turbofan engines
(ref. 1, 2 and 3). 1In the evaluation of these models, it is important
to know the actual flow field at the face of an engine being subjected
to upstream pressure, temperature or combined pressure and temperature
distortions. Experimental investigations, therefore, have been con-
ducted to determine the inlet flow distributions associated with various
types of distortion. Flow distributions resulting from 180°-extent
pressure distortion are reported in references 4, 5 and 6 and the effects
of temperature distortions of 90° to 360° in extent are presented in
references 7, 8 and 9.

The purpose of the investigation presented in this paper was to
further evaluate inlet flow distributions due to temperature distortions
of various extents and, also, inlet flow distributions resulting from
combined pressure and temperature distortions. For this purpose, in
addition to standard surveys of total pressure and total temperature at



the engine inlet, freestream flow angles were measured in radial

surveys at two axial locations including the engine inlet guide vanes.
Static pressures were measured along the inlet duct and extended bullet
nose walls. In reference 10 static-pressure distortion amplification is
discussed and predicted to be exponential upstream of the engine inlet.
Lastly, total pressure and total temperature measurements were recorded
at several axial locations between distortion devices (hydrogen burner
and rotating-screen assembly) and the engine inlet.

Data are presented for two low-rotor speeds of 6000 and 8600 rpm
and for a Reynolds Number Index of 0.5 (based on the undistorted sectors
at the engine inlet). The data cover distortion extents of 90° to 180°
for temperature distortion experiments and extents of 180° each for
combined pressure and temperature distortion experiments.

APPARATUS

Engine

The engine used for this investigation was a production TF30-P-3
twin-spool turbofan engine. The engine has fixed inlet guide vanes
(IGV's), 7th and 12th stage compressor bleeds and a variable exhaust
nozzle. The engine was installed in an altitude chamber by a direct-
connect type of installation as shown in figure 1. An engine schematic
ana instrumentation stations between the distortion generator and engine
inlet guide vanes are shown in figure 2.

Distortion Devices

The gaseous-hydrogen-fueled burner used to produce steady-state
temperature distortion was installed upstream of the engine inlet bell-
mouth (figs. 2 and 3). The burner had the capability of being rotated
$30° from the center position and was divided into four individually
controlled quadrants. Air passing through the burner was heated in se-
lected 90° sectors. Each 90° sector of the burner contained five swirl-
can pilot burrers to provide the ignition source for the hydrogen. In
addition each 90° sector contained five annular gutters supported by one
radial gutter ani five~circular-tube manifolds (one inside each annular
gutter) with smail holes for hydrogen injection. A hydrogen manifold
located outside tne burner was connected t~ the five circular tube-
manifolds in each 90° sector by tubing and a flow-control valve. The
outer hydrogen m:rnifold was connected to the hydrogen supply by addition-
al lengths of tubing and a main flow-control valve. The burner was
located 5.85 meters (230.5 inches) upstream of the engine inlet guide
vanes.

Inlet total-pressure distortion was generated by mounting a screen
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configuration on a motor driven rotatable-screen assembly (fig. 4)
during combined steady-state pressure~temperature distortion tests only.
The screen assembly was located approximately one engire diameter or
0.951 meters (37.4 inches) upstream of the engine inlet guide vanes.

The screen configuration used was of 180°-extent and 40.2 percent block-
age which produced a total-pressure distortion of 10.7 percent.

As in references 2 through 5, an extrnded bullet nose was installed
between the rotable-screen assembly and the engine inlet. This extended
bullet nose provided the surface for the installation of a row of hub
static taps and hub boundary layer measurements.

Instrumentation

Inlet duct and engine inlet instrumentation is outlined schematic-
ally in figures 2 and 5. Pressures were recorded on scanivalves and
calibrated for a range of 0 to 69 kPa (10 psia). Temperatures were
measured using chromel-alumel thermocouples referenced to a 339K
(610°R) oven. Reference 1l discusses Mach number recovery corrections
used for thermocouples.

The inlet duct and extended bullet nose wall boundary layer yaw
(circumferential variation) probes are detaiied in figure 6. Yaw angle
is positive when the tangential flow component is in the direction of
fan rotation, figure 6. An inlet guide vane pitch-yaw probe is sketched
in figure 7. This probe was mounted on the leading edge of an inlet
guide vane and measured the freestream pitch (radial) angle in addition
to the yaw angle of a streamline. The pitch angle is positive when the
radial flow component is oriented from tip to hub (fig. 7). The station
2 pitch~yaw probe is of similar design. With the exception of one
temperature rake at 47 degrees, flow angle probes were circumferentially
positioned at duct locations which avoided wakes from upstream instru-
mentation. Probe calibrations were obtained over a flow angle range of
$30° at the same stream Mach number conditions as encountered during
engine tests. The estimated systematic error is about +2/3°, and the
random error is roughly £1/2°. Additional information on flow angle
measurements can be found in reference 12.

PROCEDURE

The hydrogen burner was used to produce steady-state temperature
distortion at the engine face. With the burmer at the 0° position (see
fig. 3), quadrants I and II were ignited and the gaseous-hydrogen flow
increased until the average temperature at the engine face (0° to 180°
position) was approximately 361K (650°R) and a data point was recorded.
Quadrant I of the burner was then shutdown and quadrant III of the burmer
was ignited and hydrogen flow increased until quadrants II and III pro-
duced approximately 361K (650°R) at the engine face (90° to 270° position).
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This mode of burner sector operat”-n maintained 180°-extent
temperature distortion but rotated the distortion by 90°. This

procedure was continued until the 180°-extent temperature distortion
was completely rotated over the engine face. A total of 4

steady-state data points were recorded at each burner position of -30°,
0°, +30°. The result is twelve data points per rake for each profile.
The same procedure was utilized for 90°-extent temperature distortion
tests. The average temperature over the distorted sectors for these
tests was approximately 339K (610°R).

The rotation of the temperature distortion for temperature distor-~
tion tests was used in conjunction with the rotating screen assembly for
the steady-state combined pressure-temperature distortion tests. The
burnc - was set at 0° or rotated *30° from the zero position. The 180°-
extent screen was rotated such that one of the following four configura-
tions pertained: (1) the screen preceded the 180°-extent temperature
distortion by 90°, (2) the screen completely overlapped the 180°-extent
temperature distortion, (3) the screen lagged the 180°-extent tempera-
ture distortion by 90° and (4) the screen was 180° out-of-phase to the
180°-extent temperature distortici. A total of twelve data points in
increments of 30° were recorded for each of the 4 hydrogen-burner and
screen assembly orientations. The average temperature over the distort-
ed sectors for these tests was approximately 317K (570°R).

For both steady-state temperature distortion and combined pressure-
temperature distortion tests the presentation of a set of 12 data points
is identical. The burner was set at 0° and the first data point was
plotted at its installed angular rake (or tap) position. The second
data point was then plotted at a step of 30° but in the opposite
direction to burner rotation or index of ignited burner sectors. This
procedure is analogous to holding the burner in the fixed position and
rotating the instrumentation. Pressure data was correcied to upstream
plenum pressures in order to compensate for run-vo-run variations.

At each of the inlet duct wall and bullet nose static taps (fig.5),
a maximum and minimum static pressure was identified for each disiortion
test series of 12 data points. The dif{erence between this maximum and
minimum was normalized with a similar difference at the static taps
nearest the IGV's (station 2B) and presented as a relative static
distortion level.

The constant Reynolds Number Index (RNI) was achieved by maintain-
ing approximately a 289K (520°R) total temperature in the undistorted
sectors of the burner and adjusting the undistorted inlet total pressure
to obtain a value of 0.5 RNI. Low-rotor mechanical speed was adjusted
during temperature distortion and combined distortion tests in order
that the corrected low~rotor speed based on the undistorted burne:
sectors resulted in speeds of 6000 and 8600 rpm.
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TEMPERATURE DISTORTION RESULTS

Flow Angles

Clean inlet.- In order to obtain the net effects of distortion
extent or position on flow angle, the clean inlet (no distortion) flow
angles must be subtracted from the temperature and temperature-pressure
produced flow angles. Figure 8 shows the undistorted streamline flow
angles at the entrance to the inlet guide vanes (IGV's) as a function
of corrected low-rotor speed. The pitch (radial) and yaw (circumfer-
ential) angles range between +2° to -1° and are relatively comstant
with change in speed. The flow angle profiles presented in this report
have not been corrected for the clean inlet configuration.

Low-rotor speed variation.- Figure 9 shows that a change in low-
rotor speed has only a slight effect on flow angle amplitude. Flow
angle data obtained at 8600 rpm has a slightly larger amplitude than
data obtained at 6000 rpm. A computation using the data presented in
curve (F-1), figure 9 reveals that a change in station 2C hub flow
angle, AB , (amax‘ﬁmin) value measured over the relative circumferential
position of th~ flow measurement probe is 9° for the 8600 rpm data and
7.25° for the ou00 rpm data. The sensitivity of a change in hub flow
angle is therefore .058 degrees per percent change in engine speed and
.148 degrees per percent change in total-temperature distortion. The
slight variation between the two sets of data is therefore due mostly
to the difference in total-temperature distortion defined as (TpgayTmin)/
Tavg and noted in the figure. The maximun, minimum and average values
in the above expression refer to rake average values. The low-rotor
speeds and the Reynolds Number Index were corrected to the undistorted
sectors of station 2 for all the tests.

An examination of figure 9 flow angle profiles reveals that the
pitch angle variation is reduced and the yaw angle variation is in-
creased as a streamline approaches the engine inlet. Also at the IGV's
(Sta. 2C), the yaw angle variation is larger (+6° to -2.5°) than the
pitch angle variation (+2° to 0°). The magnitudes of both pitch and
yaw angles (freestream and boundary layer) at the engine inlet is
largest in the hub region. These results are similar to those noted in
reference 13 for steady-state pressure distortion tests. It should be
noted that station 2 boundary layer yaw data presented in figure 9 was
obtained with the outer most immersion probes.

Distortion extent.- The effect of temperature distortion extent
on flow angles at stations 2C and 2 is shown in figure 10. As in the
figure 9 profiles, pitch angle variation decreases and yaw angle vaiilu-—
tion increases as a streamline approaches the engine inlet. Distortion
extent does not effect pitch angle circumferential variation at the
tip and midspan regions of the IGV's. Curve (C-1) of figure 10 shows
that distortion extent does influence the angular location but not the
magnitude of the peak pitch angle in the hub region of the IGV's.
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Distortion extent does influence the angular location but not the
magnitude of the peak yaw angle. The largest yaw angle variation
occurs in the hub region of the engine inlet but there is no notice-
able increase in vaw angle between stations 2 and 2C.

Lastly curve (A-3) of figu.e 10 shows the variation of hub and
tip boundary layer yaw angle at station 2. The largest variation in
flow angle occurs in the hub region of the engine inlet near the extend-
ed bullet nose surface. As in the other profiles of figure 10, dis-
tortion extent influences the angular location but not the magnitude of
the boundary layer flow angle profile.

There is a slight difference in amplitude between data recorded at
an extent of 90° and 180° as observed in figure 10. A computation
using data presented in curve (F-1), figure 10 shows a change in station
2C hub flow angle, BB, ( x-qmin) measured over the relative circum-
ferential position of the flow measurement probe to be 5.4° for the
180° extent data and 4,8° for the 90° extent data. The sensitivity of
a change in hub flow angle is therefore -.037 degrees per percent change
in total-temperature distortion. Since both -ets of data were recorded
at an engine speed of 8600 rpm the slight variation in the data is due
to the difference in total-temperature distortion, (Tmax-Tmin)/Tavg as
noted in the figure.

Effect of distortion type.~ Figure 1l compares the variation of
hub yaw angle data at station 2C (IGV entrance) obtained from steady-
state 180°-extent pressure and temperature distortion tests.

The curves in figure 11 show that for both types of dfstortion low-
rotor speed has a slight effect on yaw angle magnitude. The interesting
aspect of the figure is that steady-state pressure and temperature dis-
tortions produce yaw angle profiles which are 180° out-of-phase with
each other. Steady-state 1£0°-extent pressure distortion produces a
yaw-angle profile which vavies 31.8° (+16.8° to -15°) with peak positive
and negative yaw angles located circumferentially at 13° and 173°.
Steady-state 180°-extent temperature distortion produces a yaw angle
profile which varies 9.1° (+6.3° to -2.8°) with a peak positive yaw
angle at 203° and a peak negative yaw angle at 23°, In both cases the
distortion extended from 0° to 180°.

. The maximun positive yaw angle produced by pressure distortion
occurs as a rotor blade enters a low static pressure region and the
maximum negative yaw angle occurs as the votor blade exits the low
static pressure region. Pressure distortion results in a flow into the
low pressure region behind the screen. The existence of a low static
pressure region from 0° to 180° is verified by the static~pressure pro-
file shown in figure 12, Similarly temperature distortion heats the air
over the extent of 0° to 180° causing the ailr to expand and thus in-
crease the static pressure level as shown in figure 12. The result of
the increase in static pressure is flow out of the high temperature
region between the burner and engine inlet.



Static-Pressure Distortion

An investigation of static-pressure distortion change along the
inlet duct wall and bullet nose extension for variations in low-rotor
speed, distortion extent and effect of the type of distortion (tempera-
ture or pressure) is shown in figures 13 through 15. The value of
static pressue-distortion was obtained by determining the maximum and
minimum pressures at each static tap location from the test set of 12
data points (see Procedure). The distortion change presented in this
report is the same as that used in reference 13 and defined as (Ps,max~
Ps,min) for each location, normalized by (Ps’ma --Ps,m ) at station 2B,
or, APs/(APs)2B. The total-temperature distortion in percent is defined
and noted for data presented in figures 13 through 15. The total-
pressure distortion in percent is defined and noted in figure 15.

Presentation of inlet~duct wall data.- The duct wall data of
figure 13(A) compares more favorably with the exponential curve of ref-
erence 10 than the bullet nose data of figure 13(B). From the duct wall
data of figure 13(A) it is observed that the 8600 rpm data matches the
exponential curve for values of (x/rm) over the range of 0.18 to 1.

From figures 14 and 15 it is observed that 180°-extent temperature
distortion with a total-temperature distortion range of 18.7 to 31.3
percent results in static pressure profiles which compare favorably with
the exponential curve over the range (X/ﬂn):'l'

Temperature and Pressure Profiles

Axial variation of temperature and pressure along inlet duct.-
Figure 16 describes the axial variation of freestream rake-average
total temperatures at station 1 (downstream of the burner) and station
2 (upstream of the engine inlet). The total-temperature profiles show
that there is no change in total-temperature level with axial distance.
The data in figure 16(A)is at a slightly higher amplitude than the data
of figure 16(B) due to a higher total-temperature distortion value as
noted in the figure.

Figure 17 shows total and static-pressure profiles at the inlet to
the IGV's. The solid line in figure 17(B) shows a predicted static-
pressure profile using Mazzawy's model (ref.3). Although the model
prediction is for the IGV inlet, it is compared to statlons 2B and B
(two static tap measurements closest to the IGV's) as static pressure
measurements are not available at the IGV inlet. It is noted from the
figure that the model satisfactorily predicts pressure levels.
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COMBINED DISTORTION RESULTS

Flow Angles

The effect of combined pressure-temperature distortion on free-
stream and boundary layer yaw angles at stations 2C and 2 are shown in
figure 18. Streamline pitch angle variation is not discussed since the
pitch angle at station 2C is small in magnitude when compared to yaw
angle.

Yaw angle variation.- An examination of figure 18 indicates that
yaw angle amplitude increases as the streamline approaches the engine
inlet. The largest yaw angle variation alsc takes place in the hub
region of the engine inlet. The latter statement applies to both free-
stream and boundary layer regimes. These results are similar to those
obtained during steady-state temperature and pressure distortion tests.
The largest variation in both freestream and boundary layer yaw angle at
stations 2C and 2 occurs when the pressure-~temperature distortions are
180° out-of-phase. This result is expected if we consider the yaw angle
profile associated with pressure or temperature distortion as presented
schematically in figure 19(A) and 19(B). Over a 180°-extent distortionm,
the yaw angle slope is negative for pressure distortion and positive for
temperature distortion., For combined distortion with pressure and
temperature distortions 180° out-of-phase with each other the resultant
yaw angle variation is larger than the yaw angle variation associated
with other combined distortion orientations as the yaw angle profiles
for each individual distortion (temperature and pressure) are aligned
(180° out-of-phase, see fig. 19(C)). The smallest variation in both
freestream and boundary layer yaw angle at stations 2C and 2 occurs when
pressure-temperature distortions overlap (superimposed). For this com-
bined distortion orientation the yaw angle profile associated with each
individual distortion is opposed resulting in a reduction in profile
amplitude as shown in figure 19(D).

It should be noted from figure 18 that the maximum and minimum yaw
angles are not exactly at the edges of the pressure distortion but are
within the distorted sector of the flow field, This indicates that the
extent of the low press.re field produced by the screen is slightly less
than the intended 180°. Also at these edge points a probable error in
yaw angle measurement of approximately 1° occurs because of the steep
total-pressure gradients. This error is in addition to that mentioned
in the Instrumentation section. A correction would decrease the yaw
angle magnitude shown at these locations.

Change in inlet yaw angle.~ Figure 20 shows the variation in hub
region yaw angle B, (Bray ~Bnin ) with static-pressure distortion at Sta.
2B (static tap location nearest the IGV's). As static pressure dis-
tortion at the engine inlet increases, the streamline at the edge of the
distortion entering the engine Is turned through a correspondingly
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larger yaw angle. The apparent generalization of the flow angle varia-
tion shown on figure 20 indicates that it is a function of static
pressure distortion rather than total pressure and total temperature,
separately or in combination. At the hub section shown, the sensitivity
is approximately 3 degrees per percent of static pressure distortion.
Pressure distortion data shown in this plot was obtained from reference
13.

Static Pressure Distortion

Figure 21 shows the static-pressure distortion change along the
inlet duct wall and bullet nose extension for variations in pressure
and temperature distortion orientation.

The exponential curve of reference 10 satisfactorily predicts static
pressure amplification in the range of (x/r_)<1. Flow in the region of
(x/rﬁ)>l is complex and the exponential pre&iction does not adequately
predict static-pressure amplitude. The static-pressure distortion
results along the inlet duct wall and extended bullet nose surface, are
similar to steady-state temperature distortion tests previously dis-
cussed and the steady-state pressure distortion tests presented in
reference 13,

Temperature and Pressure Profiles

Axial. variation of temperature and pressure profiles along the

inlet duct.~- Figure 22 describes the axial variation of freestream

rake-average total pressures and total temperatures between Station A
(downstream of the screen) and station 1 (downstream of the hydrogen
burner) to the engine inlet. The pressure and temperature profiles show
that there is no change in total-pressure and total-temperature ampli-
tude with axial distance as flow approaches the engine inlet. The data
also shows the relationship of the pressure and temperature profiles to
each other based on the orientation of each distortion device (screen
and hydrogen burner). When the two distortion devices are 180° out-of-
phase with each other each half of the engine inlet is subjected to

only one type of distortion. This orientation produces the total-
temperature and total-pressure profiles shown in figure 22(A). When the
180°-extent distortion patterns produced by the screen and the hydrogen
burner are superimposed ~a each other one half of the engine inlet is
subjected to both distortions. The total-temperature and total-pressure
profiles associated with this configuration are shown in figure 22(C).
Inlet total-pressure and total-temperature data for the two 90° over-
lapping distortion orientations are shown in figure 22(B) and 22(D).

Static pressure profiles at engine inlet.- Static-pressure profiles
at station 2B (nearest to the engine inlet) for different orientations
of combined pressure and temperature distortion are shown in figure 23.
The sinusoidal profiles and the distortion orientation diagrams shown

T
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on the figure verify that streamlines at the engine Inlet enter a low
static-pressure region from 0° to 180°, produced by a 180°-extent
screen. Pressure distortion results in a flow into the regions behind
the screen. Similarly an increase in amplitude of static-pressure
profiles from 180° to 360° is due to 180°-extent temperature distortion.
Temperature distortion heats the air causing air to expand over the
180°-extent and therefore the corresponding increase in static-pressure
profiles.

An examination of the sinusoidal profiles of figure 23 shows that
from 0° to 90° the lowest static pressure level occurs for the orienta-
tions where: 1) pressure distortion precedes temperature distortion by
90° and 2) pressure and temperature distortion are 180° out-of-phase.
These two distortion orientations result in pressure distortion only
over the first 90° sector. From 90° to 270° the profile which has the
stee;est positive gradient is for the distortion orientation where
pressure distortion leads temperature distortion by 90°. This orienta-
tion has a 180°-extent temperature distortion from 90° to 270° which
results in expansion of .heated air and the resultaat increase in profile
gradient. The sector which extends from 270° to 360° shows that dis-
tortion orientations where: 1) temperature distortion is 180° out-of-
phase with pressure distortion and temperature distortion precedes
pressure distortion by 90° results in profiles which produce the highest
static pressure level due to t.e temperature distortion in this quadrant.

Figure 24 compares the variation in static-pressure profiles at the
engiue inlet produced by combined pressure-temperature distortion with
that predicted using Mazzawy's model (ref. 3). The model prediction as
previously noted is for the IGV inlet but is compared to station 2B data
as static pressure measurements are not available at the IGV inlet. It
is observed from the figure that the model satisfactorily predicts
static pressure level between 30° to 330°. The model does not adequate-
ly predict sinusoidal pressures level from 0° to 30° (the first 30° of
pressure distortion) and from 330° to 360° (the last 30° of the undis-

t ‘vted region). A more thorough comparison of combined pressure-
temperature distortion data with Mazzawy's model is presented in ref. 14,

SUMMARY OF RESULTS

A TF30~P-3 turbofan engine fitted with an extended bullet nose was
tested with steady-state inlet circumferential temperature distortion
and combined pressure~temperature distortion. The results in terms of
inlet flow angle, static-pressure distortion and circumferential
temperature and pressure profiles are summarized as follows:

1. Pitch angle (radial variation) is much smaller than yaw angle
(circumferential variation) for both temperature distortion anl combined
distortion,

2, Yaw angle variation is ::ually largest in the hub region for
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the temperature levels and screen configuration tested. Yaw angle
variation increases in magnitude as flow approaches the engine inlet.

3. Station 2 boundary layer yaw angle was largest in the hub
region for both temperature distecrtion and combined distortion tests.

4. Yaw angle data obtained from inlet circumferential temperature
distortion tests resulted in flow angle profiles which were 180° out-of-
phase with flow angle profiles obrained from inlet circumferential
combined pressure~temperature distortion tests.

5. An increase in extent from 90° to 180° for inlet circumferen-
tial temperature distortion tests had no effect on pitch or yaw angle
magnitude.

6. Temperature-induced and combined temperature and screen-
induced static-pressure distortions increased exponentially as flou
approached the engine inlet.

7. Temperature~induced total temperature circumferential profiles
remain nearly constant as flow approaches the engine iilet.

8. Combined temperature and screen-induced total-pressure and
total-temperature profiles remain nearly constant as flow approaches
the engine inlet. '

9, The static-pressure distortion profiles at the engine inlet are
sinusoidal for all combined distortion orientations tested.

10. The sensitivity of a change in hub region yaw angle is approx-
imately 3 degrees per precent of static pressure distortion. This
statement is valid for steady-state pressure, temperature and combined
disturtion at the engine inlet.
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APPENDIX - SYMBOLS

e natural Logarithm base

IGv inlet guide vane

N1 low-roter specd, rpm

NlRZUD low-rotor speed corrected to undistorted sectors at station 2,
Nl//ﬁ;, rpm

P pressure, Pa

RNIL D Revnolds Number Index based on values measured in the undis-
torted sectors of inlet, &/(u/ NSLQ 0

r mear radius of IGV, 0.34m

T Temperature, K

U tangential velocity, m/sec

LA axial velocity, m/sec

X length, m

A maximun~minimum value

a pitch angle, deg.

B yaw angle, deg.

8 ratio of total pressure to standard sea-level static pressure

0 ratio of total temperature to standard sea-level static tem-
perature

u absolute viscosity, kg/(m-sec)

Subscripts:

A station A, pressure measurement station located 83.55cm upstream

of inlet guide vanes
AVG  average
B station B, row of statlc taps along inlet duct wall and extended
bullet nose
MAX maximum value
MIN minimum value
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2B
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static condition
standard sea-level static condition
total condition

station 1, airflow metering station, located 250.24cm upstream of
inlet guide vanes

station 2, engine inlet temperature aud flow angle measurement,
located 13.39cm upstream f the inlet guide vanes

station 2A, engine inlet pressure measurement, located 44.4lcm
upstream of inlet guide vanes.

station 2B, start of static rressure taps along inlet duct wall
and extended bullet nose, located 6.17cm upstream of inlet guide
vanes

station 2C, flow angle measurement at entrance to inlet guide
vanes
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Figure 9, - Effect of low-rotor speed on flow angle variation at station 2C and 2, 1809-extent temperature
distortion with heated quadrants at 361 K (650° R} and a5 RNI,jp based on undistorted pressure and
temperature at station 2,
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Figure 10. - Effect of temperature distortion extent on flow angle variation at station 2C and 2. Heated
quadrants at 339 K (610° R). 860 rpm low-rotor speed and 0. 5 RNIUD based on undistorted pressure
and temperature at station 2
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Figure 23 - Circumferential variation of static pressure at station 2B (duct wall). 180°-extent pressure
distortion using 40. 2 percent blockage screen and 180P-extent temperature distortion produced by
burner with distorted sactors at engine face at 317 K (570° R), 8600 rpm low-rotor speed and Q 5
RNI)yp are based on undistorted sectors at station 2
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Figure 24, - Circumferential variation of static pressure at engine inlet. Pressure distortion produced
by 18(P-extent, 4a 2 percent biockage screen, 18(P-extent temperature distortion produced by burner
with distorted sectors at engine face 2t 317 K (570° R), 8600 rpm low-rotor speed and Q. 5 RNIyp, are
based on undistorted sectors at station 2



