
M. Ortiz 
Division of Enqineerinq 

Brown University, 
Providence, RI 02912 

A. Molinari 
Laboratoire de Physique et Mecanique 

des Materiaux, 
Faculte des Sciences, 

lie du Saulcy, 
Universite de Metz, 

57000 Metz, France 

The problem studied in this paper concerns the dynamic expansion of a spherical 
void in an unbounded solid under the action of remote hydrostatic tension. The 
void is assumed to remain spherical throughout the deformation and the matrix to 
be incompressible. The effects of inertia, strain hardening, and rate sensitivity nn 
the short and long-term behavior of the void, as well as on its response to ramp 
toadmg, are mvest1gated m detail. 

l Introduction 
The problem studied in this paper concerns the dynamic 

expansion of a spherical void in a unbounded rate-dependent 
solid under the action of rapidly varying remote hydrostatic 
tension. Conditions such as those investigated here are prev­
alent in the vicinity of a crack running through a ductile metal, 
in porous solids subjected to blast loading, and in other sit­
uations of practical interest. In particular, void growth and 
coalescence is known to be a principal micromechanism of 
fracture in ductile metals. In dynamic crack growth, the mi­
croinertia associated with the rapid growth of the voids may 
influencP, in w:lys :ls yPt nnt fully 1mrlerstoorl, the conditions 
under which a ductile mode of fracture becomes possible. 

Whereas much attention has been given to void growth under 
static conditions, the dynamic problem has remained relatively 
unexplored. Carroll anrl Holt (1972) investig::iterl the static :mrl 
dynamic collapse of voids using a hollow sphere model. The 
solid was assumed to be rate insensitive and ideally plastic. A 
notable outcome of their analysis is the small effect of elastic 
compressibility on the solution. Johnson (1981) applied Car­
roll's approach to voids expanding in a viscoplastic solid de­
scribed by a simple linear overstress model. Glennie (1972) 
sought to extend the analysis of Rice and Johnson (1970) for 
a void growing in the vicinity of a blunted crack tip in a plastic 
material, by taking dynamic effects into consideration. How­
ever, his analysis is restricted to ideally plastic behavior and 
linear viscosity. More recently, KIOcker and Montheillet (1988) 
have conducted numerical calculations for a dynamically grow­
ing void in a plastic solid obeying a linear stress-strain rate 
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law. Their results exhibit the potentially stabilizing effect of 
inertia at the microscale. 

The pmpose of this investigation is to develop an under­
standing of the effect of inertia, strain hardening, and rate 
dependence on void growth in porous metals under conditiom 
of rapid loading. To simplify the analysis, it is assumed that 
the material is incompressible and the void remains spherical 
at all times. These assumptions determine the velocity field 
throughout the body once the rate of expansion of the void is 
specified. Thus, the problem is reduced to the integration in 
time of an ODE for the void radius. Whereas a small crim­
pressibility is always introduced by the elastic response of the 
solid, Carroll and Holt's work (1972) suggests that this effect 
is negligible in cases where the plastic response dominates. The 
solid is assumed to obey J 2-flow theory of plasticity with power 
hardening and the elastic response is neglected. Rate sensitivity 
is introduced into the formulation through a standard power­
law viscoplastic model. The details of the formulation of the 
constitutive model are given in Section 2. 

The equations governing the expansion of a void are for­
mulated in Section 3 for various constitutive assumptions. 
Although the majority of these equations cannot be solved in 
closed form, the short and long-term solutions can be obtained 
analytically with some generality. These solutions reveal useful 
insights into the behavior of the void as determined by the 
various constitutive descriptions. Finally, full numerical cal­
culations are presented in Section 5 which confirm the short 
and long-term solutions and exhibit the nature of the inter­
mediate transients. 

2 Constiuuive Model 
Throughout the analysis, we shall assume that the matri« 

surrounding the void responds to rnoiJ.otonic stressing as a 
rigid-viscoplastic solid with flow rule 

. . 3s;; aq,(s) 
du=Ee~-=--

2ae asu 
(1) 
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where 

¢(s) = 110€0 (~) m' I 

m+ 1 110 

(2) 

(3) 

(4) 

(5) 

Bere, au is the stress tensor, Su the devi<itoric stresses, p the 
hydrosratic pressure, du ls the rate of deformation tensor, ae 
and Ee the effective Mises stress and strain, respectively, a0 is 
a flow stress, and €0 and mare material constants. The flow 
stress is assumed to obey the hardening law 

. (" )lln 
ao=ay ~ (6) 

where ay, Ey and n are material constants. 
The rate-independent limit of the aforementioned model is 

attained by letting m - oo, whereupon the viscosity law (4) 
reduces to the condition . 

(7) 

The perfectly plastic limit, on the other hand, is attained by 
letting n - oo .in Eq. (4), which thus reduces to the identity 

<7u - ay. (8) 

The inverse stress-strain relations are readily computed to 
be 

where 

2du olf(d) 
su=a. -.-=--

3Ee odu 

(
. )l/m 

· a.=ao :: 

· (" ) (m+l)!m maoEo Ee 
lf(d)=-- -:- =s .. d--¢(s). 

m+l Eo vv 

(9) 

(10) 

(11) 

(12) 

For use in subsequent developments, we note that the rate 
of plastic work per unit volume corresponding to the foregoing 
model is 

• • • Ee 

( 

• ) (m+l)lm 
W'=sudu=aeEe=aoEo Eo (13) 

and that, in the rate-independent limit, the dissipated plastic 
work per unit volume is given by 

W' = aedEe = nayEy ~ . )
« . ( ·) (n+l)ln 

O n+ 1 Ey 
(14) 

3 Governing Equations 
Next, consider a spherical void of radius a in an infinite 

body subjected to remote pressure p. Assume that .the void 
remains spherical throughout the deformation. Then, it follows 
from the volume constraint that 

d 4tr ? 3 di3( -a)=O (15) 

where r is the radius of a material sphere deforming with the 
solid. This condition uniquely determines the velocity field over 
the current configuration. with the result that 

. a2 . 
r = Vr=-;. a. (16) 
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The corresponding rate of effective Mises strain is computed 
to be a2 

€.=lov,lorl=
2
,;i lal. (17) 

Using again the volume constraint one finds 

(18) 

where R is the undeformed radius of points currently at r. 
Inserting (18) in (17)we find 

2a2 . 
Ee 3 R3 jlal (19) 

a+ -ao 

which gives the effective strain rate as a function of position 
on the undeformed configuration. This expression is readily 
integrated to yield 

Ee=~3 log(l+a
3

-3a~)=~3 log(l+,;i a
3

~a~ 3 ) (20) 
R -(a -a0 ) 

where use has been made once more of the deformation map­
ping (18). 

From (16), the kinetic energy of the body is computed to be 

I 
00 

1 2 _2 3 . 4tra3 

K= - pV,4trrdr=- pa2 
--. (21) 

a 2 2 3 

The rate of plastic work, on the other hand, follows by in­
tegration of (13) over the body, which together with (19) yields 

. )"" ('")Jin fJIP= 11y -
a Ey 

E o ( ~ :) (m + l)!m 4tr?dr 

=ayEo - -/!.- f(alao,m,n) tr
3
a (22) 

(
2)1/n(2')(m+l)/m 4 3 

3Ey Eoa 
where 

f(alao,m,n)= f"" [log( - x 3 3)]1/nx-<m+l)lmdx. J1 x-1 +a0/a 
(23) 

In the perfectly plastic case, one has f = m and (22) reduces 
to ·,,,_ . (2a) (m+l)lm 4tra3 

W -mayEo . --. 
Eoa 3 

(24) 

In the rate-independent limit, it is possible to compute di­
rectly the dissipated plastic work from (14) and (20). Straight­
forward manipulations give 

fJIP = rl)O llayEy (~) (n+ l)ln 4tr?dr 
J0 n+l Ey 

(25) 

( 
2 ) (n+ l)ln 41rQ3 

n + 
1 3

Ey g(ala0,n) -
3
- (25) 

where 

g(alao,n) = log x 3 3 dx. )
oo [ ( )] (n+l)/n 

1 x-1 +a0/a 
(26) 

Finally, the external power input into the system by the 
remotely applied pressure is 

. 4 3 

W = 3p ; ~a . (27) 

If, for instance, the pressure history is of the type 

p(t) =pH(t), 

then Rq. (27) cim he integrated to give 

w =p a3 - 47ra3 
3 . 

(28) 

(29) 
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More generally, if p derives from a potential U through a 
relation of the type 

p= U' (~V) (30) 

where ~ V = 411"(a3 - ofi)/3 is the increase in volume of the 
void, then (29) generalizes to 

W=U(411"(a3-ofi)l3). (31) 

The governing equation for o follows simply from the prin­
ciple of conservation of energy, which in the present context 
states 

W=K+ Wi'. (32) 

Using (21), (22), and (27), Eq. (32) may be recast as 

!!__ (~ pa2 4w3) + <r i: 0 (~) 11n (~a) <m+ 1J1m 

dt 2 3 y 3€y €oil 

411"03 a 411"03 

xf(o!o0,m,n) 
3 

3p ;-
3
- (33) 

which defines a second-order, nonlinear ODE for o(t), subject 
to the initial conditions 

o(O)=oo. (34) 

In addition, plastic irreversibility requires that the constraint 

a :::::o (35) 

be satisfied at all times. 
In the rate-independent case with p deriving from a potential 

as in (30), a first integral of (33) can be obtained by recourse 
to the principle of conservation of energy in its form 

W-K +wt'. (36) 

Using (21), (25), and (31), Eq. (36) becomes 

3 . 2 411"u nu yEy ( 
/ 

) 71"0 
-3 ( 2 ) (n+ l)ln 4 3 

-pa --+ - g a a0 ,n --
2 3 n+ 1 3Ey 3 

=U(411"(o3 -ofi)/3). (37) 

This is a first-order ODE in the unknown o. 
In subsequent developments it proves advantageous to use 

governing equations expressed in dimensionless form. To this 
end, introduce the material constant 

,_ - \In · - \Im 
K=ffyf.y f.o , 

whereupon Eq. (4) becomes 

(38) 

<le= h!ln dim. (39) 

The scaling of the strain rates und stresses is effected by means 
of a suitably chosen reference strain rate €ref and the associated 
reference stress 

<lref=k( Ered
11

m. (40) 

The proper choice of €ref depends on the problem under con­
sideration. Dimensionless time 'f, radius a, velocity 5, and 
pressure ft may be defined as 

t= Ereff 

a=oloo 

5=daldt 

ft=pl<lref· 

(41) 

Using these definitions, the governing Eq. (33) may be re­
duced to the dimensionless form 

~~ = -~ ~-~/;) (~ 1-m +~~ (42) 

where/ is given by Eq. (23) with the dependence on m and n 
omitted for simplicity of notation. The constants C and Dare 
defined as 
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C= lln2l+lln-i-llm 

D= Pc?oe;er = Pci5 €;.rum. 
O"reI k 

(43) 

Of particular interest here is the constant D. It is noted that 
D is proportional to the mass density p, and thus may be 
thought of as a measure of the effective inertia of the system. 
In particular, dynamic effects are absent when p and, hence, 
D vanish. It is also revealing thi:tt D increases with the initial 
void size o0• Consequently, inertia effects may be expected to 
be more pronounced for large voids. Dynamic effects are also 
accentuated at higher strain rates i: ref· 

It is interesting to note that the constant D may be expressed 
as D = (o0/{)

2
, where 

[=- ~ Eref 1 
[ 

-lin (' ) 1/m] 1/2 
Eref P Eo 

(44) 

which has the dimensions of length. As already stated, dynamic 
effects may be anticipated to be important when a0 >> l. Note, 
however, that I is defined in terms of the reference rate of 
strain €ref and, hence, does not define a characteristic length 
of the solid. In fact, the sole length scale of the problem is set 
by the initial void radius o0• 

Equation (42) is the most general governing equation con­
sidered here. Several particular cases merit special attention. 
In the quasi-static limit D - 0, Eq. (42) reduces to 

dii -( ft )m 
dt= a Cf (a) · 

(45) 

This equation is separable and can therefore be solved by one 
simple quadrature, with the result 

(46) 

which implicitly determines ii as a function of i. 
If, on the other hand, the perfectly plastic limit n - oo is 

approached, f reduces to m and ( 42) becomes 

db 3 b2 C m (Ji\ llm 1 ft 
dr= -2 a-D a aJ +D a (47) 

whereas Eq. (45) governing quasi-static processes further sim­
plifies to 

da. -(ft )m 
dt=a Cm . · (48) 

This equation governs the expansion of a void in an ideally 
viscous matrix under quasi-static conditions. In this case, so­
lution (46) specializes td 

ii=expl ( [p(t)lcmrdrJ. (49) 

The rate-independent case is also. noteworthy. Using nor­
malization (41), Eq. (37) reduces to 

(
dii)

2 

n 2C 2ft ( 1) dt + rl+ 13Dg(ii)=3D l-d3 (50) 

where g is given by Eq. (~6), with its dependence on n sup­
pressed for simplicity, and the constant C follows from (43a) 
by taking m - oo, w.ith the result 

(51) 

Equation (50) is written for constant pressure, so that the 
potential U is given by (29). Other pressure potentials can be 
handled similarly. 

As a final special case, we. consider ~he quasi-static rate­
independent problem. The equation governing this case may 
be obtained from (50) by taking the limit D - 0, which yields 
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(52) 

For monotonic loading, this establishes a one-to-one relation 
between the pressure ft and the radius of the void ii. 

4, Short and Long-Term Behavior 

Jn general, neither Eq. (32) nor its rate-independent spe­
ciaUzation (50) can be solved analytically in closed form. How­
ever, the short and long-term character of the solutions can 
be esrnblished with some generallty. we start by investigating 
the short-term behavior of the solutions in the general case of 
a strain hardening, rate sensitive solid under dynamic loading. 
This case is governed by Eq. (42). For values of ii close to 1, 
a minor computation shows that the fµnction f (ii) behaves as 

mn ' 
f(ii)--- 311n(ii- l)11n+O( (ii- l)1+11n). (53) 

m+n 

Using this approximation and setting ii ""' 1, Eq. (42) reduces 
to 

(54) 

Assume that ft grows as ft for small i, with 'Y > 0, and that, 
as a result, ii - 1 grows as f", for some a to be determined. 
Then, the first term of ~54) grows as ('- 2

, the second as 
fa-z, the third as t°'in+ (a- )Im, and the fourth as ft. Evidently, 
the third term in (54) dominates the first two provided that 

a - 2> aln + (a- l)/m. (55) 

Then, the inertia terms in (54) are negligible and the short­
term response is dominated by strain hardening and the rate 
semitivity of the material. If condition (55) is satisfied, then 
from the third and fourth terms of (54) one computes 

(m'Y+ l)n 

n+m 
Using this relation, (55) becomes 

2m+n 
m-n 

(56) 

(57) 

This condition places restrictions on the rate of growth of j5 
for the inertia terms to be negligible. If, for instance, we take 
n = 10 and m = 100, values which are of an order of magnitude 
commonly found in metals, then (57) necessitates 'Y > 0.236. 
However, this type of behavior is arguably unphysical since it 
requires the applied pressure to grow at an infinite rate initially. 

Assume that (57) is indeed satisfied and that, consequently, 
the inertia terms are negligible for small times. Then Eq. (54) 
reduces to 

(ii-1) 11n ': =!!... A= mn 311nC (d-) l/m -

dt A' m+n 
(58) 

valid for small 1. This equation is M::p<:uabk and its general 
solution is 

[ 
[ l nl(m+n) 

ii-1 + m:n t (ft/A)md~ . (59) 

The rate-independent limit of (58) requires special handling. 
In the limit m - oo, (58) reduces to an algebraic relation. This 
can be solved for ii with the result 

1 ( -)n 
ii-1 +3 %n (60) 

valid for small times. 
Jt is possible to derive an estimate of the time interval within 

Which the short-term solution (59) dominates. Recall that (59) 
is obtained by neglecting the inertia terms in the governing Eq. 

Journal of Applied Mechanics 

(54). Consequently, solution (59) ceases to be valid when the 
inertia terms become of the same order as the viscous term. 
A~ d~cussed earlier, the inertia term which grows fastest is 
dbldt. Thus, the range of dominance of (59) may be estimated 
from the condition that 

~ ---311n(ii-1) 11nbl/m -1 (d~/(C mn _ ) 
dt D m+n 

(61) 

where the left-hand side is evaluated directly from (59). In the 
parti~ular case in which the pressure history is of the form ft 
= Pt7, condition (61) reduces to 

i- - 'Y mn + 1 
[

D ( ) 11n 

A m+n 

x (m: n) (2m+n)l(m
2
+mn] 1/('Y[l-mn/(m+n)]+ (l+n)ln) (62) 

The interval of dominance of the rate-independent solution 
(60) follows simply as the limit of (62) as m - oo. 

We next turn our attention to the long-term behavior of the 
solutions. For values of ii>> 1, the functionf(ii) behaves as f-r [1og(x~1) rnx-(m+l)lmdx=foo(m,n) (63) 

Using this approximation, Eq. (42) becomes 

~~= -~ ~-~/; (~ l/m +~~· (64) 

Next we proceed to establish the order of the terms involved 
~n this equa!;ion. To this end, assume that ft - j'Y and ii -
r for large I.:. Then the first two terms in Eq. (64) go as ('- 2 

the third as ra-um, and the fourth as j'Y-°'. Of the first tw~ 
groups of terms, it is clear that the first dominates provided 
that 

a-2> a-llm. (65) 

Under these conditions, the dissipative term in (64) is negligible 
and the long-term response is dominated by inertia. Then, 
matching the dominant terms in Eq. (64), one finds 

Cl= 1 + "f/2. (66) 

Using this result, 1,;u11diliu11 (65) becomes 

'Y> -1/m (67) 

If attention is restricted to nondecreasing pressure histories, 
for which 'Y ~ 0, then (67) is satisfied for all finite values of 
m > 0. Under these conditions, one concludes that the long­
term response of the void is dominated by inertia. 

Note, however, that inequality (67) is violated if m - oo 
and 'Y = 0, i.e., for a rate-insensitive solid subjected tu constant 
pressure. Then, all terms in (64) are of the same order in i. 
This case needs to be handled separately from those satisfying 
restriction (67). Start by noting that, for large ii, the function 
g(Q) behaves as 

!im g(ii) = log ~ dx=g00 • )
"' [ ( )] (n+l)/n 

a-oo I X-1 
(68) 

Inserting this approximation into Eq. (50) specialized to the 
case ii - oo, one finds 

(
dii) 

2 

2 
df =3D (ft-Per) (69) 

where the critical pressure p is defined as 

- n C 
Per= n+ 1 g"'. (70) 

Assume for now that the pressure is supercritical, i.e., ft ~ 
Per· Then, solutions of (70) exist and are given by 
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[
2 1112_ 

ii-
3
D (p - Per) t. (71) 

It Is observed thal Lhe gruwlh uf the vuid iadius is linear in 
time. In particular, the void grows unboundedly under the 
effect of a supercritical pressure. The rate of growth becomes 
increasingly smaller as p - Per· Beyond this limit, the plastic 
irreversibility constraint (35) is activated to prevent shrinkage 
of the void. Thus, for undercritical pressures fJ < /Jen the void 
undergoes bounded growth, eventually attaining a stationary 
configuration. 

Next, consider the case in which restriction (67) is satisfied. 
Eliminating the negligibly small dissipative term from (64), the 
equation governing the long-term behavior of the void is found 
to be 

db 3 fj2 1 fJ 
dt= -2 ii +n a· 

Define an effective time r as 
i 

T= ~ ./Pdl 
0 

(72) 

(73) 

With the aid of this definition, Eq. (72) may be expressed as 

d2ii 3 (dii) 2 
1 

dr2 = - 2ii dr + Dii' (74) 

A first integral of this equation k fmmrl to he 

(~~r =3~ (i-]). (75) 

Specializing this expression to the case a - <n, it reduces to 

(76) 

which integrates to 

f2 f2 ri -ii-T-'13D= -'13D JO ./Pdt. (77) 

Thus, the long-term growth of the void is linear in the effective 
timer. 

The result (77) ceases to apply in the quasi-static limit, i.e., 
when the constant D - 0. The long-term behavior for this 
case, however, may be deduced directly from the exact solution 
(46). Replacing f by the long-term approximation loo defined 
by (63), solution (46) reduces to 

ii-exp [ ~ (j)!Cloo)mdtl (78) 

If, for instance, we take the pressure p to be constant, then 
the long-term behavior of the void is one of exponential growth. 

As in the short-term analysis, it is possible to estimate the 
time beyond which the long-term solutions start to dominate. 
Particularly revealing is the estimate for solution (77). This 
solution pertains to the dynamic rate-dependent case and is 
obtained by neglecting the viscous term in (64). Consequently, 
a lower bound for the range of validity of (77) may be derived 
by estimating the time at which inertia and viscous terms are 
of the same order, i.e., 

(~~+i ~) /[ ~J; (~ l/ml-1 (79) 

where the left-hand side is evaluated from (77). Setting, for 
simplicity, jJ = Pt7 , condition (79) reduces to 

_ [ 3C ('y+ l)(m+l)/m] l/(27+ilm) 
t- -~-~--

2P 'Y+3('Y+l)/2 
(80) 

For the case of constant pressure, 'Y 
cializes to 
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0, estimate (80) spe-

t- -- (CJ"')m 
p (81) 

This estimate has some revealing consequences. Por n large, 
loo is well approximated by the ideally plastic limit 100 ""' m. 
Inserting this approximation into (81), we obtain 

_. (Cm)m t- -
p (82) 

Consider further the case of a body whose behavior is nearly 
rate independent, i.e., for which m is large. As mis increased, 
the right-hand side of (82) grows as mm and soon becomes 
extremely large. Under these conditions, the long-term solution 
(77) may fail to become dominant within any physically rea­
sonable time scale. Instead, following the initial transients, the 
re~puu~e uf lhe vuiu may be expecteu to be close to that pre­
dicted by the rate-independent long-term solution (71). This 
supposition is indeed born out by the numerical simulations 
presented in the next section. 

5 Response to Impulse Loading 
In this section, we present full numerical solutions which 

confirm the trends revealed by the preceding short and long­
term analyses, and provide useful insights into the nature of 
the intermediate transients. We consider a ramp variation in 
time of the applied pressure of the form 

[

o, if tsO; 

p(t) = p°"tlth if Ostst1; (83) 

Poo• if ti ::st. 

Thus, the remote pressure is assumed to increase linearly from 
p = 0 at t = 0 to a final value of p°" at t1 and to remain 
constant thereafter. 

The calculations are carried out for the following choice of 
material constants: p = 7800 kg/m3

, k = 108 SI, m = 100, 
n = 10, and a0 = 10 J.Lm. These parameters are roughly rep­
resentative of some types of steels. The terminal pressure is 
taken to be p°" = 750 MPa and the rise time t1 = 10- 2 J.LS. If 
we set the reference strain rate €ref = 11t1' then the effective 
inertia constant (43b) takes the value D = 64.88, whereas the 
characteristic length (44) becomes I = 1.24 µm. Since ao >> 
l, inertia effects are expected to be significant. Also note that 
the critical pressure is in this case Per 705 MPa. Thus, the 
applied terminal pressure p 00 is supercritical and unbounded 
void growth takes place. 

Time histories of void expansion are shown in Figs. l and 
2 for the following cases: (i) dynamic rate dependent, (ii) 
quasi-static rate dependent, and (iii) dynamic rate independent. 
This comparison brings out differences between the effects of 
inertia and rate dependence. Thus, in the quasi-static rate­
dependent case, inertia is neglected altogether, which brings 
rate dependency effects to the forefront. In the dynamic rate­
independent analysis, the individual ·effect of inertia is singled 
out. Finally, the dynamic rate-dependent solution exhibits the 
combined effect of inertia and rate dependence. 

The computed short-term solutions are depicted in Fig. L 
In the dynamic rate-dependent case,. the short-term responsP 
is given by Eq. (59). For the present choice of parameters, this 
reduces to 

ii-1+0.53ltu8
• (84) 

The interval of dominance of this solution as estimated from 
(62) isl- 0.701, or, in absolute time, t - 0.701 x 10- 2 µs. 
In the quasi~static rate-dependent case, the short-term response 
is also given by (84). The short-term dynamic rate-independent 
solution, on the other hand, is given by Eq. (60). For the values 
of the parameters adopted in the calculations, (60) specializes 
to 
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t (µs) 

fig. 1 Initial stages of the numerical sollitions for ramp loading and 
the following choice of parameters: . p = !7800 kg/m3, k = 108 SI, m = 
100, n = 10, and a0 = 10 µm, P~ = 750 MP a, and t1 = 10- 2 µs. The critical 
pressure corresponding to these material ponstants is Per = 705 MPa. 
Soh1tions are obtained for the following cases: (a) quasi-static, rate de­
pen1hmt, (b) dynamic, rate dependent, end (c) dynamic, rate independent. 
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Fig. 2 Long-term solutions for the problem of Fig. 1. 

ii- l + 1.62?0 (85) 

which, according to estimate (62), dominates up tot - 0.744, 
or, in absolute time, t - 0.744 x 10- 2 µ,s. 

Solutions (84) and (85) have a crossover point at t = 0.255. 
Prior to this time, the void radius is larger in the rate-dependent 
solution. Beyond the crossover time, the rate-independent so­
lution gives the larger expansion, :rig. 1. Thus, as cxpcclcd, 
the rate sensitivity of the material has the effect of retarding 
the expansion of the void. 

Figure 2 shows the long-term behavior of the void. The long 
term response for the dynamic rate-dependent case is.given by 
Eq. (77), which here reduces to 

ii-0.2531. (86) 

However, estimate (82) gives t - 22 x 10100 as the onset of 
dominance of (86). Not surprisingly, the computed slope dill 
dt"" 0.085 does not match the analytical value of0.253 derived 
from (86). Instead, as surmised in the preceding section, the 
computed growth rate is closer to that predicted by the long-
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term rate~independent solution (71), which for the present ex­
ample particularizes to 

ii-0.06201. (87) 

The computed growth rate for the actual rate-independent case, 
diildt"" 0.0625, closely matches the analytical solution (87). 

Both the rate-dependent and rate-independent dynamic so­
lutiOus i;xhibil linear growth following the initial transient, 
Fig. 2. Here, however, we encounter the seemingly paradoxical 
situation that the rate-dependent solution grows faster than 
the rate-independent one. This behavior is counterintuitive, 
siw;i; uni; would reasonably expect the presence of rate sen­
sitivity to retard the growth of the void relative to the rate 
insensitive solution. 

Finally, the long-term behavior of the quasi-static rate-de­
pendent solution is given by (78), and corresponds to a ex­
ponential growth of the void. Indeed, the numerical solution 
exhibits a sharp upturn as the critical pressure is exceeded, Fig. 
2, in contrast with the slower growth rate predicted by the 
dynamic solutions. This comparison underscores the poten­
tially stabilizing effect of microinertia on void growth, both 
in rate sensitive and rate insensitive solids. 

6 Discussion 
A striking feature of the solutions presented above is the 

widely varying predictions which are obtained depending on 
the level of des~ription adopted in the analysis. Both inertia, 
strain hardening, and rate sensitivity have a marked influence 
on the short and long-term solutions, as well as on the inter­
mediate transients, sometimes with counterintuitive conse­
quences. For instance, under dynamic conditions, a rate­
dependent description of the solid may sometimes result in 
faster void growth than predicted by the corresponding rate 
independent solution. 

While the equations governing the expansion of a void can­
not be generally· solved in closed form, even with the simpli­
fying assumption adopted in the present analysis, a good deal 
of progress can be made toward characterizing the short and 
long term responses. Our analysis shows that microinertia ef­
fects are particularly significant for voids which are larger than 
a characteristic dimension which depends on both the me· 
chanical properties of the solid and the rate of expansion. We 
have also shown that, whereas the early stages of deformation 
are dominated by viscous effects, inertia tends to dominate 
the long-term response of the void. This sets limits on the 
applicability of phenomenological theories of voided elastic­
plastic solids which neglect microinertia. The solutions given 
here provide possible avenues for extending these theories so 
as to include material inertia on the physical scale of the ductile 
void growth mechanism. 
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