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Abstract – We analyze numerically the thermal conductivity of single-walled carbon nanotubes
placed on a flat rigid substrate. We demonstrate that the character of thermal conductivity depends
crucially on the interaction between the nanotube and the substrate. In particular, we reveal that
unlike the well-established anomalous thermal conductivity of isolated carbon nanotubes, the
nanotube placed on a substrate demonstrates normal thermal conductivity due to the appearance
of a narrow gap in the frequency spectrum of acoustic phonons.

Copyright c© EPLA, 2009

Carbon-based structures display the highest measured
thermal conductivity of any known material at moderate
temperatures. The discovery of carbon nanotubes (CNTs)
in 1991 [1] has led to suggestions that this new material
could have a thermal conductivity greater than that of
diamond and graphite [2]. Experimental data [3] demon-
strated that conductivity of CNTs at room temperature
can exceed the value of 3000W/mK which is two orders
of magnitude larger than the estimates of earlier experi-
ments that used macroscopic mat samples. Further studies
employing different experimental methods confirmed that
CNTs demonstrate anomalously high thermal conduc-
tivity. However, recent experiments [4] which measured
the dependence of thermal conductivity on the length of
individual single-walled CNTs placed on a Si substrate,
revealed that the coefficient of thermal conductivity satu-
rates for longer nanotubes. This observation contradicts
earlier theoretical results based on the molecular-dynamics
simulations [5–10]. Therefore, a natural question arises:
What is the effect of the substrate on the thermal conduc-

tivity of single-walled carbon nanotubes?

In this letter, we study numerically a transfer of thermal
energy along an isolated single-walled CNT and analyze
the effect of a rigid substrate on the character of ther-

(a)E-mail: asavin@center.chph.ras.ru

mal conductivity and its dependence on the nanotube
length. We employ two different methods: i) a direct
modeling of the heat transfer by means of the molecular-
dynamics simulations, and ii) the study of the equilib-
rium multi-particle dynamics based on the Green-Kubo
formalism. We demonstrate that fixing a nanotube on a
substrate changes dramatically its thermal conductivity.
The nanotube placed on a flat rigid surface displays a finite
conductivity, in a sharp contrast to an isolated CNT that
displays anomalous thermal conductivity.
For modeling thermal conductivity of long nanotubes,

we consider the nanotubes with the indices (m, 0) (zigzag
CNT) and (m,m) (armchair CNT). Figure 1(a) shows
schematically a nanotube placed on a flat rigid surface
(e.g., a surface of Si crystal [4]). It is convenient to describe
the structure of an ideal nanotube as that created by an
operation of screw rotation by an elementary unit cell
defined between two neighboring carbon atoms located
at the surface of the cylindrical tube. We introduce such
a operator as S(∆z, δϕ), that moves the point with the
cylindrical coordinates (z, ϕ) to the point with the coor-
dinates (z+∆z, ϕ+ δϕ), i.e. a shift along the axis by
the distance ∆z and its rotation by the angle δϕ. This
operation is commutative, i.e. any two operators S1 =
S(∆z1, δϕ1) and S2 = S(∆z2, δϕ2) are linearly indepen-
dent. The operation Sm1 S

n
2 means the transformation of
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Fig. 1: (Colour on-line) (a) Examples of armchair CNT (10,10)
on a substrate, N —number of longitudinal steps. First
left N+ segments attached to the T = T+ thermostat and
last right N− segments attached to the T = T− thermostat.
(b) Schematics of armchair CNT and numbering of atoms.
Thick red lines mark valent bond couplings, thin red arcs mark
valent angle couplings, thin dashed lines show the foundation
of two pyramids which form dihedral angles along the valent
bonds in the elementary cell (n, l). Larger balls show the atoms
which are fixed for including the interaction with a substrate.

the coordinates according to the relation: (z, ϕ)→ (z+
m∆z1+n∆z2, ϕ+mδϕ1+nδϕ2). The minimum values of
the non-negative numbers m and n when the operator
reduces to the unit operator are called the indices of the
nanotube chirality.
For the nanotube with the index (m,m) shown in

fig. 1(b) the first operator is reduced to a rotation by
the angle δϕ1 = 2π/m (because the shift is zero, ∆z1 = 0),
and the second operator defines the shift by the value
∆z2 > 0 and rotation by the angle δϕ2 = π/m. Therefore,
each atom of carbon can be numerated by three indices
(n, l, k), where the first two indices n= 0,±1,±2, . . ., l=
0, 1, . . . , m− 1 define the number of the elementary cell
(the cell with the number (n, l) is obtained from the
cell (0, 0) by applying the operator Sl1S

n
2 ), and the third

index k= 0, 1 stands for number of atoms in the cell. In
equilibrium, the nanotube is characterized by the following
parameters: radius R0, angular shift ϕ0, and longitudinal
shift h. In the equilibrium state, the atoms have the
coordinates

x0n,l,0 = h(n− 1), x0n,l,1 = h(n− 1),

y0n,l,0 = R cos(φn,l,0), y
0
n,l,1 =R cos(φn,l,1), (1)

z0n,l,0 = R sin(φn,l,0), z
0
n,l,1 =R sin(φn,l,1),

where the cylindrical angles are φn,l,0 = [l− 1+ (n− 1)/
2]∆φ, φn,l,1 = φn,l,0+ϕ, and the angular step is ∆φ=
2π/m.
To study the thermodynamics of the nanotube, we

present the system Hamiltonian in the form

H =
∑

n

hn =
∑

n

m−1
∑

l=0

[

1

2
M(u̇2n,l,0+ u̇

2
n,l,1)+Pn,l

]

, (2)

whereM = 12× 1.6603 · 10−27 kg is the mass of the carbon
atom, un,l,k = (xn,l,k(t), yn,l,k(t), zn,l,k(t)) is the radius
vector describing the position of the atom with the indices
(n, l, k) at time t. The term Pn,l describes the interaction
energy of the atoms in the cell (n, l) with the atoms of the
neighboring cells.
In almost all papers devoted to the numerical study

of the thermal properties of carbon nanotubes, an effec-
tive interatomic interaction was described by the Brenner
potential [11,12]. The Brenner potential allows modeling
the formation and breakup of molecular structures, as well
as breakdown and formation of valent bonds. However,
since at the room temperatures the nanotube structure
does not change, for the study of thermal conductivity we
may employ simpler standard potentials of the intermolec-
ular interaction which are used in the molecular-dynamics
simulations of the dynamics of large macromolecules. In
this case, for the armchair CNT (see fig. 1(b)), the energy
of the interaction between the neighboring cells can be
presented in the form

Pn,l = V (un,l,0,un,l,1)+V (un,l,1,un+1,l,0)

+V (un,l,1,un−1,l+1,0)+U(un−1,l,1,un,l,0,un+1,l−1,1)

+U(un−1,l,1,un,l,0,un,l,1)

+U(un+1,l−1,1,un,l,0,un,l,1)+U(un,l,0,un,l,1,un−1,l+1,0)

+U(un,l,0,un,l,1,un+1,l,0)

+U(un−1,l+1,0,un,l,1,un+1,l,0)

+W (un,l,1,un,l,0,un−1,l,1,un+1,l−1,1)

+W (un,l,1,un,l,0,un+1,l−1,1,un−1,l,1)

+W (un−1,l,1,un,l,0,un,l,1,un+1,l−1,1)

+W (un,l,0,un,l,1,un−1,l+1,0,un+1,l,0)

+W (un,l,0,un,l,1,un+1,l,0,un−1,l+1,0)

+W (un+1,l,0,un,l,1,un,l,0,un−1,l+1,0),

where the first potential V (u1,u2) describes the deforma-
tion energy of a valent bond created by two carbon atoms
with the coordinates u1 and u2, the second potential
U(u1,u2,u3) stands for the deformation energy of a plane
valent angle created by three atoms with the coordinates
u1, u2, and u3, and the third potential W (u1,u2,u3,u4)
describes the deformation energy of the angle formed
by two planes u1u2u3 and u2u3u4. Similarly, we can
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construct the Hamiltonian for the zigzag CNT with the
chirality (m, 0) [13,14].
In our numerical studies we use the interaction poten-

tials usually employed for modeling the dynamics of large
macromolecules. The details of the potentials V , U , W
can be found in ref. [13]. For comparison, we also study
the same model with the interactions described by the
Brenner potentials [11,12]. In this later case, the interac-
tion of the n-th atom with its three neighbors is described
by a sum of three Brenner potentials.
We consider single-walled CNT with chirality

(m,m). We define the six-dimensional vector xn,l =
(xn,l,0, yn,l,0, zn,l,0, xn,l,1, yn,l,1, zn,l,1) which determines
the atom coordinates of an elementary cell (n, l),
and then in Hamiltonian (2) function Pn,l =
P (xn−1,l,xn−1,l+1,xn,l,xn+1,l−1,xn+1,l). Hamiltonian (2)
generates the system of equations of motion M ẍn,l=
P1,n+1,l+P2,n+1,l−1+P3,n,l+P4,n−1,l+1+P5,n−1,l, where the
function Pj,n,l=Qj(xn−1,l, xn−1,l+1, xn,l, xn+1,l−1,xn+1,l),
Qj = ∂P (x1,x2, . . . ,x5)/∂xj , j = 1, 2, . . . , 5.
Local heat flux through the n-th cross-section, jn, deter-

mines a local longitudinal energy density hn by means of
a discrete continuity equation, ḣn = jn− jn+1. Using the
energy density from eq. (2) and the motion equations, we
obtain the general expression for the energy flux through
the n-th cross-section of the nanotube, jn=

∑m−1
l=0 [(P1,n,l+

P2,n,l−1)ẋn−1,l−(P4,n−1,l+1+P5,n−1,l)ẋn,l].
For a direct modeling of the heat transfer along the

nanotube, we consider a nanotube of a fixed length
Nh with fixed ends. We place the first N+ = 40 steps
into the Langevin thermostat at T+ = 310K, and the
last N− = 40 steps, into the thermostat at T− = 290K.
We select the initial conditions corresponding to the
ground state of the nanotube, and solve the equations of
motion numerically tracing the transition to the regime
with the stationary heat flux. At the inner part of the
nanotube (N+ <n�N −N−), we observe the formation
of a temperature gradient corresponding to a constant
flux. The distribution of the average values of tempera-
ture and heat flux along the nanotube can be found in
the form, Tn = limt→∞

M
6mkBt

∫ t

0

∑m−1
l=0 ẋ

2
n,l(τ) dτ, Jn =

limt→∞
h
t

∫ t

0
jn(τ)dτ , where kB is the Boltzmann

constant.
The distribution of the temperature and local heat flux

along the nanotube are shown in fig. 2. The heat flux in
each cross-section of the inner part of the nanotube should
remain constant, namely Jn ≡ J for N+ <n�N −N−.
The requirement of independence of the heat flux Jn from
a local position n is a good criterion for the accuracy
of numerical simulations, as well as it may be used to
determine the integration time for calculating the mean
values of Jn and Tn. As follows from the figure, the heat
flux remains constant along the central inner part of the
nanotube.
We notice that an effective heat resistance appears at

the interface between the central part of the nanotube
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Fig. 2: Distributions of (a) local heat flux Jn and (b) local
average temperatures Tn along armchair CNT (6,6). The
length of the nanotube is L=Nh= 88.7 nm (N = 720, h=
0.123 nm), temperatures are T+ = 310K and T− = 290K, the
numbers of end steps interacting with the thermostats N± = 40
(corresponding fragments are shown in grey). The averaging
time is t= 10ns, and the relaxation time of the Langevin
thermostat is tr = 0.1 ps.

and its edge placed in thermostat. The thermal resistance
originates only from the thermostat and its “viscosity” can
be characterized by the relaxation time tr. Our numerical
simulations demonstrate that the thermal conductivity
and the temperature profile in the central part of the
nanotube depend very weakly on the relaxation time.
In particular, for tr = 0.4, 0.2, 0.1, 0.05 and 0.025 ps
this change does not exceed a few percents. Therefore,
a linear temperature gradient can be used to define the
local coefficient of thermal conductivity, κ(N ′) = (N ′−
1)J/(TN++1−TN−N−)S, where N

′ =N −N+−N− and
S = πR2 is the area of the cross-section, R is the radius
of the nanotube. Using this definition, we calculate the
asymptotic value of the coefficient κ= limN→∞κ(N).
An alternative way to study thermal conductivity is

based on the well-known Green-Kubo formula [15]

κ=
h2

kBT 2
lim
t→∞

∫ t

0

lim
N→∞

1

V
〈J(s) ·J(0)〉ds, (3)

where V = πhR2N is an effective volume of the nanotube
with the length Nh, and J=

∑N

n=1 jn is the total heat flux
along the finite-length nanotube with periodic boundary
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conditions. Formula (3) can be presented in the form

κ=
h

kBT 2πR2
lim
t→∞

∫ t

0

C(s)ds, (4)

where we introduce the flux-flux correlation function
C(t) = limN→∞〈J(t) ·J(0)〉/N, and the averaging 〈·〉 is
performed over all thermal states of the nanotube.
For employing the latter approach we should calcu-

late numerically the integral (4). If this integral diverges,
we conclude that the nanotube possesses infinite ther-
mal conductivity. Numerically, we calculate the corre-
lation function C(t) for a finite-length chain, CN (t) =
〈J(s) ·J(s− t)〉s/N , and then take a large enough number
of the cells N in order to approximate the correlation func-
tion by the function CN (t). We require that the correlation
function does not change for the time interval [0, t] when
we increase the nanotube length into two times. Then for
this time interval the function CN (t) should coincide with
the function C(t). Our numerical results demonstrate that
it is necessary to take N = 2000 for the nanotube with
chirality (m, 0), but the nanotube with chirality (m,m)
requires the value N = 3000.
To find the correlation function, we solve numerically

a system of equations of motion that follow from the
Hamiltonian (2) with periodic boundary conditions and
initial conditions corresponding to a thermalized state of
nanotube at the temperature T = 300K. To increase the
accuracy of these calculations, we average the data for 103

independent realizations of different thermal states of the
nanotube.
The form of the correlation function C(t) depends

substantially on the nanotube chirality (see fig. 3). For
example, for the nanotube with chirality (m,m) this
function does not display any high-frequency oscillations,
after abound 0.4 ps oscillations decay rapidly, and then
the function tends to zero monotonically for t→∞. For
the nanotube with the index (m, 0), we observe always
high-frequency oscillations for t < 3 ps. However, these
oscillations decay for longer time and the function becomes
monotonically decaying for t→∞.
The flux-flux correlational function calculated for

an isolated nanotube always vanishes in accord with
the power law, C(t)∼ t−α, where the index α< 1 (see
fig. 3(b)). The value of α grows monotonously with the
nanotube radius, but it remains smaller than unity. For
the nanotubes with the indices (3,3) and (5,0) (radius
R= 2 Å) we find α= 0.5, whereas for the nanotubes (6,6)
and (10,0) (radius R= 4 Å), this power is α= 0.7, and it
is α= 0.9 for the nanotube (20,0) (radius R= 8 Å). From
these results it follows that the integral in the Green-Kubo
formula (4) diverges, so that thermal conductivity of
CNT tends to infinity. This result has been verified by
the direct modeling of the heat transfer.
The dependence of the coefficient of thermal conduc-

tivity κ on the length of the nanotube is presented in
figs. 4(a) and (b). As follows from these results, the coef-
ficient κ grows as Lβ , whereas the growth speed depends
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Fig. 3: (Colour on-line) (a) Dependence of the correlation
function C(t) of an isolated CNT (3,3) (red curve) and (10,0)
(blue curve). (b) Power dependence of the correlation function
of an isolated CNT (3,3) (red curve 1), (10,0) (blue curve 2) and
the CNT nanotube (10,0) fixed on a substrate (green curve 3).
Straight lines show the dependence t−α with the powers α=
0.50, 0.72, 1.1 (lines 1, 2, and 3). (c) Exponential decay of
the correlation function C(t) for the nanotube CNT (3,3) fixed
on a substrate (curve 4), the solid line show the dependence
exp(−αt) with α= 0.045. Temperature T = 300K.

on the nanotube radius R but not on its chirality. For the
nanotubes of different chirality but approximately similar
radii, e.g. the nanotubes (3,3) and (5,0), (6,6) and (10,0)
the coefficient κ grows with the similar speed, namely
β = 0.38 for R= 2 Å, and β = 0.21 for R= 4 Å. Thus,
for large enough values of L the nanotubes of the same
radius have the same value of the thermal conductivity
coefficient.
In order to model thermal conductivity of a nanotube

placed on a flat rigid substrate (e.g. a surface of the
Si crystal), we fix the atoms which touch the surface
(see fig. 1(a)). Fixing only a single atom in each of
the n-th transverse layer of the nanotube leads to the
disappearance of long-wave acoustic phonons and to the
appearance of a narrow gap [0, ω0] at the bottom of
the frequency spectrum of small-amplitude oscillations.
For example, for the nanotube (3,3) the gap width is
ω0 = 131 cm

−1, for the nanotube (6,6), it is ω0 = 94 cm
−1,

and for the nanotube (12,12), ω0 = 41 cm
−1. Fixing a
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Fig. 4: Dependence of the coefficient of thermal conductivity
κ on the nanotube length L for (a) zigzag CNT (10,0) and
(b) armchair CNT (3,3). Symbols 1 and 3 mark the depen-
dences calculated for isolated nanotubes, while the symbols 2
and 4 mark the corresponding dependences for the nanotube
placed on a substrate. Straight lines show the dependence
κ=Lα. Functions are measured in the units of: [κ] =W/mK
and [L] = Å.

zigzag nanotube gives a smaller frequency gap, namely
ω0 = 75 cm

−1 for CNT (5,0), 22 cm−1 for the nanotube
(10,0) and 6 cm−1, for the nanotube (20,0).
The appearance of a gap in the frequency spectrum

leads to a dramatic change of the character of thermal
conductivity, see fig. 4. For small values of the nanotube
length L, the thermal conductivity coefficient κ decreases
in two times. When L grows, the growth of the conductiv-
ity coefficient slows down, and we expect that the depen-
dence κ(L) should saturate for large L. This is confirmed
by the behavior of the correlational function C(t) which
decays faster than t−1 after fixing the nanotube on a
substrate.
For zigzag CNT (10,0), the correlation function decays

for t→∞ as t−1.05 (see fig. 3(b)). For larger time it is
hard to find an explicit asymptotic dependence. However,
for the exponential approximation the Green-Kubo
formula (4) gives the value κ= 360W/mK, while for the
power law this value becomes κ= 990W/mK. According
to fig. 4(a), the former value looks more realistic. For
numerical modeling, a nanotube of a smaller radius is
more convenient to study, so we consider the nanotube
(3, 3). For this case, we obtain numerically the dependence
C(t) for large t in the form exp(−αt) with α= 0.045 ps−1

(see fig. 3(c)). For this latter case the Green-Kubo
formula (4) gives the coefficient κ= 880W/mK. As
follows from fig. 4(b), this result agrees well with the

convergence of the series κ(N) for N →∞. Therefore, the
interaction with a substrate changes not only the value of
nanotube thermal conductivity but also the character of
this dependence on the length of the nanotube showing
saturation for large lengths.
In our analysis presented above we used the simplest

model for describing the interaction between a nanotube
and the substrate. In order to model this interaction
more rigorously, e.g. describing the interaction with the
Si substrate, we may expand the model substantially, e.g.
by taking into account the finite thermal conductivity of
the substrate and a heat exchange between the nanotube
and substrate in each part of the CNT. In a general model,
more atoms will be interacting with a substrate and none
of the atoms is fixed. However, the main result about the
appearance of a spectral gap and its dramatic effect on the
thermal conductivity will not change, the only thing that
will change is the value of the zero-k gap. In addition, this
effect will be modified by the finite thermal conductivity
of the substrate. Therefore, we considered the simplest
model that reflects correctly the physics of this effect. In
addition, the effect does not depend much on the type
of the potentials used. Taking into account other effects
including a finite conductivity of the substrate will modify
only the value of the thermal conductivity coefficient, but
it will neither change the physics nor major predictions.
Comparing our numerical results for the thermal

conductivity with the theoretical models [16,17] that
describe the transition between diffusion and ballistic
regimes in nanoscale structures, we come to the conclusion
that for the nanotube we studied here the mean free path
of heat carries is of the same order or larger than the
nanotube length, and for the Knudsen number, Kn> 1.
In summary, we have revealed that the interaction of

carbon nanotubes with a substrate can change dramat-
ically the character of thermal conductivity, due to the
appearance of a narrow gap at the bottom of the frequency
spectrum of acoustic phonons. We believe our results may
be useful for the experimental studies of carbon nanotubes
under various conditions.
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