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Effect of surfactant on the long-wave instability of a shear-imposed liquid
flow down an inclined plane
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The effect of an insoluble surfactant on the linear stability of a shear-imposed flow down an inclined
plane is examined in the long-wavelength limit. It has been known that a free falling film flow with
surfactant is stable to long-wavelength disturbances at sufficiently small Reynolds numbers.
Imposing an additional interfacial shear, however, could cause instability due to the shear-induced
Marangoni effect. Two modes of the stability are identified and the corresponding growth rates are
derived. The underlying mechanisms of the stability are also elucidated in det200®American
Institute of Physics[DOI: 10.1063/1.1823171

I. INTRODUCTION absence of surfactant. The nonlinear stability analysis per-
formed by Blyth and Pozrikidi§ later demonstrated that
The hydrodynamic stability of a single liquid layer has such Marangoni-induced instability can be arrested by non-
been of interest in many engineering applications such aknear effects. It was suggested in Ref. 12 that the reason why
those occurring in coating processesd pulmonary fluid the previous studies of inclined flow with surfactahdlid
mechanic$™® Surface-active agents often play critical roles not indicate instability is due to the fact that the basic inter-
in these applications, affecting the stability of liquid layer. facial shear is zero. When such a system is subject to an
In the absence of surfactant, Yiklearly demonstrated additional interfacial stress, the instability seems to hinge on
that an inclined liquid layer was stable to long-wavelengthhow an imposed shear acts and modifies the way that flows
disturbances at sufficiently small Reynolds numbers. For #énteract with surfactant. This is the central issue of the
surfactant-covered liquid flow down an inclined plane, therepresent studly.
are only a few studies examining the interplay between Ma-  The motivation of the current study arises from efforts to
rangoni effects and gravity-driven base flows. Whitaker anctonstruct an appropriate model to understand the dynamics
Jone$ and Lirf employed the long-wavelength analysis andof a surfactant-laden lining liquid flow in an airway as oc-
demonstrated that surfactant could have a stabilizing effecturring in airway occlusion procesgésor bolus-dispersal
since the critical Reynolds number increased with surfactargurfactant replacement therapyWhen the effect of gravity
elasticity. Pozrikidi& recently examined the same system foris negligible, although a shear flow can induce the Ma-
arbitrary wavelengths of disturbances in the limit of Stokesrangoni destabilization, its exerting directions are clearly ir-
flow. He showed that although the system with surfactantelevant to the stability. For the situation in large airways,
still remained stable, it was less stable compared to th@owever, a liquid layer flow is not only driven by gravity, but
surfactant-free case. Ji and SetterWatlumerically studied also could undergo an interfacial stress introduced by an air-
the impact of soluble surfactants on the linear stability of aflow that acts in a direction either along or opposing to grav-
vertically falling film. They found that Marangoni effects ity during breathing* The instability seems to depend on
destabilized the system for moderate or short waves in thaow a surfactant interacts with such base flows under various
low-Reynolds-number regime. flow-driven conditions. In this paper we shalb initio ad-
The interaction between surfactant and base flow aperess this issue using the long-wavelength stability analysis.
pears in the stability analysis through the interfacial tangen-
tial stress condition and the surfactant transport equation.
The first is due to a jump in the basic shear stress across the MATHEMATICAL FORMULATION
interface while the second is primarily reflected by a pertur-
bation of the basic interfacial velocity. A gravity-driven base  Consider a surfactant-laden, incompressible liquid layer
flow has no impact from the second mechanism because itgith densityp and viscosityu flowing down a plane with an
zero interfacial stress leads to a vanishing perturbation of thanclined angled,. An additional constant shear streésin-
basic interfacial velocity. duced by an airflow is exerted on the air-liquid interface and
The surfactant-induced Marangoni instability solely dueits direction can either assist or oppose the gravity-driven
to base flows withnonzerointerfacial stresses has been re-flow. The base state configuration consists of a liquid layer
cently demonstrated in the studies by Frenkel andwvith a uniform thickness oh and an air-liquid interface
Halperr?l’lzfor the linear stability of a surfactant-laden, two- coated by an insoluble surfactant with a uniform concentra-
layer Poiseuille—Couette flow in the limit of Stokes flow. tion I';. We definex* to be the coordinate along the plane
They discovered that the presence of surfactant could inducandy* to be the coordinate perpendicular to the liquid layer
destabilization to the system that is otherwise stable in thevith y* =0 defining the plane, as shown in Fig. 1. létand
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interface

FIG. 1. Geometry of a surfactant-laden, shear-imposed
liquid flow down an inclined plane.

v* denote the velocity components in tké& and y* direc- u=v=0 ony=0. (7)
tions, respectively, and lgt* be the pressure. The base flow ) ) ) o
is given by At the interfacey=1+7, where 7 is an interfacial displace-
ment, the tangential stress and normal stress conditions are
_ sin Gph? * \2| 7, i
T+ = pY o {2()’_) _ (y_) }+Ey ' 1) given by
2u h h )%

. — + 1-79) +2(v, - 21=-Mal, + 7,
We chooseh as the characteristic length and scale the(1 + nﬁ)llz[(uy 0)(1 =7 + 2Avy = U] T Ts

velocities with respect to the basic *interfacial velocity ®)
=pgh? sin 6/ 2. The time scale i&/ U and the pressure is

scaled bypghsin 6y/2. The surfactant concentration has a

scale ofl",. Then the base states in the dimensionless form - p+

1 7
2 XX
> (Uy+ Uy 77x — (uy+ U %) =
become (1+7%) X

9

whereCa=uU,/ gy is the capillary number and M&& Ca is

where 7s=7:h/ uUy is the dimensionless imposed interfacial the Marangoni number. The kinematic condition at the inter-
stress ang, is a constant pressure of air. Letdenote the  face is given by

dimensionless surface tension scaled by the surface tension
05 corresponding to the base-state surfactant concentration U= 7+ U7x. (10

I'o. The dimensionless equation of state is assumed to haveor an insoluble surfactant with negligible surface diffusion,
the form the transport equation along the interface is givetf by

o=1-E(T-1), (3

uU=(2y-y)+ 1y, p=po+2cothy(l-y), r=1,

J d —
a(\'l+772F)+5((\r1+772Fu):0. (11

% % ) ) ) X X
whereE=-T'y/a(do*/ oI'* )12 is the dimensionless surfac-

tant elasticity. This is consistent with that derived by Woegal*®

Since the linear stability analysis can be considered only  We perturb the velocities, the pressure, the interfacial
two dimensional by appealing to Squire’s theorne start  position, and the surfactant concentratioruasi+u’, v=v’,
with the complete governing equations and boundary condip=p+p’, =%', and'=1+I"’, respectively. We then substi-
tions for a two-dimensional system. The dimensionless govtyte these quantities into the above governing equations
erning equations for the fluid motion are the continuity equa{4)«6) and boundary conditiong)~11), and linearize them
tion and the Navier—Stokes equations. They are given by with respect to the base states. It is convenient to introduce a
perturbed stream functiog for the perturbed velocity field

Uctvy =0, “@ such thau’=¢/, andv’=-¢/,. We employ normal modes to
investigate the stability of the liquid layer:
Rdut"'uux"'vuy):_px+2+uxx+uyya (5 J y a Y
(W', 7'.I'") = ((y), n.Dexdik(x - ct)], (12)
Re(v; + Uvy + vvy) = — Py = 2 COthy + vy + Uy, (6)

wherek is the wave number of the disturbance arwlc,
where ReerZh/,u is the Reynolds number. The system is +ic; is the complex wave speed. The imaginary partcof
subject to the following boundary conditions. The velocity determines the growth rate=kc. The system is stabl@in-
vanishes on the wall: stablg whens is positive(negative. The resulting equation
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governing the linear stability is the well-known Orr—
Sommerfeld equation

ik Re[(U-0)(D? - k%) ¢ - $DU] = (D* - k)¢,
whereD=d/dy. Then, in terms offb, Egs.(7)—«11) become

$'(0)= $(0)=0,

(13

(14)

(1) +K2p(1) =—ik MaT -U"3, (15)

i3
,>77

N ~ k —
(1) - 32 (1) = <2ik cot By + Ic_a + 2k

+ik RE(U-0)d'(1) - U’ d(D)],

(16)
(1) =(c-U)7, (17)
(c-U'-U'7-¢'(1)=0. (18)

Here we use the superscripto represent thg derivatives,
and defineU=u(1l)=1+7, U'=u'(1)=7, andU"=U"(1)
=-2 for simplicity. Equation16) is derived from the linear-
ized normal stress conditiai®) by eliminating the pressure
in terms of the stream function via the linearized
X-component momentum equati@). For eactk, the system

of (13)«18) constitutes an eigenvalue problem that can be

used to determine the complex wave speed

IIl. LONG-WAVELENGTH STABILITY ANALYSIS

In the limit of long wavelengthsk— 0), we follow the
regular perturbation technique first proposed by Yifhe
appropriate long wave expansions are

d=do+kpi+ ..., p=aprkipt ...,

(19

[=Tg+Ky+ ..., c=co+ke + ....

We substitute(19) into (13)«18) and collect the terms in
each order ok. At O(1) we have

¢35’ =0, (20
$0(0) = $(0) =0, (213
o'(1) == U"7p, (21b)
¢"(1)=0, (219
o(1) = (co= U) 7o, (21d)
(Co=U)To=U" 70~ by (1) =0. (219

The solution to(20) that satisfie§218—21¢) is given by
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. v .
b=~ ?yzﬂo- (22)
Substituting(22) into (21d) and(21¢) yields, respectively,

— 1_ R
<Co—U+§U"> 70=0, (233

(Co— U)fo = (U' - U") 7o- (23b

There are two modes. Fady,# 0, ¢, and f‘o are given by

(243

CO=2+U,,

To=(2+U") . (24b)
This mode is an ihterfacé mode as in free-falling
systemg‘8 since it is triggered by the interfacial deflections
in view of the fact that the leading order kinematic condition

(239 determines,. The surfactant concentration is in phase

(out of phasg with the interface when 2Q'>o(<o)_ In
addition to the interface mode, there is suffactant mode
which can be triggered by the surfactant concentration per-

turbations(fo¢0) without necessarily having an interfacial
deflection. For this mod€23a and(23b) imply
(259

Co:U,

Note thatc, here is determined from the leading order sur-
factant transport equatiof23b). As shown above, th®(1)
problem does not contribute to the system’s stability because
Co is real. As we shall see next, the instability is determined
by the O(k) problem.

At the O(k) problem, we have the following equations:

b =i RE(U- o)y — U ho], (26)
$:1(0)=,'(0)=0, (279
<3>1”(1) =- i|V|af‘o - U";]l, (27b)

$,"(1) = 2i cot oo+ i RE(U - Co) by’ (1)~ U’ (D)1,

(270
$1(1) = (co— U) 771 + C1 7, (27d)
b, (1) = (CO_U)fl_U, Aﬂl+clf01 (27¢

where both Re and Ma ai®(1). The solution to(26) that
satisfies(27a9—(27¢) is given by

<Aﬁ1=iReU"370
1 — — 1 a a
x| ——(U’'=U" 5+_C +_1 +_2 2’
120( )y Y oy 6y3 Zy

(28)

Downloaded 19 Nov 2008 to 140.116.208.46. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



012103-4 Hsien-Hung Wei Phys. Fluids 17, 012103 (2005)

trough, thereby suppressing the interfacial deflection. Simi-

larly, the out-of-phase configuration for 2 <0 [Fig. 2(b)]
just acts opposite and thus promotes the interface’s growth.

r — . B. The surfactant mode
Phd T - et l . 1™ For the surfactant mode, substitutitg5b) into (28)
” P yields ¢,=3(-iMal'o—U"7,)y? and (27d) demandse,(1)

=0 because 0f259 and(25bh), so that

iMal'o=-U"7, = 27, (303
¢1=0. (30b)
r L At O(k), (309 is a balance between the Marangoni stress
N i o B S iMal'y and the perturbation of base shear strdd¥7; at the
. Sea- T perturbed interface in view of27h). As a result, for the
() surfactant mode, since all boundary conditig838—27d)

FIG. 2. The mechanisms of stability for the interface mode in view of the used for determining th@®(k) perturbed flow are zero, these

phase difference betwedH=T) and 7(=7,). (8 2+U’>0, T is in phase  |€ad to no flow at this order as indicated (30b). Similar to

with 7. (b) 2+U’ <0, T, and 7 are out of phase. The arrows indicate the the O(1) problem, thec, for the surfactant mode is deter-

directions of resulting Marangoni flows. mined by theO(k) surfactant transport Eq27¢). Applying
(309 to (27¢ results in

N i _
a, = 2i 7, cot 6y, c, = EMaU’. (31
a=- U’?;l - iMafo + 7 Unlike the interface mode, the stability is merely determined
/5 _ ¢ by whether the imposed shear acts to assist or oppose grav-
X| —2i cotfy+i ReU”(é(U”—U')+EO)}. ity: the former (U’ >0) destabilizes while the latte(U’
< 0) stabilizes.
Below, the first-order wave speeyq is determined for both The above shear-induced Marangoni instability/stability
the interface and the surfactant modes. can be interpreted by th®(k) stress balancé30g in con-
junction with theO(k) surfactant transport equation simpli-
A. The interface mode fied from (27¢ using(25a and(30b):
Similar to the o1 problem,_ thec; _for the_ _interface —ikzclf0=—ik26’ By (32)
mode is determined from th@(k) kinematic conditior(27d).
Substituting(28) into (27d), with the aid of(24), yields If we choose the reference frame that moves with the speed

5 4 _ 1 L U, and (Lo, 71)= (T, 7)exdik(x—ct)], then Eqs(309 and
C1=- gi cot 6 + i1—5Re(2 +U’) - iEMa(Z +U’). (29  (32) are equivalent to MBy,=2k»; andkI'o,=—kU’ 7, re-
spectively, in that frame. The schematic mechanism is shown
The first term 0f(29) represents the stabilizing effect due to in Fig. 3. For a given sinusoidal interfacial deflectiap,
the transverse component of gravity. The second term, due {808 suggests that the perturbed interfacial tangential stress
the inertial effect, can be stabilizing if 2# <0, that is, Of the base flow induces a changelig in response to the
when the imposed shear acting against gravity is sufficientipalance of the Marangoni stress. The resulting surfactant
strong. This term is also consistent with the study byconcentration gradierito, is positive (negative for 7, >0(
Smith® The last term reveals the effect of surfactant, which<0). According to(32), Iy is zero at the interface’s crest/
can be stabilizing as in gravity-driven base fldws desta- trough(where 5,=0) and has maxima/minima af; =0. As
bilizing due to the imposed shears witH < 0. a result,l'y has a phase difference af/2 with 7;,. The sys-

Similar to the previous studiéd;*the above surfactant tem is destabilized iV’ >0 [Fig. Ja)], since(32) demands
effects on the stability can be explained in conjunction withthatI's increasegdecreasgswhere ,, <0(>0), resulting in
(24b) in view of the phase difference between the interfacialan increase in the amplitude &%. Similarly, the system is
deflection and the surfactant distribution. The mechanism istabilized ifU’ <0 [Fig. 3b)].
depicted in Fig. 2. As indicated h4b), for 2+U’ >0 [Fig.

2(@)), T has the same sign dg; the surfactant concentra- |/ piSCUSSION AND CONCLUDING REMARKS

tion perturbation is in phase with the interfacial deflection.

That is, the surfactant concentration is higllewer) at the We have found two distinct modes that affect the stabil-
interface’s crest(trough). Such a surfactant concentration ity of a shear-imposed flow down an inclined plan due to the
generates Marangoni forces pulling the fluid toward thepresence of surfactant. For the interface mode, the Ma-
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77/—\ /\ —i)|U’|1’2Mal_’2kl’2 ask— 0. The key of this discrepancy lies

\/ in the termU”» for the perturbed basic shear stress in the
interfacial tangential stress conditi@B). In their study for

T two-fluid systems, there is no such term since the basic tan-
r _..--";—"—‘L el ST gential stress contribution from each fluid cancels out ex-
= T - actly. For a sufficiently strong imposed shear, say;|
....... =0(k™), one should expect a similar wave speed as theirs. In
(@) this case, the present long wave analysis breaks down and
requires a different expansion in the wavenunmkendeed,

n /\ a careful inspection indicates that the leading order wave
/\ spegjc~U~O(k‘1) appears to derive from the equation

\—/ (c-U)?=0(k) obtained from the leading order determinant
- - of (17) and (18). The correction tac from the O(k) contri-
r A N i bution is thusO(k?).
.......... S . DT g In conclusion, we have performed a long wave analysis
-- S~{-- ’ to examine the effect of an insoluble surfactant on the stabil-
(b) ity of a shear-imposed falling film flow. Our results reveal

FIG. 3. The mechanism of stability for the surfactant mode. Note that thethat the. Shear-mdUCEd_ M_arangom effect can destabilize a
4 . . . — _ free falling system that is inherently stable at small Re. Our

pictures are drawn in the moving framelwth the spEeUl oft,. I'(=I"y) has t stud ful ide in d lopi th

a phase differencer/2 with 5(=kz,). (@) U'>0, (b) U’ <0. present study can serve as a useful guide in developing the

full stability analysis.
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