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Effect of Surfactants on the Film Drainage
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Drainage of a partially mobile thin liquid film between two
deformed and nondeformed gas bubbles with different radii is
studied. The lubrication approximation is used to obtain the in-
fluence of soluble and insoluble surfactants on the velocity of film
thinning in the case of quasi-steady state approach. The material
properties of the interfaces (surface viscosity, Gibbs elasticity,
surface diffusivity, and/or bulk diffusivity) are taken into account.
In the case of deformed bubbles the influence of the meniscus is
illustrated assuming simple approximated shape for the local film
thickness. Simple analytical solutions for large and small values of
the interfacial viscosity, and for deformed and nondeformed bub-
bles, are derived. The correctness of the boundary conditions used
in the literature is discussed. The numerical analysis of the gov-
erning equation shows the region of transition from partially
mobile to immobile interfaces. Quantitative explanation of the
following effects is proposed: (i) increase of the mobility due to
increasing bulk and surface diffusivities; (ii) role of the surface
viscosity, comparable to that of the Gibbs elasticity; and (iii)
significant influence of the meniscus on the film drainage due to
the increased hydrodynamic resistance. © 1999 Academic Press

Key Words: thin liquid films; drainage velocity; influence of
surfactant; mobility of interfaces; bubbles; deformable interfaces.

1. INTRODUCTION

surface convection and diffusion, driven by the gradient o
interfacial tension (Marangoni effect, see Ref. 8) in interplay
with a specific interfacial viscous friction (the so-called
Boussinesq effect, see Ref. 9). In order to estimate these effe
many authors consider th@oblem of motion of deformable
bubbles and dropsach toward the other. In the literature two
methods for solving this problem are available: numerica
investigation ofdeformable drops motiomnwhen the whole
process of dimple formation and growth depends on the initia
condition and interfacial properties (10, 11), and analytical an
numerical investigation of almogiane-parallel film thinning

in quasi-steady state approach (12-17). All experimental re
sults showed that the complete process of drainage of a th
liquid film has five stages, depending on the hydrodynamic an
intermolecular interactions (6, 18). However, the time limiting
factors for coalescence or flocculation are the approach c
drops as nondeformed spheres (earliest stage), and the drain:
of the formed film between the drops (if it appears). When twc
bubbles or drops approach each other, at high distances th
interfaces slightly deform and at a given thickness (the so
called inversion thickness) the interfacial shape changes frol
convex to concave: dimple is formedAll numerical models

of deformable drops motion investigated the growing of this
formation. Unfortunately, this is not a real experimental situ-
ation, because ahstability of the dimpleit actually flows out

The stability of emulsions and foams plays a crucial role isoon after the formation and an almost plane-parallel film i

various chemical technologies (1, 2). There have been numgirmed (6, 19). This film, due to the action of disjoining
ous attempts to formulate simple rules connecting the foam am@ssure and hydrodynamic resistance, thins down to the fin
emulsion stability with the surfactant properties: the Bancraffitical thickness without changing its radiuR, with a given
rule (3); Griffin’s criterion (4), which introduces the concept ofeometry of the meniscus (20). Therefore, models of an infinit
the hydrophilic—lipophilic balance (HLB); the phase inversioglane-parallel film describe qualitatively well most of the avail-
temperature (PIT) rule of Schinoda and Friberg (5); etc. Negple experimental data. This physical picture takes place if th
interpretation of the Bancroft rule, taking into account thgrops are relatively large (above 50—1pfn for buoyancy
dynamic process of film drainage between the emulsion drogrven coalescence). On the contrary, due to the high capillar
lets, was given by Ivanov (6). Hence the detailed study of thigessure, small drops keep their shape practically spherical t
surfactant influence on the velocity of film thinning is a startingy the moment of flocculation or coalescence. Below we will
point for many publications in the literature. investigate separately the influence of surfactants on the drai
Plateau (7) showed that some surfactants strongly retgjge in the following two cases: (A3pherical nondeformed
drainage from foam films and significantly increase their ”fedrops(bubbles), at the earlier stage of the drop’s approach ¢
time. Due to the process of film thinning the interfaces of &gy small drop sizes (see Fig. 1a and Section 3) and (B) the lats
equilibrium surfactant solution are disturbed. The equilibriurgtage, when the almogtane-parallel filmis already formed,
is restored either by adsorption from the bulk phase or By,nded by the meniscuegion (see Fig. 1b and Section 4).

We will not discuss in this paper the case of pure liquid phase

1 To whom correspondence should be addressed. Fax: (359) 2 962 564@r ”ter?ture reV_ieW see Ref. 21). _
E-mail: Krassimir.Danov@ltph.bol.bg. The first solution of the problem for approaching of two
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FIG. 1. Sketch of two bubbles of radiug, separated at a surface-to-surface distdng@) For largen the bubbles are spherical; (b) for smalthe bubbles
are deformed and a plane-parallel film with radRisurrounded by a meniscus appears.

rigid spherical particles was obtained by Taylor (22). For @or additional discussions, see Sections 4.2 and 4.3). Tt
long time the Taylor formula for the velocity of thinning wassolving of the corresponding problem for the whole film thin-
used in order to calculate the flocculation rate of suspension@g and profile evolution can answer this question. Malhotr:
In the case of two spherical drops when the surfactants amed Wasan (29) extended the applicability of the Reynold:
soluble only in the continuous phase simple asymptotic expresedel by accounting for the flow in the Plateau borders fol
sion was derived by Ivanost al. (14). It takes into account the films with tangentially immobile interfaces.
influence of Gibbs elasticity and bulk and surface diffusivities, In this work we present a solution of the problem of drainage
but the effects of the interfacial viscosity and the disjoiningf a partially mobile thin liquid film between two deformed and
pressure were not included in computations. nondeformed gas bubbles with different radii. In Section 2 ¢
The model for thin liquid film drainage has been proposedathematical model based on the lubrication approximatio
by Reynolds (23), who solved the problem for the approach ahd quasi-steady state assumption is formulated to derive tl
two plane-parallel circular disks with tangentially immobildinal governing equations for surface velocity and the film
surfaces. If there is a contribution of the disjoining pressurdrainage velocity. This is followed by a study of the problem
the corresponding formula was derived by Scheludko (24@r two nondeformed bubbles (Section 3), when analytica
Ivanov (6) discussed the effect of surface mobility on thisrmulae in the case of large and small surface viscosity effec
drainage and rupture of plane-parallel thin liquid films. Mangan be obtained. The investigation of the influence of materic
authors (12, 13, 15, 25, 26) treat the hydrodynamics of thprtoperties on the velocity of thinning of films with a given
liquid foam films. They showed that the surface elasticity argeometry is presented in Section 4. Therein the influence c
viscosity strongly reduce the interfacial mobility. The corresurfactants and the meniscus region are dealt with, and tt
sponding models foemulsionfilms, for which the surfactant is comparison between our model and the model of Ivagtosd.
soluble only in the continuous phase are described in Refs.(82) and Singtet al. (13) is illustrated.
16, 27, 28. It was shown therein that in the presence of
surfactants the energy dissipates mainly in the film region, and 2. MATHEMATICAL MODEL
the emulsion films behave just as foam films. These studies
have two problems, which are not solved. The first one isWe consider a thin viscous liquid layer between two gas
connected with influence of the meniscus on the velocity dlbbles, which flows out due to their approach under the actio
thinning (the model of infinite film does not contain the me-
niscus region). The second problem concerns the correctness of
the boundary conditions at the film ring. The viscous friction in
a real system is a sum of the friction in the film and in the
meniscus region, and as was shown in Ref. 21, for tangentially-._
immobile interfaces, these two effects can be of the same order "
of magnitude. On the other hand, in the tangential stress
boundary condition the interfacial viscous term contains the [
second derivative of the velocity on the radial coordinate. o
Therefore, boundary conditions at the film center and at the —
film ring are needed. However, in the models of infinite plane-
parallel film the boundary Co.n.dltlons at .the fllm fing are FIG. 2. Schematic picture of a thin liquid film between two deformed
upknown. The bOU”daVY co_n.dltlons used in the “terature_%@obles. The cylindrical coordinate systemQsz. The surfactant bulk and
different, based on the intuition of the authors, and the finglrace diffusion fluxes are respectivglyandj., The convection surfactant
results are not exact from the physical viewpoint (12, 13, 16)x at the interface ig;.




EFFECT OF SURFACTANTS ON THE FILM DRAINAGE 293

of the external forcel- (see Fig. 2). The problem is describedee Egs. [6] and [7] below). If we substitute the genera
in a cylindrical coordinate systenQrz, where the bubble solution [1] into the boundary conditions [4] and add the
interfaces are defined as= +H,(r, t), k = 1, 2, andt is the resulting relationships we can derive the following condition,
time. In the literature (12-14, 19, 29) the lubrication approxi-

mation is used for the solution of the governing equation. The HoP 10 9
general frame for this approximation is given by: éipnall 29r  2ar + nsar[
Reynolds number(ii) small Peclet number(iii) small film

thicknesscompared to the characteristic bubble radius, and (I\\//\)here the mean surface velocitylis = (U, + U,)/2.

small slope of the interfacek the lubrication approximation In order to close the system [2], [3], and [5] one has to solve

the pressure in the continuous phase depends only on the ra’[‘i‘1'81|diffusion problem. For thin liquid films the Peclet number

coqrdlnater, and timef: P = E(r, t). The distribution of the is a small parameter and the bulk surfactant concentration
radial component of the velocity,, was calculated (14) to be depends weakly on the vertical coordinatec = c((r, t) +
S 1
cq(z, r, t), wherecg > c4. Therefore, in a first order approx-
(z+H)(z—Hy oP H,—z z+ H,; imation with respect to the Peclet number the diffusion equa
= 2 ar g Yrt —5 Yz [ tonin the film phase can be written in the following form,

19
(rU)], [5]

r

dCq dcs D o ( acs) 9%cy

at Vear Trar\Tar) TP o]

whereH = H, + H, is the local thickness of the filmm is the Frk

dynamic viscosity, andJ, is the component of the surface

velocity, respectively, at the film interfage= = H,(r, t), k = . e - .
1, 2 (see Fig. 2). whereD is the bulk diffusion coefficient and the leading order

From (14) the integrated bulk continuity equation can b%f the surfactant concentrgtion@g(r_, D). It was p.roved in the
written in the following form: I|teratur_e (19) that for the film thmnlng the dlffu5|on-controlled_
adsorption processes are more important than the adsorpti
under barrier control. Therefore, we will consider here only
dH 19 _ (vi) diffusion-controlled adsorptiorand c(r, t) will be as-
ot + Tor (rHU,) = 0. (21 sumed equal to the subsurface concentration at both interface
Then after integrating the diffusion equation [6] ovefrom
o —H, to H, the leading order of the diffusion fluxes at the
In Eq. [2] the average velocity, is a sum of the Couette andjnterfaces reads
the Poiseuille average velocities
ac. d DHo [/ 9 ac, ac,
HOS pHu, - 2 (0 —p) 9% :
B 1 [He iy U, + U, H2 9P 2 ot 9z a9z 2= —Hs
U= | VW9z2= 5~ 4,00 B
~H [7]

aar ~ 1 oar|"ar

z=H>

The boundary condition for the balance of surface exced&ve multiply Eq. [2] with ¢ and add the result to Eq. [7], we

linear momentum takes into account the influence of the s@2tain

face tension gradients (capillary and Marangoni effects) and

the surface viscosity (Boussinesq effect). In the Iubricatioﬁ(Hcs) N Ei(rHU c) — DH o (r 6Cs)
approximation the tangential stress boundary conditions at the ror @ roor ar
film interfaces are simplified to

_ JdCq
= D(aZ Z_H1> . [8]

The balance of surfactant species in the case of diffusior
controlled adsorption at the film interfaces reads

0Cyq
9z

z=H;

I v _do 8 19
( )"az_ar Msor |t ar

(rUk)] at z=FH, [4]

whereo is the interfacial tensiony, = ng, + mg; is the total
surface viscosity, defined as a sum of the interfacial shggr,

. . . . _ J 19 ol’
and dilatationalmg;, viscosities, ank = 1, 2. We assume ——_ . = _ (yy,I') — = — (D

also that (v)the interfacial properties of the two surfaces aredt I 9" ror\ "cor

the samebecause of the uniform distribution of the surfactant

concentration along the coordinate (the leading order of _ D(—l)k“% IH, ICs [9]
surfactant concentration depends onttle@ordinate and time, 0Z | z=%H ar or’
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wherel” and D4 are the adsorption and the surface diffusiorntial equation for the distribution of the surface velodiy,is
coefficient at the interface = ¥ H, (k = 1, 2), respectively. obtained
Finally, from the surfactant species balance [9] and from the

integrated surfactant mass balance [8] one finds the total mass g 1 ¢ 61U EcU 3nVr
balance equation Msop [rar )] Tl 5 7ac ) =7
ar/,
[14]

O or +Hey = — > 2
at( cJ = roor

with the boundary conditions of vanishing velocity, at the
film origin, r = 0 and atr going to infinity (the meniscus
region).

The film between the bubbles thins due to the action of th

Here we wish to point out that the relationship [2] in Ref. 13 i%xtemal force (for example the buoyancy forde),which in

erroneous, because the coefficiérﬂherein must beE. This the quasi—steady state a;sumption is balanced by the hydroc
makes the comparison of most of the numerical results bel mic Qrag force. and_ mtermolec_ular forces. Hence, in th
and those obtained in Ref. 13 impossible. ubrication approximation we obtain

The problem [2], [3], [5], and [10] has no analytical solution,
because of the strong nonlinear dependence of the surface >
tension and adsorption on the subsurface concentration. In F= ZWJ (P + I — Pyrdr, [15]
most of the publications in the literature (for detailed literature 0
review see Ref. 19) the following assumptions are used: (vii)
small deviation from equilibrium wherell is the disjoining pressure arfd,, is the pressure at
infinity in the meniscus region. Knowing the film profile and
the type of intermolecular interactions (van der Waals, elec
trostatic, steric, etc., disjoining pressure), the external force ca
be connected with the hydrodynamic drag force acting on th
wherec, andl’y are the equilibrium values arfit andél” are  bubblesF, 4 (see Ref. 20). After substitution of [13] into [15]
small deviations from the equilibrium values of the subsurfa@nd transformation of the resulting integrals, the relationshij
concentration and adsorption; (viguasi-steady-state assumphetween the velocity of film thinningy, and the hydrody-
tion—all variables depend implicitly on time through the locahamic drag forceF,, is derived:
film thickness. Then from assumption (vii) and the total mass
balance equation [10] the gradient of the adsorption can be " "
obtained. After substitution into Eq. [5] the final form of ther, = F — zwf I rdr = GWHVJ
tangential stress boundary condition reads (see Refs. 14 and 0 0
19)

ar
X [r(ZI‘U + HeU, — 2D, - — DH M)] [10]

Cs=Cy+ dc, I'=T,+ al, [11]

r3

mdr

ooy [ (1) Y.

HoP H(ac\ ] 9 WOHVL[]
20 EG[D +D2(ar)] Ut msgy [rar(u)}
[12] In order to compute numerically the problem [14] and [16]

appropriate scaling of the parameters is needed. We will us
the natural scales widely used in the literature (30):=
The Gibbs elasticityE, appearing in [12] is defined by thev\/R:hU/(2h); r? = R.hx% and H = hH, where the
relationshipEg = —I'o(da/0I'),. From the assumption (viii) dimensionless veIOC|ty, radial coordinate, and local film thick-
the velocity of film thinningV = —aH/at, does not depend ness areJ, x, and H, respectively. In these scalésis the
on the radial coordinate. Hence, the integrated mass balanceinimal distance between the surfaces dqdis the mean
equation [2], in combination with Eq. [3], has the followingvalue of the radiR. ; andR, , of the nondeformed parts of the

first integral: bubblesR, = 2R ;R. ,/(R. ;1 + R. ) (see Fig. 1). Using the
dimensionless numbers introduced in Ref. 13 for describing th
dependence of the thinning velocity on the physical paramete
oP 127 Vr ) . :
Fram v e T [13] is not convenient, because these numbers were defined

functions of the thicknesh, which depends on time. Hence,
these numbers change by orders of magnitude for a given fill
Finally, from [12] and [13] the following second order differ-in a process of its thinning. Here we will use the dimensionles
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surface viscosity and bulk diffusivity numbeis,, andb, and whereVg; = 2hF,/(37mR2) is the generalization of Tay-

the characteristic surface diffusion lenghfy; lor's result for the rate of thinning of a fluid layer between two
rigid spheres (22), which takes into account the influence of th
s 30D [ dc 6mD disjoining pressure (the hydrodynamic drag foreg,, is dif-
Ny, = 6nR.’ T Eo <8F>0 =B [17] ferent from the external forcé;, see Eq. [16]).

3. INFLUENCE OF SURFACTANTS ON THE
The parameters defined via Eqgs. [17] do not depend on the APPROACHING VELOCITY OF TWO BUBBLES
thicknessh. They can have values which differ in several ) ] ) )
orders of magnitude depending on the type of surfactants and" this section we present the solution of the system [20] ir
the surfactant concentration. The surface viscosity numbe case of large distances between the bubbles or small rac
N,,, has the following characteristic values for water solutioffnen the bubbles are slightly deformed (case A in the Intro
of ionic, nonionic, and high molecular weight surfactants clogkCtion). Analytical formulas are obtained in the particular
to the critical micellar concentration (CMC): for ionic andcases of small and large surface viscosity. The numerice
nonionic surfactants, ~ 10~ ® msPa and foR, = 2 mm we 'esults are described in Section 3.3.
calculateNSy =0.1,in contrast foR, = 20 um we hayeNSV 3.1 Exact Solution of the Problem
= 10; for high molecular weight surfactants the typical value
of the surface viscosity ig; ~ 5 X 102 msPa and foR, = If the capillary pressure is high enough the bubble shapes a
2 mm— N, = 500, while forR, = 20 um — Ng, = 5 x 10*.  close to spherical. In the frames of the lubrication approxima
With decreasing of the surfactant concentration the surfaen the local film thickness is approximated by the parabolic
viscosity decreases and the respective numigy, also de- functionH = 1 + x2. This profile is the leading order solution
creases. In order to estimate the values of the bulk diffusivigf the boundary condition for the pressure; therefore, the
number,b, and the characteristic surface diffusion lendtp, solution of the corresponding hydrodynamic problem gives th

we will use the common Langmuir isotherm, leading order of the velocity of bubble approach. The wide
range ofx from zero to infinity makes the numerical solution

Ty Co aT I.c. ke TT, of the equation [20{:1] vyith a hig_h precision impossiblg. To
T ~c+o (ac> = (c + c?’ Eg = 1T L.’ overcome these difficulties, we will introduce a new variable,
« CLT Co 0 L™ Lo ” x = tan(0/2), which transforms the infinite range to the finite

[18] interval [0, «], where the infinity point is transformed =
m, and the zero point i = 0. With the new variable, taking
whereT’,, is the saturation adsorption, is a constant param- [Nt account the approximate film profild, = 1/ cos(0/2), the
eter of the adsorption isotherm, related to the energy of dgta! form of Eq. [20a] is reduced to
sorption per moleculeT is the temperature, ankly is the 220 50
Boltzmann constant. Then the corresponding relationships qurvsmz(e) —— + Ngsin(8)cog0) —
b and h, read a6 a6
h sir(0/2) -

= [ Nev SIF(0/2) + 102672y + hib

3nD ¢ o\t 671D, r

e ) e ) BT

keTlo I, r. kgTTo I. 1
=5 sin(0)sirf(6/2). [21]

From Egs. [19] it is seen that for very low surfactant concen-

trations both parameters have high values and when the CRcause of the boundary conditionséat 0 and6 = = the
centration is close to CM® is a very small parameter for all solution of [21] can be presented as a Fourier setes, 3

. 14k=1
types of surfactant, but/h can drop to a final value for small a, sin(k), wherea, are the coefficients depending implicitly

thicknesses. on time throughh. The details of the numerical procedure for

The dimensionless form of the tangential stress bounda(fglc:ulations according to Eq. [21] are given in Appendix A. If

condition .[14] gnd the relationship for the total force [16] haVﬁ/e substitute the general form of the solution into Eq. [21b] the
the following final form, expression for approaching velocity reads

k=0 k=1

Ny, [ a(EJ)] (1+ h )U . [20a] v o 2 o 4k
svaou | o ae (X NSO T L hen = T 52 a _ _ = [
9% | X ax A" h.+ bhA 1=y (172 )@t 2 g g [22

0
» X3 = [ox\* .
4 grdx— | Ydx [20b]  The numerical results and discussions are given in Sectic
0 3.3.
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3.2. Analytical Solutions in the Cases of Small and Large 014
Surface Viscosity Number Z a1l
= o
When the surface viscosity is very low we can neglect alﬁ
terms proportional td\N,. Then directly from Eqgs. [20a] and % ® ofor
[20b] the following analytical solution can be derived: 8 ool
3
5 X 1 h -1 % 0.06 -
U= (1 + x?)?2 [1 v hs+ bh(1 + xz)] ' [232] % 0.04 |
(2]
c
V  hy ([h(1+Db) h, -t g o002
VGT—2h{|:hs+1|n m+1 -1 . 8 000
(23b] T e S T R R T

The formulae [23b] were first derived by Ivanet al. (14).
The particular cases of large and small surface diffusion effects 025
were investigated therein (see Egs. [61] and [63] in Ref. 14)3
Using the asymptotic analysis of the problem [20] the firs§ 020}
order corrections of the approaching velocity proportional ta
the surface viscosity numbét,, have been obtained by us. & o5}
The analytical results for the next term in the expansion ar@

given in Appendix C. g 010
In the opposite case of large surface viscosity effect cong
pared to the bulk and surface diffusion effedig (> 1, bNg, § 0.05 |

> 1, andhgNg /h > 1) the surfactants influence the liquid flow g
only through the surface viscosity. (It is important to note tha‘P 0.00 |-
the surface viscosity influences the process of bubbles ap- 0o 1 2 3 4 5 6 7 8 9 10
proach only when the interfaces are mobile, i.e., the assump- Dimensionless Radial Location, x

tionsbN, > 1 andhsNS‘-/h > 1 are not valid fpr small values FIG.3. Dimensionless surface velocity, distribution at a given distance
of b andhy/h, when the interfaces are immobile because of the (a) forN_, = 1, h/h — 1, and different values of the parameker(b) for
influence of Gibbs elasticity.) Therefore, in this case the damp~ "3 hn = 1, and different values of the parametéy,

ing effects of Gibbs elasticity and surface viscosity are coupled

and they cannot be separated. The analytical solution of Egs.

[20a] and [20b] can be calculated to be interfacial mobility is demonstrated in Fig. 3. If the surface
viscosity, n,, surface diffusion coefficientD,, and the dis-

0= 1 IN(1 + ), [244] tance between the bubblés,are constants, then with increas-

4NgX ing of the bulk diffusivity the surface mobility increases (see

v N Fig. 3a). This fact is due to the faster saturation of the interfac

A . [24b] from the bulk, which leads to suppression of the Marangon
Ver 2Ng—1 effect. The distance at which the dimensionless surface velo
ity has a maximum slightly increases and the interface i
From [24b] it is seen that the approaching velocity is close mopile in a wide region. The effect of surface viscosity on the
to the generalized Taylor velocity/sr, and from the experi- interfacial mobility is well pronounced (see Fig. 3b, where the
mental results it is possible to fit the value of surface viscositiyylk and surface diffusivities are kept constants and only th
The surface velocityl, is very small: it is inversely propor- syrface viscosity numbers are varied). In contrast with Fig. 3
tional to the surface viscosity numbe,. The distance at the peak of the velocity distribution is narrower and at infinity
which the surface velocity has a maximum,,, = 1.9803, the velocity decreases faster than in Fig. 3a. The maximum
does not depend on the surfactants and the maximum valugnatvelocity is shifted to the asymptotic valuexyf,, = 1.9803
this point isU e = 0.20119N,,. It is interesting to note the with an increase of the surface viscosity number.
very long tail asymptotic of the surface velocity: at infinity it |n order to clarify how the approaching velocity is influ-
decreases ad o« In(x)/x. enced by the physical parameters of the system we calcula
the mobility factor,V/V gy, for different values ob, h/h, and
N, In Fig. 4 we choose the value bf/h to be 1 and plot the
The numerical procedure used for calculations given belafimensionless drainage velocity/Vs+, as a function of sur-
is described in Appendix A. The influence of surfactants on tliace viscosity and bulk diffusion numbers. The increasing o

3.3. Numerical Results and Discussions
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the surface viscosity in all cases of mobile interfaces leads to
a decrease of the approaching velocity (see Fig. 4a). This effect
is more pronounced for higher values of the bulk diffusivity,
where due to the faster saturation of the interfaces the surface
gradient of the adsorption is suppressed and the Marangoni
effect is not so big; i.e., the effect of elasticity is smaller than
that of surface viscosity. The decreasing of the velocity i
achieved for lower values db when the surface viscosity

number increases (compare Figs. 4a and 4b). In contrast the

fast approach of the film interfacesMg, = 0.01 andb = 100

THE
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1.5

pury

3

1.2

he/h=0.01
-~ hs/h=0.1

may be due to the inapplicability of the lubrication approxi- e h/h=
; ; ; ; : ——— ho/h=5
mation for modeling the hydrodynamic resistance of film be- 1.0 | N L T
tween fully mobile interfaces. Then the full Stokes equations 102 2 101 2 100 2 3 4100 2 & {02
have to be solved (see Ref. 30). WHer= 0 the role of bulk b
diffusivity is negligible and the surfactants behave as insoluble .
(for absolutely insoluble surfactant monolayérs= 0). Then '
only the surface diffusivity plays a role for the velocity of 1.46
approach. In Fig. 5 the mobility factor has been calculated 1.44 }
keeping the surface viscosity constant. The higher the dimen- | 4, [
sionless parametér/h the faster the bubbles approach. There-
. . .. . . — 140}
fore, for high surface diffusivity or small film thickness the o
mobility of interfaces increases. This conclusion is strong§ 1.88
1.36 - Y
T / hs/h=100
1.34 - yd -+ he/n=80
110 v PR ~ he/h=50
ol ® , 1821 [ hs/h=20
! SN I —
90 Nsy=0.01 / 1.30 e L L . i ‘hs‘/h‘—ﬂf) :
-~ Ney=0.1 / 102 2 101 2 100 2 3 10t 2 3 102
Lo Nsv=1 Analytical solution !
70 ~_ /l, b
. 60 | L J FIG. 5. Dimensionless approaching veloci¥jVg+, as a function of the
é’ 50l // bulk diffusion parameteb: (a) for Ng, = 1 and low and moderate surface
BN / diffusivities; (b) forNg, = 1 and high surface diffusivity.
40 /
sol /
122 /,/ when the bulk diffusion coefficient is smaller (the limiting case
ol e being an insoluble surfactant). #ifis large enough all curves
N : L u b merge, which corresponds to finite values of surface viscosit
102 2 101 2 100 2 8 100 2 3 102 . . . . .. .
b number without any influence of interfacial elasticity (see Figs
5a and 5b). Such a behavior is possible only for very low
105 g surfactant concentrations when the Gibbs elasticity is so lo\
' that it does not influence the mobility of the interfaces.
1.04 + Nsy=10
Ney=50 4. EFFECT OF THE SURFACE PROPERTIES AND
~ 7 Ney=100 THE MENISCUS ON THE FILM DRAINAGE
~ 1.08|
(O]
§ In the case (B) of well-defined plane-parallel film with
1.02 meniscus the solution of the problem [20] is described below
Analytical solution The analytical formulas obtained in Section 4.2 help us ftc
101 F Lo estimate the influence of physical parameters in the particul
e N cases of small or large surface viscosity. The numerical ana
1.00 Lo R T . L ysis is described in Section 4.3.
102 2 101 2 100 2 3 101 2 3 102

FIG. 4. Variation of the mobility factorV/Vs+, with the bulk diffusion
parameteb: (a) forh/h = 1 and low and moderate values of the paramet
New (b) for h/h = 1 and high values of the parametsy,.

4.1. Exact Solution of the Problem

or Most of the experimental and theoretical investigations
showed that after the film formation due to the disjoining anc
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capillary pressure the film drains without significant changinghereVgg = 2h°F, /(3mR?) is the generalized Reynolds’
of its radius and shape of the interfaces (19, 20, 25, 31). Thesult for the rate of thinning of a fluid layer between two rigid
the local film thickness can be approximated with a higblane-parallel circular disks with radi (6), which takes into
precision as corresponding to the gap between two spheriaatount the influence of the disjoining pressure. The first orde
segments separated by a planar region (see Fig.Ab¥: 1 correction of the velocity of film thinning proportional to the
when 0= x = N, andA = 1 — N2 + x? whenx = N,, surface viscosity numbeM,, is given in Appendix C.

where the dimensionless parameigy = R/"VR.h character- ~ When the surfactants are insoluble then in [26a] the bull
izes the film radiusR. It is not convenient to calculate thediffusion parameter is replaced by zero. In the particular cas
solution of [20] in terms of the variablg, because of the of infinite plane-parallel filmN, > 1, when the influence of
infinity point (see discussions in the previous section). Themseniscus can be neglected, the relationship [26b] is simplifie
fore, we introduce a new variabke= N tan(¢/2) in which the to the result of Radoeet al. (15): V/IVgg = 1 + b + hh.
planar and meniscus regions transform into numerical domainsthe other limiting case of tangentially immobile interfaces
with one and the same length:=0{ = @/2, the planar region, (large Gibbs elasticity) Eq. [26b] is transformed to the follow-
and#/2 = { = r, the meniscus region. Then the computatioring simple relation between the drainage velocity and the
in the new variable account for both regions in a comparaldgeneralized Taylor and Reynolds velocities,

way. Equation [20a] can be written in the new variable as

“d J CO B B [27a]
Ng,sir(¢) 2; + Ngsin({)cog?) (ZLgJ V. Ver Ver VVerVer
or, in equivalent form,
[ (2 () o
" \H hg+hbH/ ' 2 Ver R? R hoh
VMR TRR T R T BT

1 Nk
= - F|2|: N,ftar<2>] . [25]
where h; is the so called inversion thickness. Whén is
reached the interfacial shape in the gap changes from convex
Following the idea of Section 3.1, it is convenient to represeggncave. The relationships [27a] and [27b] show that for sma
the solution of [25] as a Fourier series= %,_, by sin(k), film radius,R, the drainage velocity reduces to the generalize:
which obgys the boundary gonditions at the film center and-ﬁgybr velocity, whereas for large fim®?/(hR) > 1, it
infinity: U(t, 0) = 0 andU(t, x) — 0 atx — =. The yijelds the generalized Reynolds velocity. From [27b] it is seer
coefficients )b, depend implicitly on time. The description ofg|so that when the film thickness is close to the inversior
the numerical procedure for equation [25] is given in Appendipicknessh;, the generalized Taylor and Reynolds velocities
B. After the computation of the coefficients, the Fourier e¥y3ve the same order of magnitude. Therefore, the menisc
pansion is substituted in [20b] and the final value of thgfluences the whole process of film drainage.
drainage velocity is calculated numerically. The other limit is the case of high surface viscosity, i.e.,
Ng/NZ > 1, NghJ/(N2h) > 1, andN pb/NZ > 1. If we
4.2. Analytical Solutions in the Cases of Small and Large compare these inequalities with the corresponding ones |
Surface Viscosity Number Section 3.2, we see that the larger the film radius is the mor
When the surface viscosity is very low we can neglect afffriCt are the Iimit of applicability of thg ass.umptions.. Fo'r very
terms proportional td\,. The problem [20] has the following arge films the influence qf surface wscgsny on their thinning
can be neglected. In this case equation [20] has an exa

analytical solution o i T
solution: in the film region it is

U—X(1+h )1 [26a] 4 X o X
A2\A " ho+ hbA/) U=gn, (NG =%+ Ur g [28a]
VGR 1 2h . . . - .
V " 1+b+hth + N“h, and in the meniscus region it is
h ~ o~ Ny 11 5 )
x{[hs(1+b)(1—Nﬁ)+1] U=UR7+4NSV;In(1+x - N?), [28b]

s hereUy, is the unknown velocity at the film ring (= R; x =
xIn[1+ ] +N2 -1 26b] Y RIS <no . .
n( h(1 + b)) . } [26b] N,;). The first derivatives with respect toof both solutions
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[28a] and [28b] at the film ring have to be equal; therefore, for
the velocity we obtaird, = N(NZ + 2)/(8N,,). The exact
solution [28] of the problem is continuous up to the third
derivative of the function at = N;. It is interesting to discuss
the validity of the boundary conditions used in the literature
for deriving the solution of the corresponding problem in the%
case of finite plane-parallel film. It is easy to find that: (i)§
the boundary conditionU/9x = 0 at the film ring, used in
Ref. 13, is valid only forN,; = V2 and (ii) the boundary
condition used in Ref. 12 states that the fluctuation of the
surfactant concentration should be equal to zero. It is easy to
show that this boundary condition is equivalent ¢pxU)/

dx = 0. This condition is also inapplicable. In the case of
small surface viscosity we performed an asymptotic analysis of

0.51 -

0.49 -

047

0.45

0.43 -

0.41 -

0.39 -

0.37

0.35

——— hs/h=100

102 2 101 2 100 2 3 101 2 3

102

the problem. We established that the boundary layer at the filnfFIG. 7. Variation of the mobility factorV/Vgg, with the bulk diffusion
ring, x = Ny, is very thin; its thickness,, is approximately Parameteb for N, = 1, N = 1 and different values df/h.

& = VNSJ/(1 + a), where the dimensionless parameter,

is defined asa = h/(hs + bh). The theory of singular Thjs relationship is the generalization of [27] for large surface

perturbations was applied and the value of the velocity deriyiscosity.

ative at the film ring was found to be

4.3. Numerical Results and Discussions

oy

Ix 1+a

Therefore, the boundary conditiét)/a x = 0 at the film ring,
used in Ref. 13, is valid only for the particular caég = (1 +

1 2baz—Za—l

N e

a)/(2a + 1 — ba?).

After substitution of [28] into the general formula [20b] thesyrface velocity has a maximum slightly decreases with in
final result for the velocity of thinning reads

1_
o=

1

-+ —
VGT VGR

1

+

1 1
\NGTVGR 2Ny

( 1 1 1 erf ) [29]
X |+ + + :
VGT VGR \J‘JVGTVGR 3 \S’/VGTVGR
0.5
z ——
S o4k SN Ney=0.1
g ——— Ngy=1.0
(o]
§ 0.3 §
3 S
o 02+
o
=
o
2 o1t
[}
E
O ;
0'0 L 1 L

.

1 2 3
Dimensionless Radial Location, x

The numerical procedure used for the calculations givel
below is described in Appendix B. The effect of surface
viscosity on the interfacial mobility is plotted in Fig. 6. If the
bulk and surface diffusion coefficients,andDg, the distance
between the bubble$, and the film radiusR, are constants,
then with increasing of the surface viscosity number the sur
face mobility decreases. The distance where the dimensionle

creasing olNg, and the interfaces are mobile in a wide menis-
cus region. From Fig. 6 it follows that the maximum of the
surface velocity is achieved close to the film ring, but the
influence of the meniscus on the drainage is not negligible.
In order to clarify the influence of the material interfacial
properties on the velocity of film thinning we calculate the
mobility factor V/Vgg for different values ob, h/h, andNg,,

b

FIG. 8. Dimensionless velocity of film thinning//Vgg, as a function of

FIG.6. Dimensionless surface velocity, distribution at a given distance the bulk diffusion parametes for h/h = 1, N, = 1 and different values of

x forb = 1, hJ/h = 1, N; = 1 and different values of the parametéy,.

surface diffusion numbef\,.
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FIG. 9. Variation of the mobility factorV/Vgg, with the dimensionless
film radius,N: (@) b = 1, h/h = 1 and different surface viscosities; (),

= 1, h/h = 1 and different bulk diffusivities.

keeping the film radiusR, and the film thicknesd), constant.
Fig. 7 illustrates the dependence Vg on the bulk diffu-

It is interesting to estimate the influence of the geometrica
parameters of the system on the velocity of film thinning. In orde|
to do that, we calculate the mobility factdfVg for different
values of film radiusR. In our computation we kept all physical
dimensionless parameters constant (they do not deperig),on
except the numbeX;. In the literature (14) it is proved that the
film is formed when the distance between the bubbles is equal
the inversion thicknesdy: in this caseN; « 1. Therefore, the
values ofN,; can be larger or much larger than 1, because th
smaller the thicknedsthe larger the paramethsy;. It is seen from
Fig. 9 that the decrease of the film thickness (respectively, wit
increasing film radiusy, for example in the Sheludko cell where
the films can be with different radii) leads to increasing velocity of
thinning. This effect is a combination of two reasons, which leac
to the same behavior. The first one is the decreasing of the relati
influence of the meniscus at larger film radii (the main hydrody-
namic friction is concentrated in the plane-parallel film region).
The second reason is connected with the circumstance that fol
wide range of values for surface viscosity the influence of elas
ticity and bulk and surface diffusivities in the whole process of
film thinning is well pronounced depending on the film radius (se
Fig. 9). This fact is proved also for very high surface viscosity
numberN, = 100, and for large values ®f;. This effect was
mentioned by lvanoet al.(12) and Singtet al. (13), who showed
that for large plane-parallel films the velocity of thinning depend:s
not onN,,, but on the complex ratio between the dimensionles:
parameterd\,(h/h + b)/[NZ(1 + h/h + b)]. Therefore, the
relative influence of the surface viscosity decreases strongly wit
increasing of the film radiu®, or with the decrease of the film
thicknessh. In other words, for large films the mobility of the
interfaces in the plane-parallel region can depend only on th
bulk and surface diffusivities. The influence of bulk diffusion
is illustrated in Fig. 9b, where the other dimensionless numbel
areh/h = 1 andNg, = 1. Itis seen that with increasing of the

sion number, at different surface diffusion coefficients andilm radius the mobility of the interfaces increases. The asymr
N, = 1. The increase dfi/h leads to increasing velocity of totic value of thle relative velocity a,; = 100 is exactly the
thinning. The interfaces behave as more mobile, becausesame as that given by Eq. [26b].

suppression of the Marangoni effect: at faster surface diffusion
the distribution of surfactant on the interface is closer to the
equilibrium. This effect is more pronounced when the surfac-
tants behave as insoluble, for smaller values of the bulk diffu-
sion parameteb. For the higher bulk diffusivity all curves
merge corresponding to values of surface viscosity humber
(Ng, = 1) without any influence of surface diffusivity (see Fig. .
7). In Fig. 8 the mobility factor was calculated for constant®
surface diffusion parametér/h = 1. The higher the surface S
viscosity the slower the film drainage. The increase of the
interfacial mobility due to the faster bulk diffusion is well
pronounced for small surface viscosity. It is important to note
that Figs. 7 and 8 show smaller drainage veloditythan the
generalized Reynolds velocitW/gg, in the cases when the
surface viscosity is not so low. This effect is exactly due to the

3.0

-+ lvanov et al.
------ Singh et al.

L
10

20

30

Dimensionless film radius

influence of the meniscus: the additional hydrodynamic resisg,s 19

Comparison of the mobility factdr/V g as predicted by Ivanov

tance of the meniscus can be larger or comparable with tgey (12) and Singtet al. (3) for finite plane-parallel film and our model. The

friction in the plane parallel film region.

parameters in the calculations de= 1, h/h = 1 andNg, = 10.
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In Section 4.2 we discussed the correctness of the boundar. The quantitative calculations show that with an increas
conditions used in Refs. 12 and 13 for solving the problem of the surface viscosity the interfaces become immobile. Th
plane-parallel thin liquid film drainage. We also demonstratexhme behavior is observed also with an increase of the Gibl
that for large film radii the influence of the meniscus on thelasticity. This effect takes place only for moderate values o
drainage velocity can be neglected. It is interesting to checktlife bulk and surface diffusivities. The increase of the bulk
the boundary conditions are so important for large films. Th#ffusion coefficient leads to faster saturation of the interfaces
result of Ref. 12 for the relative velocity can be presented which contrabalances the surface gradient of surfactant, su
terms of our dimensionless parameters as presses the Marangoni effect, and makes the interfaces mob

(see Figs. 4 and 5). The surface diffusion effect is the dominar

factor compared to the bulk diffusion, especially for very thin

P . , [30] films wherehy/h can be large or on the order of unity, whereas
= A1+ (b4 h/h) (1 + Ny AidN) b is a small parameter.

3. In the case of plane-parallel film with a meniscus regior

where, is thekth zero of the zeroth order Bessel functionthe developed model is based on the spherical approximatic
Jo(A) = 0, andVg, is the Reynolds velocity. The correspond®f the meniscus profile. The calculations are carried out usin

Vo1& 2 14 NGb+ hyh)Ng
Vee 16

ing result from Ref. 13 can be written in the form the whole film profile. The correctness of the previous result
(12, 13) are discussed. It is shown that the approximation of th

Vv 1 film as composed of only a finite plane-parallel part gives goo«
Vo~ [1+b+h/h results when the dimensionless film radius is large enough. |
Re s this case the boundary conditions for the surface velocity at th
4N, [ b+ hd/h \221(6) — &) film ring are not so important for the final value of the velocity

N2 (1 +b+ hs/h) 1,(8) — &ly(&) ] » 131 of film thinning relative to the Reynolds velocity. Then the

main parameter which estimates the influence of surface vis
. . 2
where |, and |, are the modified Bessel functions and th€0Sity is proved to bty (hg/h + b)/[N7(1 + hh + D)].

paramete is defined as 4. The asymptotic results for large and small surface veloc
ity, Egs. [26Db], [27], and [29], give simple analytical relation-

N2 1+ b + h/h\¥2 ships for calculation of the drainage velocity. They predict &

= <Nr M) continuous transition from the deformed to the nondeforme

bubbles approximation. The numerical results from this prob

) ) ) ) .. lem show a significant influence of the meniscus region on th
The numerical calculations for the relative velocity of th'””'n@rainage velocity. The latter can be smaller than the commo

from our model and from the formulas [30] and [31] are giveReynoids velocity and the drainage of the film between smal
in Fig. 10. The parameters ape= 1, hy/h = 1, andNg, = 10. drops and bubbles can be slower.

It is well demonstrated that with increasing the film radius the

results from our model go to the results of lvangival. (12) APPENDIX A
and Singhet al. (13), which are not significantly different. For
small film radius the drainage velocity is smaller due to the Numerical Solution of the Problem [21]

influence of the meniscus. Therefore, for large films the bound-

ary conditionaU/ax = 0 at the film ring seems to be more The problem [21] can be written in the following form:
realistic than the boundary conditiaxU)/ax = 0 (see Ref.

33). The latter one provides a negative first derivative of the h

velocity at the film ring. Then the maximum of the velocity igVsy| —C0S36) — 2(2 he b+ 1) cog26)

somewhere inside the film, the viscous friction is larger than .
the real one, and therefore the drainage velocity is smaller. a?U

+ coq0) + 2(2hb+ 1)] T

hs
5. CONCLUSIONS

: h . , a0
1. A theoretical model for calculation of the influence of  + NSV[SIH(SB) + 2(2 he b+ 1) sin(20) + sm(e)] 50
surfactants on the approaching velocity of two nondeformed
bubbles is developed. It takes into account the influence of
Gibbs elasticity, bulk and surface diffusivities, and surface
viscosity. The governing equation for the surface velocity is N N
calculated numerically in order to find the velocity of ap- 1M n ~
proach, relative to the generalized Taylor velocity. In the case 4 hg 2(2Ngy, + 1){ 2 hg b+1)jU
of small and large surface viscosity numbers the derived ana- 1 " " 3
lytical formulas [23b] and [24b] are useful for a simple ap- _ - _; LT _ ( 7 ) :
proximation of the velocity. 4 Sin(39) + hs b in(26) 2 hy b+ 4 sin(6). [A]

h h
+ [005(20) — 4<NSV— ~ b— h)cos(e) +1
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After substitution of the Fourier serid$ = 37 _, a, sin(kf) formed bubbles in the case of small surface viscosity numbe
into Eq. [A.1] we derive an infinite linear system of equationblg, < 1,
for the unknown quantitieg,. The coefficients in this system

are complex functions of the physical parameters and they will v,; 2h i f1)inNg+ 1) - 1
Ng d

not be presented here. This system is of seven-diagonal type y, — h,
and is solved numerically by means of the Thompson algo-
rithm. The special type of the system gives us the possibility to
solve the problem for a large number of coefficients (in our
calculations the cut off number was 10,000).

1 1 1
373+ 1N, + 1)2

+2(Nd+1)[2|(N+1) Nd+2]} o
o | In - , [C.
APPENDIX B Nib + 1) [Ng ¢ Ng+ 1

o

Numerical Solution of the Problem [25] ) ) ) )
where the dimensionless paramelgyis defined as

For the numerical solution of Eq. [25] we cannot use the
same procedure as in the Appendix A, because the shape he
function cannot be presented as a finite Fourier series. That is Ny = hb + 1) [C.2]
why all coefficients in the respective linear system of equations
are different from zero. We used the functional Ritz numerici';}liS seen that the term proportional iy, depends only on the
methods (32). For that purpose the Fourier sedes X, b e Vo

. : . . : K ulk diffusion parameteb and on the ratid\.
b,sin(k¢) is substituted into Eq. [25], the result is multiplied by The corresponding formula in the case (B) for deformec
sin(n¢) and is integrated from O ta. The final infinite linear

. - bubbles is very complicated. Therefore, here we will report the
system of equations for the unknown coefficients reads . . . i .
particular case for large film radius or small film thickness. The

final result reads

2 ayb=d, for n=1,2, .. [B.1] Ver 1 . 1.1 1
-t V 1+b+hygh 137 3(b+ 1)%Ng + 1)°
In Eqg. [B.1] the coefficients,, , andd,, are calculated from the 2 2 a2
following relationships: TN+ 1) | N, In(Ny + 1) = Ng+ 1
n b+ Nyg(b + 1) [ Ny
Ay = f {N[KZsir?(¢)sin(k) [B.2] (b+ 1D*Ng+ 1)* [Ng+ 1
0 b
| | e n(n )]
— k sin(¢)coq¢)cogks) + sin(kf)] ( )\ Na b+ 1 [C.3]
1 h g\ . As in the previous case the first approximation of the relative
T N2 >
- (H * hbA + hs)Nrftar?(2)sm(k§)}sm(n§)d§, velocity depends on the bulk diffusivity numbeér and the
parameteiN,.
"1 O
dy = o Nytan 5 | | sin(n)d¢. [B.3] ACKNOWLEDGMENT
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