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Abstract 

A microbial fuel cell (MFC) is a bioinspired energy converter which directly converts biomass into electricity through 
the catalytic activity of a specific species of bacteria. The effect of temperature on a miniaturized microbial fuel cell 
with Geobacter sulfurreducens dominated mixed inoculum is investigated in this paper for the first time. The miniatur-
ized MFC warrants investigation due to its small thermal mass, and a customized setup is built for the temperature 
effect characterization. The experiment demonstrates that the optimal temperature for the miniaturized MFC is 
322–326 K (49–53 °C). When the temperature is increased from 294 to 322 K, a remarkable current density improve-
ment of 282% is observed, from 2.2 to 6.2 Am−2. Furthermore, we perform in depth analysis on the effect of tempera-
ture on the miniaturized MFC, and found that the activation energy for the current limiting mechanism of the MFC is 
approximately between 0.132 and 0.146 eV, and the result suggest that the electron transfer between cytochrome c is 
the limiting process for the miniaturized MFC.
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Background
A microbial fuel cell electrochemically converts bio-

mass into electricity through the catalytic activity of 

specific species of bacteria, named exoelectrogen or 

anode-respiring bacteria, which are capable of transfer 

electrons outside their outer membrane [1–3]. During 

the past two decades, significant improvement on MFC 

has been demonstrated; for instance, the power density 

of microbial fuel cells have improved by more than four 

orders of magnitude, from 0.1  mWm−2 to 7.72  Wm−2 

[4–6]. In order to improve the power density, a number 

of research have been performed, such as implementing 

the anode with high surface area to volume ratio [5, 7–

9], investigating the performance of different species of 

exoelectrogen [10, 11], investigating different MFC con-

figurations, and investigating different operation condi-

tions, including temperature, pH, flow rate, etc. [12–15]. 

�e two most investigated exoelectrogen are Shewanella 

and Geobacter, which generally generate higher current 

and power density than other types of exoelectrogen. �e 

effect of temperature on microbial fuel cells with Geo-

bacter as exoelectrogen has been investigated by many 

researchers, and it is reported that the optimal temper-

ature to be 298–303  K (25–30  °C) for macro/mesoscale 

MFCs [13, 15].

Miniaturized MFCs are emerging technologies that 

utilize microfabrication for MFCs, which results in the 

characteristics of small footprint, low expense, batch fab-

rication, improved diffusion, high surface area to volume 

to ratio, etc. [1, 16–18]. Particularly, the small footprint 

makes miniaturized MFCs with a very small thermal 

mass, which is suitable for the temperature to be con-

trolled within a short period of time [19]. We perform 

first-order calculation and found that the miniaturized 

MFC can be heated to the target temperature within sev-

eral minutes due to its low heat capacity, which is suitable 

for characterizing the effect of temperature on MFCs, 

while macroscale MFCs takes much longer time (sup-

porting materials). We have demonstrated miniaturized 

MFCs and microbial supercapacitors with record power 

densities of 1.12  ×  104 and 3.95  ×  105  Wm−3; yet the 

effect of temperature on miniaturized MFCs haven’t been 
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studied to date [5, 7, 20]. In this paper, we report the first 

study of temperature effect on a miniaturized MFC with 

Geobacter dominated mixed species. Our results show 

that the miniaturized MFC has an optimal temperature 

at 322–326 K.

Methods
A customized setup including a miniaturized microbial 

fuel cell (MFC) with an anode chamber of 50  µL and a 

close-loop temperature controlled oven was built, as 

illustrated in Fig.  1. �e process flow for the miniatur-

ized MFC fabrication is illustrated in Fig. 1a. �e minia-

turized MFC had a proton exchange membrane (PEM) 

(Nafion 117, Sigma Aldrich), to permit cation transport 

and to avoid electrical short-circuiting and electrolyte 

cross mixing. Two silicone gaskets with thicknesses of 

500  µm were sandwiched between two glass slides. Ti/

Pt (20/100 nm) was deposited by electron beam evapora-

tion for both glass slides in order to form anode and cath-

ode. �e volume of each chamber was 50 μL, and the size 

of electrode was 1  cm2. Two nanoports (10–32 Coned 

assembly, IDEX Health and Science) were used to pro-

vide microfluidic pathways into and out of each chamber. 

�e MFC was assembled with four screw bolts and nuts 

to minimize oxygen/electrolyte leakage. An optical image 

of the miniaturized MFC after assembly is depicted in 

Fig. 1b.

�e inoculum for the MFC reactor was obtained from 

an acetate-fed microbial electrolysis cell (MEC) that 

had Geobacter-enriched bacterial community originally 

from anaerobic-digestion sludge. Clone libraries of the 

16S-rRNA gene showed that the inoculum was a mixed 

bacterial culture dominated by Geobacter sulfurreducens. 

�e anolyte was 25-mM sodium acetate medium with 

1680 mg KH2PO4, 12,400 mg Na2HPO4, 1600 mg NaCl, 

380 mg NH4Cl, 5 mg EDTA, 30 mg MgSO4·7H2O, 5 mg 

MnSO4·H2O, 10 mg NaCl, 1 mg Co(NO3)2, 1 mg CaCl2, 

0.001  mg ZnSO4·7H2O, 0.001  mg ZnSO4·7H2O, 0.1  mg 

CuSO4·5H2O, 0.1 mg AlK(SO4)2, 0.1 mg H3BO3, 0.1 mg 

Na2MoO4·2H2O, 0.1 mg Na2SeO3, 0.1 mg Na2WO4·2H2O, 

0.2  mg NiCl2·6H2O, and 1  mg FeSO4·7H2O (per liter of 

deionized water) (pH 7.8 ± 0.2). For the start-up process, 

inoculum and anolyte were mixed with a volume ratio of 

1:1. �e catholyte was 100-mM potassium ferricyanide 

in 100-mM phosphate buffer solution (pH 7.4). A gravity 

convection oven was utilized to control the temperature 

of the MFC (Lindberg Blue M), as illustrated in Fig. 1c. 

�e temperature of the oven was then controlled digitally 

with a resolution of 0.1 °C and was calibrated with a lab 

red spirit-filled precision thermometer. �e current was 

Fig. 1 A miniaturized microbial fuel cell (MFC) for the characterization of temperature effect: a fabrication process flow for the miniaturized MFC; b 
Optical image of the miniaturized MFC after assembly; c illustration of the miniaturized MFC mounted inside a gravity convection oven with close-
loop temperature control. The miniaturized MFC has a chamber volume of merely 50 µL, allowing the temperature inside the MFC to be controlled 
by the oven due to its small thermal mass
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monitored by recording the voltage drop across an exter-

nal resistor connected between the anode and the cath-

ode using a data acquisition system (DAQ/68, National 

Instrument). At least three replicates were conducted for 

all experiments.

Due to its small thermal mass, the miniaturized MFC 

allowed the temperature inside anode chamber of the 

MFC to match well with the ambient temperature in the 

oven. �e start-up processes of the miniaturized MFCs in 

elevated temperature of 314 K and at a room temperature 

of 294 K and elevated temperature of 314 K are shown in 

Additional file 1: Figures S1 and S2, respectively.

Results
First, we characterized the impact of the temperature 

on the performance of the miniaturized MFC when a 

thick biofilm is formed on top, and the biofilm is grown 

at a temperature of 314 K. �e temperature was changed 

periodically from 294 to 332  K with six intervals. For 

each temperature, we waited three to 6 h for the current 

became stable. As shown in Fig.  2, the current density 

first increased with the increase of temperature, and then 

decreased. At a temperature of 294  K, a power density 

of mere 2.2  Am−2 was obtained while at a temperature 

of 322  K, the highest current density of 6.2  Am−2 was 

reached. �e reason for the drop of current density was 

believed to be that the high temperature made the Geo-

bacter less active.

Analyzing Fig.  2, the increase of the current comes 

from two parts: (1) at high temperature, the output cur-

rent for exoelectrogen increases; (2) at high tempera-

ture, the number of exoelectrogen which become active 

also increases. A second experiment was performed on 

the miniaturized MFC during its start-up process under 

a temperature of 294  K, and the temperature was con-

trolled by the oven ranging from 294 to 325 K (the maxi-

mum temperature is kept at 325 K so that the device will 

not fail due to high temperature). For each temperature, 

a period of 5–7  min was kept until increasing the tem-

perature. �e short time prevent the exoelectrogen from 

proliferating since there is not enough time. �erefore, 

we can assume that the amount of exoelectrogen is kept 

constant during the temperature adjustment phase. �e 

result of the current density versus temperature is shown 

in Fig.  3. �e current increases with the temperature, 

which is in similar trend with Fig. 2. As a result, it also 

shows that the temperature has a direct impact on the 

current output of the MFC.

Discussion
We try to perform more in depth analysis on the temper-

ature effect on the miniaturized MFC result. Firstly, we 

try to derive equation about the relationship between the 

output current versus the temperature.

According to the Marcus theory, the rate constant for 

electron transfer is expressed as [21]:
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Fig. 2 Current density versus operation temperature of a miniatur-
ized MFC with a fully grown biofilm grown at 314 K. As the operation 
temperature increases, the current density first increase and then 
decrease

Fig. 3 Output current versus temperature for a miniaturized MFC 
during biofilm growth (grown at 294 K). For a single temperature 
increase adjustment, only 5–7 min are kept, so the biofilm does not 
have enough time to grow and the result represent the effect of 
temperature on the same biofilm
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where ket is the rate constant of the rate-limiting step in 

catalytic activity of G. sulfurreducens, HAB is the electron 

coupling between initial and final state, λ is the reorgani-

zation energy, ħ is the reduced Planck constant, ∆G° is 

the total Gibbs energy change during the electron trans-

fer, kb is the Boltzmann constant, T is the absolute tem-

perature, and ∆G† is the activation energy associated with 

a rate-limiting step in catalytic activity of G. sulfurredu-

cens, where

As a result, assuming the rate-limiting step is a first 

order reaction, the current in the catalytic activity of G. 

sulfurreducens can be written as

Here C is a constant for the reaction. Rearranging Eq. 2 

results in

Equation  3 shows a linear relationship between the 

ln(I∙T0.5) and T−1 and the slope is −∆G†/kb. As a result, by 

linearly fitting the curve of ln(I∙T0.5) versus T−1, the acti-

vation energy of the rate-limiting step in EET is obtained.

Ln(I∙T0.5) and T−1 curve for biofilm during the start-

up process with different steady-state current at 294  K, 

ranging from 0.04 to 0.84  Am−2 is plotted based on 

Fig. 3, as shown in Fig. 4, where the 0.04 Am−2 represent 
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very initial biofilm, while the 0.84  Am−2 represent fully 

grown biofilm. According to Fig. 4a, a linear relationship 

between ln(I∙T0.5) and T−1 is found for all four curves, 

and linearly fitting the curves in Fig. 4a results in the cor-

responding activation energies. As the activation energy 

shows, in the very initial biofilm and mid-stage (begin-

ning) biofilm, the activation energy ranges from 0.189 to 

0.202 eV. For mid-stage (end) biofilm to fully grown bio-

film, the activation energy drops to 0.132–0.146 eV.

We also plot the ln(I∙T0.5) versus T−1 curve based on 

the data for Fig. 2, as shown in Fig. 5.

A linear relationship between ln(I∙T0.5) and T−1 is also 

found for the fully grown biofilm; however, the slope in 

Fig.  5a is much larger than Fig.  4a. �e reason for this 

phenomenon is that as temperature increases, not only 

does the rate constant, ket increase, but also the amount 

of redox cofactors, Mred increases exponentially based 

on in Eq. 3. �us because we use the same miniaturized 

MFC setup and the same inoculum to obtain Figs. 4 and 

5, we can assume the ket for fully grown biofilm is the 

same as Fig.  4 for fully grown biofilm, 0.132  eV. �ere-

fore, we can calculate the change in amount of redox 

cofactor contributing to the EET as temperature changes, 

as shown in Fig.  5b, which shows a linear relationship 

between ln(Mred) and T−1. Linearly fitting the curve also 

results in an activation energy of 0.155 eV.

�e activation energy in the rate-limiting step of cata-

lytic activity of G. sulfurreducens is compared with 

activation energies of individual catalytic activity of G. 

sulfurreducens steps, as shown in Table  1. It is found 

that the activation energy of this work fits very well to 

the electron transfer between cytochrome c, while being 

very far from activation energies of other steps associated 

with EET. �is suggests that the rate-limiting step is the 

cytochrome c.

Fig. 4 a ln(I·T0.5) and T−1 curve for biofilm at biofilm formation stages with different maximum steady state current densities during the start-up 
process, linear relationships are observed for all curves, and activation energy are obtained through Eq. 3, as shown in b
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Moreover, the activation energy for the amount of Mred 

versus 1/T, 0.155 eV, falls in the activation energy range 

of cytochrome c, which also supports that for thick bio-

film, the electron transfer between cytochrome c is criti-

cal for electron transfer from G. sulfurreducens to the 

anode, i.e. EET [29].

�ese findings suggest that the rate-limiting step for 

catalytic activity of G. sulfurreducens is the EET, which 

has long been a focus for studies in microbial electro-

chemical technology (MET). �e result is consistent with 

prior evidences. For instance, Liu and Bond [29] found 

that all cytochrome c proteins were oxidized at the initial 

biofilm formation stage, whereas reduced cytochrome c 

accumulated in thick biofilms, suggesting a part of the 

cytochrome c located far from the anode cannot trans-

port their electrons to the anode. It suggests that the long 

range electron transfer is the limiting mechanism for 

EET. Strycharz-Graven et al. [30] observed cyclic voltam-

metry peaks at a slow scan rate and reported that EET 

driven by redox reaction is limited either by electron 

transfer from inside the exoelectrogen to the outside of 

the exoelectrogen or from outside the exoelectrogen to 

the anode. Bonanni et al. [31] performed numerical mod-

eling on the EET found that electron transfer limited the 

respiration rate of the cells for biofilm far from the anode. 

Our result not only concurs existing findings, but also is 

the first findings to experimentally pinpoint that electron 

transport among cytochrome c is the rate-limiting mech-

anism for EET.

Furthermore, the activation energy for the amount 

of redox cofactors versus 1/T, 0.155  eV, supports that 

electron transfer between cytochrome c is a critical step 

for EET. For thick biofilm, as temperature increases, 

the amount of cytochrome c contributing to EET also 

increases, suggesting that electron transfer between 

cytochrome c is the main long-range EET mechanism. 

�is finding is in agreement with prior studies by Snider 

et  al. [32] that long-range electron transport in G. sul-

furreducens biofilms is driven by cytochrome c redox 

gradient. In the meantime, it is not contradictory with 

the findings that nano-pili secreted by G. sulfurreducens 

are conductive [31–35], as the nano-pili may not be the 

major electron transfer mechanism.

In addition, from our finding, miniaturized MFC per-

forms better at an elevated temperature, which concurs 

with the trend of macro-sized MFCs [36]. �is finding 

may help our future MFC design to seek for optimal tem-

perature to be established.

Fig. 5 a ln(I·T0.5) and T−1 curve for thick fully-grown biofilm grown at 314 K; b logarithmic amount of redox cofactors contributing to the steady-
state current generation as temperature changes during fully grown biofilm by assuming the activation energy is 0.132 eV based on Fig. 4b; as 
temperature increases, a larger amount of redox cofactors are responsible for the catalytic activity of Geobacter sulfurreducens, suggesting that the 
catalytic activity of Geobacter sulfurreducens is temperature dependent and is favored by higher temperature

Table 1 the activation energy of  the rate-limiting step 

of  this work is compared with  the activation energy 

reported by prior studies of the reactions related to EET

It is found that the activation energy of this work is close to the electron transfer 

between cytochrome c, suggesting that the rate limiting step is the cytochrome 

c, especially for a thick bio�lm, the activation energy of this work matches very 

well with the activation energy of cytochrome c electron transfer

Reaction Activation energy (eV)

Rate-limiting step of EET in this work 0.132–0.146

Cytochrome C electron transfer 0.14 ± 0.03 [22, 23]

Quinones reduction 0.477 [24]

Reduction of CoQ by NADH 0.86–1.23 [25]

Ubiquinol oxidation by the bc1 complex 0.466–0.518 [26]

Quinol oxidation 0.466 [27]

Iron-sulfur protein 0.02 [28]
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Conclusion
A miniaturized MFC is built to characterize its current 

output capability as a function of the temperature. �e 

result shows that the output current increases as tem-

perature increases from 294 to 322  K, and an optimal 

temperature for the MFC is 322–326 K (49–53 °C), which 

indicates the thermal activation characteristic of the min-

iaturized MFC. Further in depth analysis reveals that the 

activation energy for the current limiting mechanism of 

the MFC is 0.132–0.146 eV, suggesting that the electron 

transfer between cytochrome c is the limiting process for 

the miniaturized MFC.
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