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Abstract: This study aimed to propose an alternative technological solution for manufacturing
fiberboard panels using a modified hot-pressing regime and hydrolysis lignin as the main binder. The
main novelty of the research is the optimized adhesive system composed of unmodified hydrolysis
lignin and reduced phenol–formaldehyde (PF) resin content. The fiberboard panels were fabricated
in the laboratory with a very low PF resin content, varying from 1% to 3.6%, and hydrolysis lignin
addition levels varying from 7% to 10.8% (based on the dry wood fibers). A specific two-stage
hot-pressing regime, including initial low pressure of 1.2 MPa and subsequent high pressure of
4 MPa, was applied. The effect of binder content and PF resin content in the adhesive system
on the main properties of fiberboards (water absorption, thickness swelling, bending strength,
modulus of elasticity, and internal bond strength) was investigated, and appropriate optimization
was performed to define the optimal content of PF resin and hydrolysis lignin for complying with
European standards. It was concluded that the proposed technology is suitable for manufacturing
fiberboard panels fulfilling the strictest EN standard. Markedly, it was shown that for the production
of this type of panels, the minimum total content of binders should be 10.6%, and the PF resin content
should be at least 14% of the adhesive system.

Keywords: wood-based panels; fiberboards; adhesive system; hydrolysis lignin; phenol–formaldehyde
resin; optimization; hot-pressing

1. Introduction

The growing demand for eco-friendly wood-based panels with lower environmental
footprints and reduced hazardous emissions of volatile organic compounds, such as free
formaldehyde from the finished wood composites, have imposed new stricter regulations
and requirements on both researchers and industrial practice, related to the development
of sustainable, “green” composites [1–5]. The production of fiberboards, with an estimated
global production of more than 104 million m3 in 2020, is the second largest worldwide,
surpassed only by the production of plywood [6]. In the production of dry-process fiber-
boards, which accounts for about 74% of the total output, the problem with the hazardous
formaldehyde emissions from the finished panels is also relevant [7,8]. A viable approach
to solving this issue is using sustainable, bio-based, formaldehyde-free wood adhesives
to partially or completely replace the conventional synthetic formaldehyde-based wood
adhesives, such as urea–formaldehyde (UF), melamine–urea formaldehyde (MUF), and
phenol–formaldehyde (PF) resins, commonly used in the panel industry [9–14]. Successful
attempts for the development of bio-based adhesives, including modified condensed and
hydrolyzed tannins, proteins, starch, lignin, carbohydrates, etc., have been reported [15–20].
The main drawbacks of using 100% bio-based adhesive formulations for bonding wood
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composites are related to the need for additional modification of natural raw materials to
improve their chemical reactivity, the deteriorated dimensional stability and mechanical
properties of the wood-based panels produced, and the need to modify the technological
parameters, e.g., through the extension of pressing time. In terms of industrial utilization,
significant positive results have been obtained in producing wood-based panels, mainly
particleboards, with tannin-based bio-adhesives [21–23].

Lignin is an amorphous, three-dimensional complex biopolymer, composed of phenyl-
propanoid units linked by intramolecular bonds, and the second most abundant natural
material, surpassed only by cellulose. Lignin contains a large number of functional groups,
e.g., aliphatics, phenolic, hydroxyl, and carbonyl groups, and acts as a natural binder in
wood, being the main component of the middle lamella connecting wood cells [24]. In the
production of wet process fiberboards, the properties of the panels are mainly due to the
lignin bonds arising from the hot-pressing. This makes lignin a particularly promising
bio-based adhesive for manufacturing dry-process fiberboards.

Significant quantities of lignin by-products, estimated to approximately 100 million
tons per year, are generated worldwide, mostly as a waste and side streams of the pulp
and paper industries, of which only about 2% is used for conversion into value-added
products [25–27]. The enhanced valorization and commercial utilization of that lignin
will support the transition to circular economy [28,29]. Lignin can be extracted from
lignocellulosic biomass by applying physical, chemical, and biological treatment methods.
Depending on the method by which they are obtained, the residual lignin products, i.e.,
technical lignins, are sulfate (Kraft) lignin, sulfite lignin (lignosulfonate), organosolv lignin
and hydrolysis lignin. Although Kraft lignin is the most widespread globally, much of it is
burned in the factories where it is obtained, which regenerates some of the chemical reagents
used and produces heat and energy [30,31]. The main drawbacks for using lignosulfonates
in wood adhesive formulations are related to the higher number of impurities, e.g., high
sulfur and ash content, compared to the Kraft lignin, and the deteriorated hydrophobic
properties of the wood-based panels, so it is recommended to be used in combination with
synthetic binders with or without additional cross-linking [32–42]. Although there are some
studies on the use of organosolv lignin in wood adhesives, mostly as a partial replacement
of phenol in PF resins, its wider use is limited due to the significantly smaller quantities [43],
compared to Kraft lignin and lignosulfonates. In the case of hydrolysis lignin (HL), these
shortcomings are greatly avoided [44]. As HL is a by-product of bioethanol production, its
amount is expected to increase worldwide [45,46].

Previous efforts to recover lignin have been focused mainly on its modification, its use
as a substitute for phenol in lignin–phenol–formaldehyde (LPF) resins, used primarily in
the production of plywood or the use of lignin for biofuels [47–53]. There are also successful
attempts to produce fiberboards with lignin as a binder. Previous studies on the use of
HL in wood adhesives showed that if it is introduced in the dry state in the pulp, lignin
cannot be retained and deteriorated the properties of the panels [44]. It was determined
that when using a traditional hot-pressing cycle with first high and subsequent decreasing
pressure, the addition of lignin as a substitute of formaldehyde-based adhesives leads to a
deterioration of the panel properties [54]. Good results were achieved by using HL with a
very small content of PF resin as an auxiliary binder. PF resin was mainly used to improve
the retention of lignin in the pulp, and to enhance the binding reactions of between lignin
and wood fibers [55]. The cited study did not fully clarify the effect of the total binder
content and the effect of the ratio of lignin to PF resin in the adhesive system.

This work aimed to investigate the effect of the total binder content and the optimal
ratio between hydrolysis lignin and PF resin in the production of fiberboards using a
modified hot-pressing regime. The main novelty is a derivation of the optimal composition
of the adhesive system with maximum HL content when using a modified hot-pressing
regime. The modification of the hot-pressing regime aims for maximal utilization of the
adhesive abilities of the lignin, in contrast to the classic hot-pressing cycles, which are
developed for formaldehyde synthetic resins.
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2. Materials and Methods

In this study, PF resin was used as an auxiliary binder to retain the technical HL
until the condensation and activation process occurred. The PF resin was chosen because
of its better lignin convergence and higher temperature resistance than UF and MUF
resins [56–59], Figure 1.
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Figure 1. Structure of PF resin and lignin [59].

The present study used a classical approach for mixing PF resin and lignin. Still, a
modified hot-pressing cycle was applied to make optimal use of the adhesion capabilities
of lignin.

Industrially produced pulp obtained by the thermomechanical refining method in the
factory Kronospan-Bulgaria EOOD (Veliko Tarnovo, Bulgaria) was used. The pulp was
composed of 40% hardwood (beech and oak) and 60% softwood (pine). The pulp was
characterized by a bulk density of 29 kg·m−3, fiber lengths varying from 1120 to 1280 µm,
and a moisture content of 11.2% (factory data). The PF resin used was manufactured by
Prefere Resins Romania SRL (Rasnov, Romania) and provided by Welde Bulgaria PLC
(Troyan, Bulgaria). The PF resin had the following characteristics: dry solids content 46%,
viscosity—358 MPa·s; brix 72.7 and acid factor (pH)—6.8.

The technical HL was produced from high temperature diluted sulfuric acid hydrolysis
of sawdust and softwood and hardwood chips to sugars. The chemical composition of
lignin was determined by the standard TAPPI methods [60,61]. The C, N, S and H analysis
was performed by using Elemental Analyzer Euro EA 3000 (EuroVector, Pavia, Italy). After
fractionation, only HL from the fraction below 100 µm was used.

In interior design and furniture production, thin and ultra-thin wood-based compos-
ites are increasingly used in a variety of end uses [62,63]. Therefore, the target thickness
of the laboratory panels was set to 4 mm. Twelve fiberboard panels with dimensions
200 mm × 200 mm × 4 mm were manufactured in laboratory conditions, divided into two
series with different adhesive systems. The target density of the laboratory-made fiberboard
panels was 850 kg·m−3.

Due to the use of a bio-based binder, i.e., HL, the total binder content was higher
compared to the conventional adhesive systems, composed only from thermosetting
formaldehyde-based resins [64]. Thus, the total binder content used in this work was
10% and 12%. The higher content of binders when an adhesive system with the participa-
tion of lignin is used leads to a significant deterioration in the appearance of the panels,
the need to extend the press factor and a very slight improvement in the properties of
fiberboards [65,66]. The amount of PF resin in the adhesive system also varied and was
10%, 20% and 30%. The manufacturing parameters of fiberboards bonded with HL and PF
resin are given in Table 1.



Polymers 2022, 14, 1768 4 of 18

Table 1. Manufacturing parameters of laboratory-fabricated fiberboard panels bonded with adhesive
systems composed of HL and PF resin.

Panel Type Total Binders
Content, %

PF Resin Content
in the Adhesive

System, %

Technical Hydrolysis
Lignin Content in the
Adhesive System, %

PF Resin Content
Relative to Dry

Fibers, %

Technical
Hydrolysis Lignin
Content Relative
to Dry Fibers, %

A 10 10 90 1.0 9.0
B 10 20 80 2.0 8.0
C 10 30 70 3.0 7.0
D 12 10 90 1.2 10.8
E 12 20 80 2.4 9.6
F 12 30 70 3.6 8.4

The HL and PF resin were adjusted to a concentration of 30%. Then they were mixed
and almost immediately sprayed into the pulp. A high-speed glue blender at 850 rpm
(laboratory prototype, University of Forestry, Sofia, Bulgaria) with needle-shaped blades
was used. The adhesive formulation was injected through a nozzle with a diameter of
1.5 mm at a pressure of 0.4 MPa. The whole gluing process had a duration of 60 s.

The hot-pressing was performed on a laboratory press “Servitec-Polystat 200 T”
(Servitec Maschinenservice GmbH, Wustermark, Germany). The hot-pressing temper-
ature applied was 200 ◦C. The pressing was carried out in two stages with subsequent
cooling. The first stage was performed at a pressure of 1.2 MPa and lasted 360 s. The second
stage was carried out at a pressure of 4.0 MPa for 120 s. Cooling was carried out while
maintaining the high pressure (4.0 MPa) up to a temperature below 100 ◦C. The cooling
time was 360 s. That hot-pressing regime was chosen due to a previous study aimed at
optimizing the pressing time using HL and PF resin [55]. In that study, an increase in
the press factor for the second stage above 30 s·mm−1 is unjustified. Preliminary studies
indicate that when an adhesive system from HL and PF resin is used, a deterioration in
the waterproof properties of the panels is observed at hot-pressing temperatures below
200◦. That is confirmed by other similar studies [65,66]. The optimal parameters of the
hot-pressing pressure have also been established experimentally. During the first stage,
at a pressure above 1.0 MPa, it is difficult to separate the gas mixture from the panels. At
a pressure below 4.0 MPa, it is difficult to compress the fibers to the final thickness and
density of the panels.

The fiberboard panels were conditioned for 10 days at a room temperature of 20 ± 2 ◦C
and a relative humidity of 65%.

The physical and mechanical properties of the laboratory-fabricated fiberboard panels
(Figure 2) were determined according to the EN standards [67–70]. Eight test samples were
used for each property. A precision laboratory balance Kern (Kern & Sohn GmbH, Balingen,
Germany) with an accuracy of 0.01 g was used to measure the mass of the test specimen.
Digital calipers with a 0.01 mm accuracy were used to determine the dimensions of the test
samples. Thickness swelling (TS) and water absorption (WA) tests were performed by the
weight method after 24 h of immersion in water. A universal testing machine, Zwick/Roell
Z010 (ZwickRoell GmbH & Co. KG, Ulm, Germany), was used to determine the mechanical
properties of the panels.

Regression analysis was used to analyze the effect of the total binder content and the
participation of PF resin in the adhesive system on the properties of the composites, and
the following regression model was derived (Equation (1)):

Ŷ = B0 + B1X1 + B2X2 + B12X1X2 (1)

where Ŷ is the predicted value of the given property;
B0, B1, B2, B12—regression coefficients;
X1, X2—the studied factors.
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Stepwise regression with 1000 iterations was applied to perform optimization. For
this purpose, specialized software “QstatLab”, version 6.0, was used.
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Figure 2. Fiberboard panels bonded with HL and PF resin: Type A—10% of binders, from which 10%
was PF resin; Type B—10% of binders, from which 20% was PF resin; Type C—10% of binders, from
which 30% was PF resin; Type D—12% of binders, from which 10% was PF resin; Type E—12% of
binders, from which 20% was PF resin; Type F—12% of binders, from which 30% was PF resin.

3. Results and Discussion

The technical HL had the following chemical composition: 72.6% lignin, 25.5% cel-
lulose, 2.8% ash content, 55.54 C, 0.74 S, 7.10 H, and 0.26 N. The ash content is relatively
low, which leads to improved adhesion properties of technical HL. That is, the ash will not
significantly impair the adhesive bonds. The presence of cellulose in the HL contributes to
its properties as a binder [71,72].

The results obtained for the density of laboratory-fabricated fiberboard panels are
presented in Table 2.

Table 2. Density of fiberboard panels bonded with HL and PF resin.

Panel Type Average/Mean/
Value, kg·m−3

Standard
Deviation, kg·m−3

Standard
Error, kg·m−3

Coefficient of
Variation, % Probability, %

A 856 34 4 12 1.42
B 852 43 5 15 1.77
C 862 26 3 9 1.08
D 842 24 3 8 0.99
E 860 24 3 8 0.99
F 850 19 2 7 0.78

The density of the panels varied from 842 to 862 kg·m−3. The difference between the
maximum and minimum density values was 2.4%, i.e., significantly below the permissible
statistical error of 5%. This was also confirmed by the conducted ANOVA (Table 3). The
test performed included the density data obtained for each test sample.

Table 3. ANOVA for the density of fiberboard panels bonded with HL and PF resin.

Source of Variation SS df MS F p-Value Fcrit

Total binder content 247.52 1 247.52 0.356 0.553 4.06
PF resin content in the

adhesive system 393.16 2 196.58 0.282 0.755 3.21

Error 30,617.29 44 695.84
Total 31,257.97 47
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Therefore, it can be concluded that there was no statistically significant difference
between the density of the individual fiberboards, thus it will not affect the other physical
and mechanical properties.

The derived regression models, in explicit form, are presented in Table 3.
Table 4 shows that the obtained models are statistically significant. In all models, the

calculated value of the Fisher’s criterion (Fcal) is greater than the critical value (F(0.05,3,2)).

Table 4. Regression models for the effect of total binder content and PF resin content in the adhesive
system on the properties of the fiberboard panels produced in this work.

Regression
Coefficienty

Property Modulus of
Elasticity

(MOE)

Bending
Strength (MOR)

Internal Bond
(IB) Strength

Thickness
Swelling

(24 h)

Water Absorption
(24 h)

B0 −6920.667 −51.867 −2.260 60.538 111.152
B1 917.333 7.438 0.285 −2.493 −3.613
B2 230.450 0.395 0.018 −0.410 −0.530
B12 −17.550 – −0.001 – –
Fcal 147.89 5882.68 974.77 37.892 29.039
F(0.05,3,2) 19.164 19.164 19.164 19.164 19.164

A graphical representation of the results obtained for the modulus of elasticity (MOE)
of the fiberboard panels fabricated in this work is presented in Figure 3.
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Figure 3. Modulus of elasticity (MOE) of fiberboard panels bonded with HL and PF resin.

The overall improvement of the MOE values with the variation of the adhesive system
used was 1.7 times. All manufactured panels bonded with an adhesive composition of
HL and PF resin as an auxiliary binder met the standard requirements for dry-process
fiberboards for general purpose and use in dry conditions—2700 N·mm−2 [70]. All panels,
except for the fiberboards produced with 10% total binder content and 10% PF resin in the
adhesive system, fulfilled the strictest requirements for this property, i.e., for fiberboards
for load-bearing applications—3000 N·mm−2.

At a total binder content of 10% with an increase in the PF resin content from 10% to
30% in the adhesive system, an improvement in the MOE values of 1.4 times was observed.
That improvement was most significant (by 1.3 times) when the PF resin content in the total
adhesive system was increased from 10% to 20%. According to previous studies on the
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application of lignin as a binder in fiberboards, its incorporation could increase the stiffness
of the panels, resulting in higher MOE values [19,71].

The subsequent increase in the content of PF resin from 20% to 30% in the adhesive
system had a slight effect, i.e., MOE values improved by 1.2 times. Therefore, it can be
concluded that at 10% total binder content, the content of PF resin in the adhesive system
should be above 10%. Otherwise, the retention of HL in wood fiber mass is not complete,
which results in decreased MOE values of the panels [54,55].

Fiberboard panels fabricated with 12% total binder content had higher MOE values
than fiberboards bonded with 10% adhesives. Even at 10% content of PF resin in the
adhesive system, a higher MOE was observed compared with the panels manufactured
with 10% binder content, of which 30% was PF resin. With the increased PF resin content
from 10% to 30% of the total adhesive system used, an improvement of MOE values by
1.09 times was observed. Similarly, more significant increase in MOE values by 1.05 times
was determined when the percentage of PF resin content on the adhesive system was
increased from 10% to 20%.

The optimal, maximum, MOE value of 4680 N·mm−2 was obtained at the upper limit
values of the factors—12% total binder content and 30% PF resin content in the adhesive
system (Figure 4).
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The grey zone in Figure 4 represents the limitation, i.e., the standard requirement for
MOE values of fiberboard panels used in load-bearing applications in humid conditions
(3000 N·mm−2) [70]. Markedly, fiberboard panels, fulfilling this requirement, can be
manufactured with a total binder content of at least 10.3% and a PF resin content in the
adhesive system of at least 14%.

The determined MOE values of laboratory-fabricated fiberboard panels with a hydrol-
ysis lignin content of more than 10% in the adhesive system are in accordance with the
results obtained by Yotov et al. [44]. Comparable MOE values were also reported by other
authors [54,71], who investigated the effect of lignin incorporation in adhesive systems,
used for fiberboard manufacturing.
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The results obtained for the bending strength (MOR) values of the laboratory-produced
fiberboard panels bonded with HL and PF resin are presented in Figure 5.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

manufactured with a total binder content of at least 10.3% and a PF resin content in the 
adhesive system of at least 14%. 

The determined MOE values of laboratory-fabricated fiberboard panels with a 
hydrolysis lignin content of more than 10% in the adhesive system are in accordance with 
the results obtained by Yotov et al. [44]. Comparable MOE values were also reported by 
other authors [54,71], who investigated the effect of lignin incorporation in adhesive 
systems, used for fiberboard manufacturing. 

The results obtained for the bending strength (MOR) values of the laboratory-
produced fiberboard panels bonded with HL and PF resin are presented in Figure 5. 

 
Figure 5. Bending strength (MOR) of fiberboard panels bonded with HL and PF resin. 

The fiberboard panels produced in this work exhibited MOR values, varying from 
27.38 to 52.65 N·mm−2. The improvement in MOR values of the panels with increasing 
total binder content was more significant compared to MOE, i.e., an overall improvement 
of 1.93 times was determined. All laboratory panels met the standard requirements for 
use in dry conditions—MOR value of at least 27 N·mm−2 [70]. All panels, except for the 
fiberboards manufactured with a total binder content of 10% and 10% PF resin in the 
adhesive system, also fulfilled the requirements for load-bearing applications and use in 
humid conditions—30 N·mm−2. 

At the total binder content of 10%, the increased PF resin content in the adhesive 
system from 10% to 30%, resulted in improved MOR values by 1.36 times. The respective 
increase in MOR was 1.18 times when the PF resin content in the adhesive system was 
increased from 10% to 20%, and 1.15 times when it was increased to 30%, respectively. 
MOR values depend on individual fiber strength and bonding strength among wood 
fibers, i.e., better inter-fiber bonds will result in improved MOR of the panels. The positive 
effect of HL addition on the fiber surface on MOR values of fiberboards was also 
confirmed by other authors [19,66,73]. 

Fiberboard panels fabricated with 12% total binder content exhibited higher MOR 
values than the panels produced with 10% total binder content. The fiberboards with 12% 
binder content, of which 10% was PF resin, had 1.15 times higher MOR values than the 
panels with 10% total binder content, of which 30% was PF resin. Panels bonded with a 
12% total binder content showed improved MOR values by 1.42 times when the PF resin 
content was increased from 10% to 30%. 

The optimal, maximum value of the property of 52.65 N·mm−2 was obtained at the 
upper limit values of the factors—total binder content of 12% and 30% PF resin content in 
the adhesive system (Figure 6). 

27.38

42.54

32.27

47.32

37.12

52.65

0.00

10.00

20.00

30.00

40.00

50.00

60.00

10 12

Be
nd

in
g 

st
re

ng
th

 (M
O

R
) f
m

, N
.m

m
-2

Total content of binders P, %

PF resin‒10% 
of the adhesive 
system
PF resin‒20% 
of the adhesive 
system
PF resin‒30% 
of the adhesive 
system

Figure 5. Bending strength (MOR) of fiberboard panels bonded with HL and PF resin.

The fiberboard panels produced in this work exhibited MOR values, varying from
27.38 to 52.65 N·mm−2. The improvement in MOR values of the panels with increasing
total binder content was more significant compared to MOE, i.e., an overall improvement
of 1.93 times was determined. All laboratory panels met the standard requirements for
use in dry conditions—MOR value of at least 27 N·mm−2 [70]. All panels, except for
the fiberboards manufactured with a total binder content of 10% and 10% PF resin in the
adhesive system, also fulfilled the requirements for load-bearing applications and use in
humid conditions—30 N·mm−2.

At the total binder content of 10%, the increased PF resin content in the adhesive
system from 10% to 30%, resulted in improved MOR values by 1.36 times. The respective
increase in MOR was 1.18 times when the PF resin content in the adhesive system was
increased from 10% to 20%, and 1.15 times when it was increased to 30%, respectively.
MOR values depend on individual fiber strength and bonding strength among wood fibers,
i.e., better inter-fiber bonds will result in improved MOR of the panels. The positive effect
of HL addition on the fiber surface on MOR values of fiberboards was also confirmed by
other authors [19,66,73].

Fiberboard panels fabricated with 12% total binder content exhibited higher MOR
values than the panels produced with 10% total binder content. The fiberboards with 12%
binder content, of which 10% was PF resin, had 1.15 times higher MOR values than the
panels with 10% total binder content, of which 30% was PF resin. Panels bonded with a
12% total binder content showed improved MOR values by 1.42 times when the PF resin
content was increased from 10% to 30%.

The optimal, maximum value of the property of 52.65 N·mm−2 was obtained at the
upper limit values of the factors—total binder content of 12% and 30% PF resin content in
the adhesive system (Figure 6).

The grey zone in Figure 6 represents MOR values below 30 N·mm−2. In all other
cases, the strictest standard requirement for this property for load-bearing applications and
use in humid conditions was fulfilled [70]. To note, this requirement can be achieved with
a minimum binder content of 10.22% and PF resin content in the adhesive system of at
least 13.5%.
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The results show that at the selected levels of variation of the total binder content and
the content of PF resin in the adhesive system, the increase in the content of PF resin resulted
in improved MOE and MOR values of the panels. However, it should be noted that in all
experimental series, the HL is the main binder, and that is, a waste bio-based material is
utilized. The improvement in the properties of fiberboards with increasing PF resin content
should be due to better retention of lignin in the pulp and the interaction of lignin with PF
resin. Which of the two causes dominates should be a subject of subsequent studies.

The results obtained for the MOR values of the panels, fabricated in this work, are in
accordance with the findings of other authors [44], where an improvement by 1.7 times
in this property was reported with an increase in the binder content from 6% to 10%.
In another study [71], the increased lignin content in the adhesive system resulted in a
significantly improved (almost twice) MOR values. The beneficial effect of HL addition
on MOR values of fiberboards, produced by modifying the hot-pressing regime was also
reported by Valchev et al. [55].

The results obtained for the IB strength of the fiberboard panels, bonded with adhesive
system composed of HL and PF resin, is presented in Figure 7.

The internal bond (IB) refers to the bonding strength between individual fibers, which
is of great importance because it ensures that the panels will not delaminate during post-
processing. Internal bonding between wood fibers without synthetic resins is due to the
hydrogen binding between fibers, condensation reaction of lignin [74–76], and crosslinking
reactions between lignin and polysaccharides [77]. The formed covalent bonds between
lignocellulosic polymers contribute to the formation of intermolecular forces which are
stronger compared to the ones due to hydrogen bonds [78]. Furthermore, fibers with
lignin-rich surfaces have a positive effect on the mechanical properties of the panels due
to entanglement of the softened lignin caused by applied pressure and temperature, and
supplemented by covalent bond formation [74–76,79].
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Figure 7. Internal bond (IB) of fiberboard panels bonded with HL and PF resin.

The IB values of the fiberboard panels produced in this work varied from 0.66 to
1.32 N·mm−2. Overall, the IB values of fiberboards were improved with the addition
of HL. The increased total binder content and PF resin content in the adhesive system
resulted in an almost twice increase in IB strength. For the panels bonded with a 10% total
binder content, the IB values increased from 0.66 to 0.81 N·mm−2 with the increased PF
resin content in the adhesive system from 10% to 30%, i.e., an improvement of 1.23 times
was determined. More significant improvement of the IB values was observed with the
increased total binder content from 10% to 12%. The tendency of increased IB of the panels
with increasing PF resin content in the adhesive system was also confirmed. However, the
overall improvement of this property achieved by increasing the PF resin content in the
adhesive system from 10% to 30% was only 9%.

All fiberboard panels bonded with HL as the main binder and PF resin as an auxil-
iary binder fulfilled the European standard requirements for general purpose fiberboards
used in dry conditions—0.65 N·mm−2 [70]. With the exception of the panels manufac-
tured with 10% total binder content, of which 10% was PF resin, all other panels met the
strictest requirements for the property, i.e., for load-bearing applications and use in humid
conditions—IB strength of at least 0.70 N·mm−2 [70].

The optimal, maximum value of the property of 1.32 N·mm−2 was obtained at the
upper limit values of the factors—total binder content of 12% and PF resin content of 30%
of the adhesive system (Figure 8). In order to meet the most stringent requirement of
0.70 N·mm−2, the total binder content should be at least 10.15%, and the PF resin content
in the adhesive system should be at least 15%.

The improvement of the mechanical properties of the panels, MOE, MOR, and IB
strength, with the increased total binder content and lignin content, was consistent with
previous studies using lignin as a bio-based binder for fiberboard manufacturing [80–83].

However, the predominant effect of improving the properties of fiberboard panels is
the increase in total binder content, which increases both the content of HL and PF resin.
Although, the results show that the ratio of HL to PF resin is also significant. If the PF
resin is the main binder, then in the used hot-pressing regime, the resin polymerization will
occur at low pressure, i.e., before the final compression of the material has occurred. That
will lead to fabricating panels with deteriorated properties.
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Figure 8. Effect of binder content and PF resin content in the adhesive system on the IB strength of
fiberboard panels.

Thickness swelling (TS) and water absorption (WA) are important physical properties
of wood composites, strongly related to the dimensional stability of the panels, and pro-
viding an insight of panel behavior when used in humid conditions, especially in outdoor
applications [84,85].

The results obtained for the TS (24 h) of the fiberboard panels bonded with HL and PF
resin are presented in Figure 9.
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Figure 9. Thickness swelling (24 h) of fiberboard panels bonded with HL and PF resin.

As seen in Figure 8, the TS values of the laboratory-produced fiberboards varied from
34.33% to 20.40%. The increased total binder content resulted in reduced TS values by
1.68 times. All manufactured fiberboards fulfilled the standard requirement for panels used
in dry conditions—TS value of 35% [70]. Except for the panels manufactured with a 10%
binder content, of which 10% was PF resin, all other fiberboards met the standard require-
ment for use in humid environments, i.e., 30%. The main reasons for TS in fiberboards are
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the breakage of bonded areas among wood fibers and the recovery of compressed fibers [74].
Results from previous research works indicated that the addition of HL on the fiber surface
resulted in improved dimensional stability of the panels, due to the hydrophobic nature of
HL [19,54].

For the panels fabricated with 10% total binder content, the increased PF resin content
in the adhesive system, from 10% to 30%, resulted in decreased TS values by 1.51 times.
Much more significant improvement of TS was observed when the PF resin content in the
adhesive system was increased from 10% to 20%, i.e., 1.36 times. The subsequent increase
in the PF resin content resulted in an improvement of 1.11 times.

With regards to the panels, manufactured with 12% total binder content, the increased
PF resin content in the adhesive system from 10% to 30% resulted in improved TS values of
the panels by 1.23 times. Markedly, the improvement of the studied property was more
significant when the PF resin content was increased from 10% to 20% in the adhesive
system, i.e., 1.16 times.

It can be concluded that the increased binder content from 10% to 12%, and PF resin
content in the adhesive composition from 20% to 30%, respectively, had a limited effect on
the TS of the laboratory-made fiberboards bonded with HL and PF resin.

The optimal (minimum) value of the property was obtained again at the upper limit
values of the factors (Figure 10). The grey zone in the figure represents TS values higher than
30%, i.e., values that do not meet the standard requirement for use in humid conditions [70].
To fulfill the stringent standard requirements, the panels should be fabricated with a total
binder content of at least 10.6%, and the PF resin content in the adhesive system should be
at least 14%.
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The improvement of TS by increasing the total binder content is consistent with the
results obtained in previous studies [44,54,55,66].

The results of the WA (24 h) of fiberboard panels, bonded with HL and PF resin, are
presented in Figure 11.
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Figure 11. Water absorption (24 h) of fiberboard panels bonded with HL and PF resin.

Lignocellulosic materials absorb water by creating hydrogen bonds between water
and hydroxyl groups of lignin, cellulose, and hemicellulose present in the cell wall [86,87].
The addition of lignin in the adhesive system reduces the WA of fiberboards due to the
presence of aromatic rings and non-polar hydrocarbon chains in the lignin structure [88].

WA values of the fiberboard panels produced in this work varied from 73.27% to
54.05%. The variation of the total binder content and adhesive system composition resulted
in reduced WA of the panels by 1.36 times. The reduced WA values with the incorporation
of lignin in the adhesive formulation might be attributed to bulking the cell wall with
lignin, which makes it hydrophobic [19,29].

For the panels manufactured with 10% total binder content, the most significant
improvement of WA (1.21 times) was determined when the PF resin content in the adhesive
system was increased from 10% to 20%. The subsequent increase in the PF resin content
in the adhesive system from 20% to 30% had a more negligible effect, and the observed
improvement was only 1.04 times.

The increased total binder content from 10% to 12% resulted in improved WA values
of the laboratory panels. However, fiberboards fabricated with 10% total binder content, of
which 20% was PF resin, exhibited WA values, comparable with the panels bonded with
12% total binder content, of which PF resin was 10%.

The optimal WA value was obtained at the upper limit values of the factors (Figure 12).
As WA is not a standardized property of wood-based composites, the strictest restrictions
were imposed on the other properties of the panels. Thus, it was found that fiberboards
complying with the most stringent requirements, namely for load-bearing applications and
use in humid conditions, can be manufactured with a minimum total binder content of
10.6%, where PF resin should be at least 14%. Therefore, the HL addition may constitute
86% of the adhesive system.

The results obtained for improving the waterproof properties of the fiberboard pan-
els by increasing the lignin content are consistent with the findings reported in similar
studies [65,80–83]. The results for the physical and mechanical properties of fiberboards
manufactured with a modified adhesion system and hot-pressing cycle are comparable or
better than the results reported in similar studies on the application of lignin as a bio-based
wood adhesive [65,66,80,83]. Compared to the cited studies, an advantage of the technology
used in this work is the absence of lignin modification, lower total lignin content, and lower
density of the panels.
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4. Conclusions

The HL is activated when modifying the hot-pressing regime, most likely by plasti-
cization and subsequent condensation processes involving the PF resin. That overcomes
the disadvantage of low lignin retention in the wood fiber mass. The proposed hot-pressing
technology is easily feasible in industrial conditions with continuous presses. These presses
have autonomous heating of the individual sections, so cooling will not lead to significant
heat losses and additional costs. It should be emphasized that continuous presses with a
cooling zone are already in operation. The fiberboard panels produced in this work from
industrial wood fiber mass, bonded with an adhesive system composed of HL and PF as
an auxiliary binder, exhibited excellent mechanical and hydrophobic properties, fulfilling
the requirements of the relevant standard for application in humid conditions. Markedly,
fiberboard panels meeting the most stringent standard requirements can be manufactured
with a minimum total binder content of 10.6%, composed of at least 14% PF resin content,
and at least 86% HL, respectively. It can be concluded that further increase in total binder
content and PF resin content is not justified unless for manufacturing special purpose
panels. The main disadvantage of the proposed technological solution is the long first stage
of hot-pressing, which can be overcome by reducing the moisture content of the fiber mat.
Future research should be focused on determining the optimal moisture content of the mat
to enable lignin activation at reduced hot-pressing duration.
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